东昆仑地区矽卡岩型矿床地质特征、 成矿时代及成矿环境^{*}

钱壮志 汤中立 焦建刚 唐冬梅

(长安大学,陕西 西安 710054)

摘 要 在东昆仑地区已发现的内生金属矿床主要有砂卡岩型、玢岩型、蚀变岩型、脉型和岩浆(镁铁-超镁铁)型等 5 类,其中以分布于昆北带和昆中带的砂卡岩型铁多金属矿床占主要地位。对该类矿床成矿地质特征、成矿条件、成矿时代以及成矿构造环境的研究表明,成矿发生于华力西晚期到印支早期。经测试得出,矿化花岗闪长斑岩中锆石 U-Pb 年龄为(264±12) Ma,砂卡岩化花岗闪长斑岩为(278.2±3.6) Ma 和(246±3.9) Ma。成矿背景和区域矿产分布显示,该区域华力西-印支期成矿与其独特的古特提斯陆缘构造环境密切相关。

关键词 东昆仑 矽卡岩型矿床 地质特征 成矿时代

东昆仑地区隶属于中国中央造山带的西部(姜春发,1993),对这一地区区域矿产的研究,上世纪 80年代之前的工作相对薄弱,进入 20世纪 90年代之后有所加强。但从整体来看,相对于中国其他的 重要成矿区带而言,对该地区的研究程度目前还不高,有关其区域矿产资源方面的科学问题仍需不断 探索。

已有研究表明,东昆仑地区以铁、铜、锌、钴、金为主的区域金属矿产优势已初显端倪,构成了 秦祁昆成矿域一个重要的古生代成矿带。在该成矿带,已发现大型铜锌钴矿床1处,中型以上金矿3 处,中型以上铁多金属矿4处,Fe、Cu、Pb-Zn、W、Sn、Au、Co矿产地140余处(徐文艺等,2001)。 依据对这些矿床的成矿特征和成因归属分析,认为它们主要为矽卡岩型、玢岩型、蚀变岩型、脉型和 岩浆(镁铁-超镁铁岩)型等5类。在这5类矿床中,除岩浆型外,矽卡岩型矿床无论在区域分布广度 还是成矿强度上,均显优势。

1 成矿地质背景简述

东昆仑地区北与柴达木陆块相接,南以昆南(秀沟-玛沁)断裂与巴额喀拉印支褶皱带相邻,西至 阿尔金断裂,东以瓦洪山断裂与西秦岭为界。以东昆北、东昆中和东昆南断裂为界,可将该区进一步 划分为东昆仑北带、东昆仑中带和东昆仑南带3个次级构造单元(图1)。其中在东昆仑北带,主要发 育有下元古界基底变质岩,以及华力西-印支期花岗岩类侵入岩;东昆仑中带发育有下元古界基底变质 岩、中-上元古界以及古生界和中生界上三叠统,区内花岗岩类发育,有东昆仑花岗岩带之称,主要时 代为中-晚元古代和华力西-印支期,中生代发育中性浅成-超浅成岩;东昆仑南带发育中上元古界、古 生界、三迭系及侏罗系-第四系,区内花岗岩类分布远不如昆中带和昆北带广泛,且时代主要为华力西 期之后。

^{*}本文得到地质大调查综合研究项目(K1.4-3-2和 200110200058)的资助

第一作者简介 钱壮志, 男, 1959 年生, 教授, 博士生导师, 主要从事构造地质学和矿床学教学与科研工作。E-mail: qianzh@pub.xaonline.com

图 1 东昆仑地区构造分带略图

Fig.1 Sketch map of tectonic zoning in East Kunlun Mountains

Ⅰ-昆北构造带; Ⅱ-昆中构造带; Ⅲ-昆南构造带; Ⅳ-可可西里-巴颜喀啦构造带。图中黑点为矽卡岩型铁多金属矿床

2 成矿地质特征

第23卷 增刊

2.1 矿床类型及分布

东昆仑砂卡岩型矿床以 Fe、Pb、Zn、Cu、Sn 矿化为主,局部伴有 Au、Ag、Ga、Ge、Cd 等有用 组分。依据矿石矿物组成和成矿元素组合,可划分为5种类型(表1)。

砂卡岩型铁多金属矿床主要集中在东昆仑北带(祁漫塔格带),中带(布尔汉布达带)有少量分布 (参见图1)。在昆北带,砂卡岩型矿床分布在都兰-香日德和那陵郭勒-苏海图两个矿集区。

在砂卡岩型矿床分布区,区域地层主要为奥陶系上统和石炭系,并有华力西-印支期花岗岩类发育。 这些矿床受上述地层的碳酸盐岩和华力西-印支期中-酸性岩体两种因素控制。

Table 1Features of skarn-type ore deposits in East Kunlun Mountains								
矿床类型	0 矿物组成	围岩蚀变	代表性矿床	有用组分				
砂卡岩型铁矿	磁铁矿	透辉石石榴石矽卡岩化	海寺铁矿、双庆铁矿、白石崖	Fe				
hu		(为主),透闪石化、绿	铁矿					
14		泥石化、碳酸盐化						
矽卡岩型铅锌矿	方铅矿、闪锌矿,少量黄铁	石榴石矽卡岩化、绿泥石	海寺铅锌矿	Pb, Zn				
	矿、黄铜矿和磁黄铁矿	化、绿帘石化、碳酸盐						
		化、硅化及绢云母化						
砂卡岩型铁铅锌(铜)矿	磁铁矿、闪锌矿、方铅矿、	石榴石透辉石砂卡岩化、	肯德可克铁铅锌矿、野马泉铁	Fe, Pb, Zn, (Cu)				
	黄铜矿,少量赤铁矿、	钙镁橄榄石矽卡岩化、	锌矿、尕林格铁铅锌矿、大	伴生 Ga, Ge,				
	磁黄铁矿、毒砂	绿帘石化、绿泥石化	洪山铁铅锌(铜)矿	Cd, Ag 和 Au				
矽卡岩型铁锡(钨、铜)矿	磁铁矿、穆磁铁矿、锡石,	石榴石矽卡岩化、透辉石	小卧龙铁锡矿床、占卜扎勒铁	Fe, Sn, (W), (Cu)				
	次为白钨矿、黄铜矿、	矽卡岩化及硅化	锡铜矿点					
	赤铁矿、黄铁矿							
砂卡岩型多金属(金)矿	方铅矿、闪锌矿、黄铜矿、	矽卡岩化、阳起石化、透	巴克特沟多金属矿床、石灰沟	Pb, Zn, (Cu),				
	磁黄铁矿、黄铁矿,含	闪石化、绿帘石化、碳	外滩多金属(金)矿	(Au), (Ag)				
	少量白铁矿和毒砂	酸盐化						

表1 东昆仑矽卡岩型矿床特征

注:()内为伴生组分。

2.2 成矿特征

研究区砂卡岩型矿床具以下特征:

(1)空间上矿化与砂卡岩或砂卡岩化紧密相随,矿体产于砂卡岩或砂卡岩化岩石中(图2,A);
(2)矿化主要受中酸性岩体与碳酸盐岩的外接触带控制(图2B),岩体主要为花岗闪长岩、花岗闪长斑岩、花岗斑岩、二长花岗岩、石英闪长岩、闪长岩等,砂卡岩化的碳酸盐岩主要属下元古界金水口群、奥陶系和石炭系;

(3) 矿体形态复杂,主要呈透镜状、似层状及团窝状,多顺层分布,局部切层;

(4) 矿化及交代蚀变分带清楚, 肯德可克矿区近矿围岩由下向上、由内向外依次为钙镁橄榄石砂 卡岩、石榴石透辉石砂卡岩和绿泥石化带。小卧龙铁锡矿床由以锡矿体为主向东变为以铁矿体为主, 石灰沟沟口至外滩一带, 在闪长玢岩发育区由内向外, 依次表现出 Fe→Cu、Pb、Zn→Pb、Zn 的变化 规律:

(5)在不同矿床或矿体中,矿石矿物组合变化较大,主要有:磁铁矿-穆磁铁矿、方铅矿-闪锌矿-黄铁矿、磁铁矿-黄铁矿、闪锌矿-磁铁矿-(黄铁矿)、方铅矿-黄铁矿-(黄铜矿)、磁铁矿-穆磁铁矿-锡石-(白钨矿)、方铅矿-闪锌矿-黄铜矿-磁黄铁矿-(毒砂)。

2.3 矿石组构及物质组成

东昆仑砂卡岩型铁多金属矿床矿石,主要呈结晶结构、交代溶蚀结构、固溶体分解结构和压 碎结构。矿石构造主要为块状、星散浸染状和脉状构造。

在肯德可克矿床,矿石矿物组成多达 60 余种。主要矿物有磁铁矿、磁黄铁矿、闪锌矿、 方铅矿、黄铁矿和黄铜矿,少量或微量矿物有白铁矿、斑铜矿、辉铜矿、钛铁矿、孔雀石等; 脉石矿物有透辉石、钙铁榴石、钙铝榴石、方解石、符山石、钙镁橄榄石等。海寺矿床与肯德 可克矿床相似,除主要出现磁铁矿外,亦出现磁黄铁矿、黄铁矿、方铅矿组合,反映东昆仑砂 卡岩型铁多金属矿床矿石矿物组成的相似性。

2.4 成矿阶段

以肯德可克铁多金属(金)矿床为例,东昆仑地区砂卡岩型矿化一般经历了砂卡岩阶段→高温矿 化阶段→中-低温矿化阶段 3 个内生成矿阶段(表 2),其中磁铁矿化主要发生于砂卡岩期到热液期的 高温阶段,而多金属硫化物则主要形成于中-低温阶段,并伴有金矿化。由此显示了砂卡岩→磁铁矿化 →多金属(金)矿化,从早到晚,由高温少水到中-低温富含热液矿化的成矿演化。

表 2 肯德可克铁多金属(金)矿成矿阶段特征

Table 2 Characteristics of metallogenic stages in Kendekeke iron polymetallic (gold) denosit

Tuble		Seme stuges in Hendekene i on polymetume (Sola) acposit	
成矿阶段	矿化表现	矿物组合	矿化元素	成矿温度
矽卡岩阶段	未见金属矿物	钙镁橄榄石、透辉石、钙铁榴石		>300°C
	晚期细粒磁铁矿大量生成	绿泥石、符山石、金云母、阳起石、磁铁矿	Fe	
高温矿化阶段	粗粒磁铁矿和闪锌矿	绿泥石、阳起石、磷灰石、磁铁矿、闪锌矿(少量)	Fe, Fe-Zn	
中-低温矿化阶段	大量金属硫化物形成, 多呈脉	早期:闪锌矿、磁黄铁矿、黄铁矿;晚期:方铅矿、	Fe, Zn(Au),	150~300°C
	状、束状、穿插磁铁矿矿体	黄铜矿、石英、方解石、绢云母	Pb, Cu(Au)	
氧化阶段	多为隐伏矿体、氧化作用较弱	赤铁矿、褐铁矿、铜兰、孔雀石、白铅矿		常温

注:成矿温度据青海地勘局(1981)。

表 3 东昆仑矽卡岩型矿床流体包裹体均一温度

Table 4 Homogenization temperatures of fluid inclusions of skarn-type ore deposits in East Kunlun Mountains

	测定矿物	矿区	$t_{\rm h}/^{\circ}{\rm C}$	资料来源	测定矿物	矿区	$t_{\rm h}/{ m ^{\circ}C}$	资料来源		
	石榴石	沙柳河	365~445	1)	黄铁矿	沙柳河	151~380	1		
	绿泥石	沙柳河	300~435	1	磁黄铁矿	沙柳河	220	1		
	绿帘石	沙柳河	340	1	磁黄铁矿	海寺	179~289; 343~438	1		
	磁铁矿	肯德可克	240~520	2	闪锌矿	沙柳河南区	198~250	1		
	方铅矿	肯德可克	<300	2	方铅矿	白石崖	210~260	1		
	黄铁矿	肯德可克	<300	2	方铅矿	海寺	317	3		
2	注:①据周显强等,1996;②据青海省地勘局,1982;③为本文。 成矿盐度									
	石上半里石	步上巴矿庄由鱼矿畅达休息重休施士夕粉头NLC1170到巨冻西担。小粉头含NLC1乙矿物的法								

3.2 成矿盐度

矽卡岩矿床中单矿物流体包裹体绝大多数为 NaCl-H₂O 型气液两相, 少数为含 NaCl 子矿物的流体 包裹体。盐度 w(NaCled)变化于 0.5%~21.5%之间, 且由高温阶段的 18%~4%变化到中低温阶段的 1%~4%,显示成矿流体盐度呈递降变化。

3.3 成矿压力

据周显强等(1996)研究,都兰地区矽卡岩型矿床成矿流体压力由早到晚有下降趋低,矽卡岩阶 段为 94.9~54.4 MPa; 高-中温热液阶段为 54.9~17.3 MPa, 中低温热液阶段在 52.7 MPa 以下。

3.4 成矿流体 pH 值

流体流体包裹体气相成分计算结果,沙柳河南区成矿阶段 pH 值分别为: 矽卡岩阶段 5.64,高-中 温热液阶段 5.14, 中低温阶段 3.99: 海寺铁多金属矿床为 5.49。

成矿时代 4

东昆仑矽卡岩型矿的成矿时代,已有成果多采用 K-Ar 法定年(表 4),由这些测试数据可见,矽 卡岩型矿床的成矿年龄在 200~214 Ma 之间,介于成矿岩体(似斑状黑云母二长花岗岩、花岗闪长岩 等)的年龄范围(169.9~240 Ma),反映成矿为华力西-印支期。

本研究对海寺铅锌矿成矿岩体和矽卡岩做了单颗粒锆石 U-Pb 法同位素测定(表 5),花岗闪长斑 岩锆石 U-Pb 年龄为(264±12)Ma, MSWD=2.6, 砂卡岩化花岗闪长斑岩为(278.2±3.6)Ma 和(246±3.9) Ma (图 3), MSWD 分别为 0.302 和 0.452, 其中 278.2 Ma 年龄的锆石有早期核体存在, 可能属岩浆 早期或深部带入物,由此可见,海寺矽卡岩型铅锌矿成矿年龄应为264~246 Ma,相当于华力西晚期(二 叠纪)。

128

+ .	/	. <i></i>	니 ㅠ네 ㅠㅗ 卢는	
= /	<u> </u>	260	ミナリムトレー	
AV 44	75 88 8	. 11 У К. А		
	, , , , , , , , , , , , , , , , , , ,			777 7 1 141

 Table 4
 Metallogenic epoch of skarn-type ore deposits in East Kunlun Mountains

矿床	矿石或砂卡岩	成 矿 岩 体	资料来源
沙柳河南区铁锡(钨铜)矿床		似斑状黑云母二长花岗岩, K-Ar 法	周显强等, 1996
尕林格铁多金属矿床		花岗闪长岩 K-Ar 法 169.9~210.0 Ma	青海地质六队, 1982
卡德可克铁多金属矿床	砂卡岩中金云母, K-Ar 法 214 Ma		青海地质一队, 1982
野马泉铁多金属矿床	砂卡岩中金云母, K-Ar 法 200.2 Ma	含黑云母石英闪长岩 K-Ar 法 189.3~233.0 Ma	青海地质一队, 1982

表 5 海寺铅锌矿中单颗粒锆石 U-Pb 同位素分析结果

Table 5	Analystical results of single zirco	n U-Pb isotopes in th	e Haishi lead-zinc deposi
Table 5	Thatystical results of single zited	m C I b isotopes m m	c maisin icaa zine acposi

安十些	/	$w_{\rm B}/(\mu g \cdot g^{-1})$		<i>m</i> /ng	同位素原子比率			表面年龄/Ma				
句土石	m∕µg	U	Pb	- m _{Pbc} /ng	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²⁰⁶ Pb
γδπ	50	70	5	0.089	124	0.2048	0.04265	0.3029	0.05150	269.3	268.6	263.3
	45	49	3	0.024	258	0.2073	0.04114	0.2866	0.05052	259.9	255.9	219.2
	40	87	7	0.067	154	0.2283	0.04114	0.2883	0.05083	259.9	257.2	233.3
$SK\gamma\delta\pi$	45	96	5	0.017	743	0.1967	0.04427	0.3090	0.5062	279.2	273.4	223.5
	60	69	4	0.059	212	0.1879	0.04394	0.3096	0.05110	277.2	273.9	245.3
	50	75	4	0.026	368	0.2017	0.03915	0.2734	0.05066	247.5	245.4	225.2
	60	66	4	0.075	147	0.2049	0.03870	0.2690	0.05042	249.8	241.9	214.4

γδπ:花岗闪长斑岩; SKyδπ: 砂卡岩化花岗闪长斑岩; Pbc 为普通铅。测试单位为天津地质矿产研究所, 2000 年。

A. 花岗闪长斑岩; B. 砂卡岩化花岗闪长斑岩

Fig. 3 Concordancy diagram of single zircon U-Pb isotope age

第23卷 增刊

5 成矿环境

东昆仑区域构造演化经历了复杂的过程,可区分为陆核-陆台阶段(>600 Ma)、裂陷阶段(600~403 Ma)、陆缘-碰撞阶段(403~190 Ma)和陆内阶段(<190 Ma)4个大的演化阶段。其中在华力西-印支 早期的陆缘-碰撞阶段,该区属于古特提斯活动陆缘的组成部分(钱壮志等,2000)。

自古生代以来,东昆仑地区东西向构造发育的格局缘于3条区域深大断裂的存在,其中昆南和昆中断裂最具区域构造意义(许志琴等,1996;高延林等,1987),沿之有构造混杂堆积和蛇绿混杂堆积, 且构造片岩、糜棱岩及碎裂岩十分发育,具俯冲带构造的诸多表现。区域对比研究,两者均为北倾, 但昆中断裂较陡(60~80°),昆南断裂缓(46~70°),地球物理资料显示后者在深部有向昆中断裂归并 之势。在蛇绿混杂岩发育时期上,沿昆中断裂主要为华力西期(解玉月,1998),昆南断裂则为印支期。 表明在华力西期,俯冲带相当于昆中断裂位置,在印支期,俯冲带南移至昆南断裂位置,反映为古特 提斯陆缘的不断增生和俯冲带后退的结果,直到印支末期,随巴颜喀拉褶皱带的形成而碰撞闭合,之 后转入陆内演化阶段。正是由于沿昆中和昆南俯冲带的俯冲作用,导致或引发了华力西-印支期深成侵 入岩(昆中、昆北带)和印支期火山岩及浅成侵入岩的广泛发育⁹。

东昆仑华力西-印支期花岗岩类主要有花岗闪长(斑)岩、石英闪长岩、花岗斑岩、二长花岗岩、 正长花岗岩等。岩石化学成分分析(古凤宝等,1996)表明,这些岩石 SiO₂多介于 65%~76%之间, TiO₂0.12%~0.84%(平均 0.48%),与安第斯型岩浆弧接近。K₂O 较高,平均 3.04%, Na₂O 平均 3.03%, 全碱量随 SiO₂的增加而增高。Fe₂O₃含量(平均 1.51%)多低于 FeO(平均 3.46%)。在 SiO₂-(Na₂O+K₂O) 图解中,投点大都位于亚碱性系列范围内,AFM 图解,显示钙碱性系列变异。据 Batchelor 图解,投 点涉及 2、3、4、5、6、7 多个区,但总体表现碰撞前(2)和晚造山期(4)两个分布趋势,显示由华 力西期到印支期,东昆仑花岗岩类经历了较长时间的演化,具从俯冲阶段→同碰撞阶段→晚造山阶段 的岩浆活动过程⁹。

综合上述花岗岩类的发育特征和成矿时代研究数据,可见东昆仑地区矽卡岩型铁多金属矿床是在 古特提斯活动陆缘构造环境下和演化过程中形成的。

6 结 语

区域研究资料显示,东昆仑地区内生金属矿床主要发育在华力西-印支期及其以后,且华力西-印 支期的资源占优势。通过对这一构造演化阶段矽卡岩型铁多金属矿床的成矿特征、成矿时代及成矿大 地构造环境初步研究成果显示,该区域华力西-印支期成矿是与其独特的古特提斯陆缘构造环境及其演 化密切相关。这对该区域的今后找矿实践及区域成矿理论研究无疑是很重要的。

参考文献

高延林, 吴向农, 左国朝. 1987. 东昆仑山清水泉蛇绿岩特征及其大地构造意义[J]. 中国地质科学院西安地质矿产研究所所刊, (21): 17~29.

古凤宝, 吴向农. 1996. 东昆仑华力西-印支期花岗岩组合及构造环境[J]. 青海地质.24(1): 18~36.

姜春发. 1993. 中央造山带主要地质构造特征[J]. 地学研究, 27(2): 103~108.

1.10 .

解玉月.1998. 昆中断裂东段不同时代蛇绿岩特征及形成环境[J]. 青海地质, 26.

钱壮志, 胡正国, 刘继庆, 等. 2000. 古特提斯东昆仑活动陆缘及其区域成矿[J]. 大地构造与成矿学, 24(2): 134~139.

徐文艺, 张德全, 阎升好, 等. 2001. 东昆仑地区矿产资源大调查进展与前景展望[J]. 中国地质, 28(1): 25~29.

[●] 胡正国, 等. 2000. 柴达木盆地南缘金及多金属成矿地质环境及矿产预测研究.

❷ 莫宣学, 等. 1998. 东昆仑中段成矿地质背景与找矿方向的框架研究.

许志琴, 崔军文, 张建新. 1996. 大陆山链变形构造动力学[M]. 北京: 冶金工业出版社. 204~225. 周显强, 宋友贵, 邓 军, 等. 1996. 青海都兰地区矿田构造与控矿特征[M]. 北京: 地质出版社. 107~117.

Geological Characteristics, Metallogenic Epochs and Metallogenic Settings of Skarn-Type Ore Deposits in East Kunlun Area

Qian Zhuangzhi, Tang Zhongli, Jiao Jiangang and Tang Dongmei (Chang'an University, Xi'an 710054, Shaanxi, China)

Abstract

The endogenetic metallic deposits already discovered in East Kunlun area mainly consist of five types, namely, skarn type, porphyrite type, altered rock type, vein type and magmatic (mafic-ultramafic) type. The skarn-type iron polymetallic deposits distributed in North Kunlun and Central Kunlun occupy the most important position. A study of geological characteristics, formation conditions, ore-forming backgrounds and metallogenic epochs of this type of deposits indicates that the ore-forming process lasted from Late Variscan orogeny to Early Indosinian period. Tests show that the single zircon U-Pb isotope age of mineralized granodiorite porphyry is (264±12) Ma, and that of skarnized granodiorite porphyry is (278.2±3.6) Ma and (246±3.9) Ma. Metallogenic setting and regional distribution of mineral resources reveal that the regional metallogenic process from Variscan orogeny to Indosinian period is related to the special tectonic setting of Paleo-Tethyan continental margin.

Key words: East Kunlun Mountains, skarn-type ore deposit, geological characteristics, metallogenic epoch