文章编号 10258-7106 (2006) 01-0095-06

四川丹巴伟晶岩型白云母矿床的成矿时代及构造意义

李建康^{1,2} 王登红² 付小方³

(1中国地质大学,北京 100083;2中国地质科学院矿产资源研究所,北京 100037;3四川省地质科学研究所,四川 成都 610081)

摘 要 四川丹巴地区是中国最重要的白云母产地之一,所产白云母以质量好、晶体大而闻名于世,是⁴⁰Ar-³⁹Ar 测年的理想对象。文章通过野外调查和同位素年代学研究,获得该区二道桥和李家工地伟晶岩脉内白云母的⁴⁰Ar-³⁹Ar法坪年龄,分别为(125.01±0.58)Ma和(114.68±0.32)Ma 属燕山中晚期产物。丹巴伟晶岩脉的形成与区域 地壳活动构成构造→岩浆→变质→伟晶岩脉的旋回,形成于喜马拉雅运动开始之前。因此,丹巴白云母矿化伟晶岩 脉是地壳活动相对宁静期的产物,与世界上一些重要伟晶岩型矿床的成矿规律一致。

关键词 地质学 ⁴⁰Ar-³⁹Ar 定年 ;白云母 ;伟晶岩型矿床 ;松潘-甘孜造山带 ;丹巴 中图分类号 : P619.27⁺3 ; P597⁺.3 文献标识码 ;A

Metallogenic epoch and tectonic implications of Danba pegmatite type muscovite deposit in Sichuan Province, China

LI JianKang^{1, 2}, WANG DengHong² and FU XiaoFang³

(1 China University of Geosciences, Beijing 100083, China; 2 Institute of Mineral Resources, CAGS, Beijing 100037, China; 3 Sichuan Institute of Geological Sciences, Chengdu 610081, Sichuan, China)

Abstract

As one of the most important muscovite-producing areas in China, Danba is famous for its good quality and large crystal muscovite. The muscovite crystal there is an ideal object for ${}^{40}\text{Ar}{}^{-39}\text{Ar}$ dating. Based on geological survey and isotope chronology, the authors obtained ${}^{40}\text{Ar}{}^{-39}\text{Ar}$ plateau ages of (125.01 ± 0.58) Ma and (114.68 ± 0.32) Ma for Erdaoqiao and Lijiagongdi pegmatite dikes respectively, indicating that the pegmatite dikes in Danba are products of middle and late Yanshanian period. The pegmatite dikes and regional crustal movement constitute a circle of tectonic activity magmatism metamorphism pegmatite formation, and the pegmatite dikes were formed before the Himalayan movement. Thus, the pegmatite type muscovite deposit must have been formed in a stable period of crustal movement, and hence its metallogenic regularity is consistent with that of some important pegmatite type deposits in the world.

Key words: geology, ⁴⁰Ar-³⁹Ar dating, muscovite, pegmatite type deposit, Songpan-Ganzi orogenic zone, Danba

中国有丰富的白云母矿产资源,截止 1996 年 量 6.3147 万吨,居世界第 3 位。其中,新疆、四川、 底,全国有云母矿产地 179 处,保有工业原料云母储 内蒙古三大白云母成矿区闻名于世。新疆阿勒泰成

^{*} 本文得到国家自然科学基金青年基金(40202012)国家科技攻关计划课题(2003BA612A-01)中国地质调查局国土资源大调查项目 (200420190004)和国家自然科学基金(40173021,40573033)的资助

第一作者简介 李建康 男,1976年生,助理研究员,在读博士研究生,从事地幔柱、地球化学数字模拟和矿床地质的研究。 收稿日期 2005-07-25;改回日期 2005-10-09。

矿带累计探明工业原料云母储量 4.7 万吨,占全国 总量的 67.1%,为世界著名矿带之一。四川白云母 矿床主要产在丹巴县(图 1),在约 800 km² 的范围 内,已经圈出花岗伟晶岩脉 4 889 条,其中具白云母 矿化的有 1 133 条,储量占全省的 93.3%,全国的 10%(中国地质矿产信息研究院,1993;四川省地质 局,1991)。与其他两个白云母成矿区相比,丹巴的 白云母以质量最好、产出较多的大号、特大号白云母 片而闻名于国内外。

伟晶岩作为一种独立的矿床类型,不仅在矿床 学上占有不可忽视的地位,而且,在示踪大地构造演 化过程方面同样具有重要意义(王登红等,2004)。 如,在阿尔泰造山带的形成过程中,伟晶岩的成岩成 矿作用与造山过程和热演化历史耦合,可示踪大地 构造的演化过程(王登红等,2002)。丹巴伟晶岩型 白云母矿床所处的松潘-甘孜造山带,经历了印支期-

图 1 丹巴地区伟晶岩白云母分布图(侯立玮等 2002)

1—新生代平移型花岗岩 2—中生代花岗岩 3—混合岩化片麻状花岗岩 4—前震旦纪岩浆杂岩 5—绢云母-绿泥石带 6—黑云母带 7—石 榴石带 8—十字石带 9—蓝晶石带 10—夕线石带 11—混合岩化带 12—蛇绿混杂岩带 13—逆冲带 14—白云母矿产地 15—断裂 16— 本文白云母样品的采样点。①—康定变质核杂岩 2—格宗变质核杂岩 3—公差片麻岩穹隆 2—青杠林片麻岩穹隆 5—妥皮片麻岩穹 隆 66—春牛场片麻岩穹隆 72—铜炉房构造穹隆

Fig. 1 Distribution of pegmatite type muscovite deposit in Danba (Hou et al., 2002)

1—Cenozoic strike-slip granite ; 2—Mesozoic granite ; 3—Migmatitic gneissic granite ; 4—Presinian magmatic complex ; 5—Sericite-chlorite metamorphic zone ; 6—Biotite metamorphic zone ; 7—Garnet metamorphic zone ; 8—Staurolite metamorphic zone ; 9—Kyanite metamorphic zone ; 10— Sillimanite metamorphic zone ; 11—Migmatization zone ; 12—Ophiolitic melange zone ; 13—Decollement belt ; 14—Muscovite orefield ; 15—Fracture ; 16—Sampling site of muscovite. ①—Kangding metamorphic nucleus complex ; ②—Gezong metamorphic nucleus complex ; ③—Gongchai

gneiss dome ; (1)—Qingganglin gneiss dome ; (5)—Tuopi gneiss dome ; (6)—Chunniuchang gneiss dome ; (7)—Tonglufang tectonic dome

燕山期和喜马拉雅期构造运动,造山过程复杂,被称 为中国地质的"百慕大"。丹巴伟晶岩脉中的白云母 矿物是⁴⁰Ar-³⁹Ar 定年的理想对象,然而,目前可参考 的年龄只有 K-Ar 法的测试结果,难以准确示踪松潘 -甘孜造山带的演化过程。因此,对丹巴伟晶岩成岩 成矿年龄的研究,不但有助于矿产资源的勘查与开 发,而且,对揭示松潘-甘孜造山带的造山过程具有 重要的科学意义。

1 矿床地质概况

丹巴白云母矿区位于松潘-甘孜造山带的东缘, 出露地层主要为震旦系、志留系。震旦系主要分布 于区内混合片麻岩套穹状体的周围,呈环带状或透 镜状展布,为一套大陆边缘相沉积。志留系通化组 以含石榴石二云(英)片岩为主,夹绿片岩、绿帘斜长 角闪片岩、结晶灰岩和粗晶大理岩,在春牛场混合岩 之南、东缘,分布面积较宽。矿区具有穹隆状变形变 质体发育、顺层剪切明显、韧性和韧脆性断裂带分 割、多期褶皱叠加的构造特点。丹巴地区至少经历 了2次以上强烈的变质作用,即印支末期-燕山期的 与混合岩化有关的巴洛型递进变质作用以及喜马拉 雅早期的中心式巴肯型热流变质作用,是典型的多 期变质作用叠加改造区⁰。该区出露的主要岩体为 马奈辉石正长石-石英二长岩岩体和猛古黑云母花 岗岩体⁰。

该地区的白云母矿脉主要分布在丹巴县城以北 的青杠林、妥皮、春牛场等片麻岩穹隆体周缘和公差 片麻岩穹隆北东侧的混合岩化带和夕线石带,次为 蓝晶石带、十字石带,少数产于石榴石带中。混合岩 中仅产出少量伟晶岩脉,其分异差、交代弱,一般不 具白云母矿化,在夕线石带内,伟晶岩脉的分带逐渐 明显,脉体产出最多且白云母矿化最好,有利于矿化 的围岩主要为富铝高钾的二云母石英片岩。伟晶岩 脉多受片理、层理和构造裂隙的控制。

本文所研究的样品采自布依沟内的二道桥伟晶 岩脉(EDQ)和李家工地伟晶岩脉(LJGD)。布依沟 位于丹巴县的北部,横穿春牛场穹隆体及其外围变 质带,其间自西向东分布着10多条伟晶岩脉,是研 究丹巴伟晶岩成因的理想场所。二道桥和李家工地 伟晶岩脉具有较好的分带。二道桥伟晶岩脉中可发现大片的白云母垂直岩脉延伸方向生长,由岩脉的 边部到中心,呈现黑云母—长石+石英—白云母+ 石英的矿物分带;在李家工地伟晶岩脉中,中间发育 石英核,石英核的外侧为长石+白云母带,再外侧, 以一层黑云母与围岩顺层接触。

2 伟晶岩中白云母的⁴⁰Ar-³⁹Ar 定年

本次研究所用的白云母样品呈大片叠层状集合体 纯净、无杂物。样品经中国原子能科学研究院 49-2 核反应堆进行中子照射;氩同位素质谱分析在 中国地质科学院地质研究所开放研究实验室 MM-1200B 气体质谱计上完成。技术方法参考 Chen 等 (2002)。分析结果列于表 1 和表 2,并作成坪年龄谱 图(图2)和等时线图(图3)。

由表 1、2 及图 2、3 可见,二道桥伟晶岩脉中的 白云母在1340℃以上的高温区析出的³⁹Ar 的总量 约1.1%,980℃以下析出的³⁹Ar的总量为8.91%, 约 90 % 的³⁹ Ar 是在 980~1 340℃ 的区间析出的(表 1)。该区间内各加热阶段给出的年龄为 128.8~ 119.6 Ma 表现出稳定的年龄谱图,平均后取得其坪 年龄为(125.01±0.58) Ma(图2)。在等时线图上, 各数据相关性良好,得出的等时线年龄为(124.3 ± 3.3) Ma(图3), 与坪年龄相一致, 得到的40 Ar/36 Ar 初始值为 312 ± 82。李家工地伟晶岩脉的白云母在 1 330℃以上的高温区析出的³⁹Ar的总量不足1.5%, 800℃以下析出的³⁹Ar 的总量不足 0.5%,98% 以上 的³⁹Ar 是在 800~1 330℃的区间析出的(表 2) 表现 出更为稳定的年龄谱图,得到的坪年龄为(114.68± 0.32) Ma(图 2),等时线年龄为(115.0±1.5) Ma (图3)⁴⁰Ar/³⁶Ar 初始值为 292.4 ± 3.5。这些数据 表明,二道桥和李家工地的白云母自形成以后对 ⁴⁰Ar/³⁹Ar体系保持封闭 未受到后期热事件的影响, 因此。由快中子活化法测定的白云母年龄是可靠的。

3 讨论与结论

3.1 成岩成矿时代

丹巴的伟晶岩脉主要产于前震旦系片麻岩穹状

[●]四川省地质矿产勘查开发局. 2000. 中华人民共和国区域地质调查报告·巴底幅,1:5万.(内部资料).

❷四川省地质局. 1980. 中华人民共和国区域地质调查报告·丹巴幅,1:20万.(内部资料).

表 1 丹巴二道桥伟晶岩脉中白云母(EDQ)¹⁰Ar/³⁹Ar 分阶段加热数据

θ/°C	(⁴⁰ Ar/ ³⁹ Ar) _m	(³⁶ Ar/ ³⁹ Ar) _m	(³⁷ Ar/ ³⁹ Ar) _m	(³⁸ Ar/ ³⁹ Ar) _m	$^{40}\mathrm{Ar}^*/^{39}\mathrm{Ar}$	39 Ar/10 ⁻¹⁴ mol	³⁹ An(累计)/%	t/Ma
400	116.8278	0.3624	0.3054	0.1055	9.7613	6.90	0.17	113.4 ± 9.8
500	76.3865	0.2352	0.9078	0.1301	6.9625	1.48	0.21	82 ± 14
600	48.4098	0.1276	0.3609	0.0793	10.7164	4.48	0.32	124.2 ± 6.7
700	53.9471	0.1610	0.6811	0.0566	6.4307	2.67	0.38	75.5 ± 9.0
800	35.1826	0.0857	0.2353	0.0325	9.8598	14.04	0.73	114.6 ± 2.9
900	31.6997	0.0685	0.0227	0.0269	11.4626	94.24	3.04	132.5 ± 2.5
980	16.5087	0.0182	0.0131	0.0167	11.1269	239.70	8.91	128.8 ± 1.5
1030	13.2041	0.0080	0.0052	0.0144	10.8295	363.40	17.83	125.4 ± 1.4
1080	11.0944	0.0011	0.0169	0.0149	10.7637	979.55	41.85	124.7 ± 1.5
1130	11.3294	0.0019	0.0283	0.0167	10.7639	381.25	51.19	124.7 ± 1.5
1180	11.3743	0.0014	0.0269	0.0168	10.9449	435.56	61.88	126.7 ± 1.3
1230	11.2183	0.0012	0.0201	0.0157	10.8612	467.74	73.35	125.8 ± 1.2
1280	10.8513	0.0007	0.0286	0.0144	10.6401	537.42	86.52	123.3 ± 1.2
1340	10.5898	0.0009	0.0068	0.0131	10.3060	502.76	98.85	119.6 ± 4.3
1400	12.1178	0.0068	0.0582	0.0157	10.0974	46.81	100.00	117.2 ± 3.2

 Table 1
 40 Ar/³⁹ Ar step-heating data of muscovite from Erdaoqiao pegmatite dike (EDQ) in Danba

注 表中下标 m 者代表样品中测定的同位素比值 样重 30.21 mg J = 0.006649 f^{40} Ar */³⁹Ar 代表放射性成因的⁴⁰Ar 和³⁹Ar 的比值 年龄误 差为 1 $_{60}$

表 2 丹巴李家工地伟晶岩脉中白云母(LJGD)⁴⁰Ar/³⁹Ar 分阶段加热数据

Table 2 ⁴⁰Ar/³⁹Ar step-heating data of muscovite from Lijiagongdi pegmatite dike(LJGD) in Danba

θľ℃	(⁴⁰ Ar/ ³⁹ Ar) _m	(³⁶ Ar/ ³⁹ Ar) _m	(³⁷ Ar/ ³⁹ Ar) _m	(³⁸ Ar/ ³⁹ Ar) _m	$^{40}\mathrm{Ar}^{*}$ / $^{39}\mathrm{Ar}$	39 Ar/10 ⁻¹⁴ mol	³⁹ A1(累计)/%	t/Ma
400	115.6742	0.3682	0.2793	0.1060	6.8885	7.33	0.18	80.9 ± 7.3
500	120.2913	0.3961	0.7562	0.1045	3.2942	3.02	0.26	39 ± 11
600	59.3391	0.1801	0.4028	0.0583	6.1574	4.47	0.37	72.4 ± 4.3
700	42.5777	0.1189	0.6524	0.0455	7.4876	3.96	0.47	87.7 ± 5.6
800	24.7773	0.0503	0.1203	0.0252	9.9285	16.70	0.89	115.4 ± 1.8
900	31.2992	0.0733	0.0223	0.0282	9.6340	65.73	2.55	112.1 ± 2.0
980	23.4157	0.0463	0.0121	0.0220	9.7164	169.59	6.82	113.0 ± 1.7
1030	13.0855	0.0111	0.0259	0.0182	9.7919	544.60	20.53	113.9 ± 1.2
1080	10.4594	0.0013	0.0194	0.0159	10.0623	798.11	40.62	116.9 ± 1.6
1130	10.6379	0.0023	0.0238	0.0167	9.9631	462.35	52.26	115.8 ± 1.2
1180	10.2948	0.0018	0.0049	0.0132	9.7487	458.58	63.80	113.4 ± 1.2
1230	10.4719	0.0018	0.0303	0.0164	9.9379	392.70	73.69	115.5 ± 1.2
1280	10.2154	0.0009	0.0178	0.0139	9.9380	737.93	92.27	115.5 ± 1.1
1330	10.1949	0.0013	0.0105	0.0132	9.8110	259.09	98.79	114.1 ± 1.1
1380	12.7711	0.0079	0.0869	0.0153	10.4308	48.16	100.00	121.1 ± 1.6

注 表中下标 m 者代表样品中测定的同位素比值 样重 30.19 mg J=0.006655 f⁴⁰Ar* J³⁹Ar 代表放射性成因的⁴⁰Ar 和³⁹Ar 的比值 年龄误差为 1₆。

体周边的古生代中深变质岩系内,在三叠系的底部 也有产出,表明伟晶岩的形成时代晚于三叠纪,但难 以确定其集中产出的时限。由前人的 K-Ar 法年龄 测试结果(表3)可知,同一条岩脉中的白云母和黑云 母的测试结果存在较大的差异,同一岩脉的不同白 云母的测试结果也存在较大差异,这是无法解释的。 因此,前人的 K-Ar 年龄不具精确定年意义,只有一 定的统计学意义。本文2个白云母样品的⁴⁰Ar-³⁹Ar 坪年龄分别为(125.01±0.58)Ma和(114.68± 0.32)Ma,⁴⁰Ar-³⁹Ar 等时线年龄分别为(124.3± 3.3) Ma 和(115.0±1.5) Ma,同时参考表 3中的数据,12件样品中有9件的形成时限为83~138 Ma。 因而可以肯定,丹巴地区的伟晶岩的主要成岩成矿时代为白垩纪,属燕山运动的中晚期。

3.2 成岩成矿的构造环境

丹巴伟晶岩脉产于松潘-甘孜造山带,该带经历 了2期构造运动——印支期-燕山期和喜马拉雅期 构造运动。在印支晚期-燕山早期,古特提斯洋和阿 尼玛卿洋封闭,昌都-羌塘陆块和昆仑陆块分别与扬 子陆块发生陆陆碰撞,形成了以构造变形为先导,岩浆

Fig. 2 ⁴⁰Ar/³⁹Ar plateau age spectra of muscovite from Erdaoqiao (EDQ) and Lijiagongdi (LJGD) pegmatite dikes in Danba muscovite deposit

活动和变质作用滞后的典型构造格局。大量的同位 素测年结果显示[●]晚三叠世和早侏罗世为岩浆活动 期 形成一系列同造山型花岗岩,如甲基卡二云母花 岗岩(198 Ma)、可尔因白云母花岗岩(203.8 Ma)、猛 古黑云母花岗岩(206 Ma);在190~150 Ma的同位 素年龄中,大部分是变质岩,为丹巴地区巴洛型变质 带的形成时期。这些地质事件与燕山中晚期形成的 丹巴伟晶岩型白云母矿床构成了一个地质旋回:构 造→岩浆→变质→伟晶岩脉,早期以剧烈的陆陆碰 撞和岩浆活动为主,晚期则表现为区域热流活动,是 地壳活动由强烈逐渐趋于平静的过程。在63 Ma之 后 松潘-甘孜地区遭受了喜马拉雅运动,印度板块 向北俯冲,新特提斯洋封闭,地壳急剧隆升。因此, 丹巴地区的伟晶岩脉形成于印支期-燕山期构造运 动和喜马拉雅期构造运动的过渡阶段,形成于一个 相对稳定和封闭的地质环境。

3.3 成矿规律

丹巴伟晶岩型白云母矿床形成于印支-燕山运动的末期和喜马拉雅运动开始之前的相对宁静期, 这与世界上一些重要伟晶岩型矿床的成矿规律是一致的。如北美苏必利尔伟晶岩省经历了5个演化 阶段,其中火山弧的发育及大陆增生发生于

❶ 四川省地质矿产勘查开发局. 2000. 中华人民共和国区域地质调查报告·巴底幅,1:5万.(内部资料).

表 3 丹巴地区伟晶岩脉年龄●

Table 5 fige of pegmatite and 5 in Danot	Table 3	Age of	pegmatite	dikes	in	Danba
--	---------	--------	-----------	-------	----	-------

采样地点	测定对象	K-Ar 年龄/ Ma	采样者
丹巴甘地 551 脉伟晶岩	白云母	138	地科院丹巴队
丹巴甘地 551 脉伟晶岩	黑云母	86	地科院丹巴队
丹巴甘地 133 脉伟晶岩	白云母	130	地科院丹巴队
丹巴甘地 133 脉伟晶岩	白云母	152	不详
丹巴甘地 133 脉伟晶岩	黑云母	86	地科院丹巴队
丹巴甘地 133 脉伟晶岩	黑云母	84	地科院丹巴队
丹巴 402 矿区 599 脉伟晶岩	白云母	88	地科院丹巴队
丹巴 402 矿区 597 脉伟晶岩	白云母	90	地科院丹巴队
丹巴 402 矿区 600 脉伟晶岩	白云母	114	地科院丹巴队
丹巴伟晶岩	白云母	83	地科院丹巴队
丹巴伟晶岩	白云母	183	地科院丹巴队
丹巴日布山伟晶岩	白云母	270	程裕淇

2775~2725 Ma, 而稀有金属的富集则发生在2685 Ma 的鬼湖岩基侵位之后(Breaks et al., 1992);加拿 大 Nova Scotia 的伟晶岩形成于造山之后(Murphy et al (1998) 阿尔泰的伟晶岩矿床可在造山过程的不同 阶段出现,但稀有金属的大规模聚集则主要出现在 非造山过程的某一相对稳定的大陆演化阶段(王登 红等 (1998) (在中国阿尔泰造山带周边地区的蒙古、 俄罗斯等地所发现的大型、超大型伟晶岩型稀有金 属矿床,有许多形成于后造山或造山后的大陆演化 过程中(Kovalenko, 1995; Morteani et al., 2000);在 南美最大的巴西东部伟晶岩省,虽然于元古代就开 始形成伟晶岩,但稀有金属的聚集主要发生在加里 东期 Aurisicchio et al. ,2001) 意大利西北部含 Nb-Ta的晶洞伟晶岩也形成于海西期造山运动后期及 期后阶段(王登红等,2002)。因此,伟晶岩的形成和 矿化阶段主要发生在各造山运动之后的相对宁静的 时期 对各造山带的演化过程具有重要的示踪意义。

References

- Aurisicchio C , Vito C D , Ferrini V and Orlandi P. 2001. Nb-Ta oxide minerals from miarolitic pegmatites of the Baveno pink granite , NW Italy[J]. Mineralogy Magazine , 65(4):509~522.
- Breaks F W and Moore J M Jr. 1992. The Ghost Lake batholith , Superior Province of northwestern Ontario : A fertile , S-type , peraluminous granite-rare-element pegmatite system[J]. Canadian Mineralogist , 30 (3):835~876.
- Bureau of Geology of Sichuan Province. 1991. Regional geology of

Sichuan Province [M]. Beijing : Geol. Pub. House (in Chinese).

Chen W , Zhang Y , Ji Q , Wang S S and Zhang J X. 2002. The magmatism and deformation times of the Xidatan rock series , East Kunlun Mountain [J]. Science in China (Series B), 45 (Supp.): 20~27.

- Chinese Information Academy of Geology and Mineral Resources. 1993. Chinese mineral resources [M]. Beijing : Chinese Building Materials and Industry Press. 1~391 (in Chinese).
- Hou L W and Fu X F. 2002. Dome metamorphic geological body in the east of Songpan-Ganzi orogenic belt [M]. Chengdu : Sichuan University Press. 135~137 (in Chinese with English abstract).
- Kovalenko V I. 1995. Endogenous rare metal ore formations and rare metal metallogeny of Mongolia [J]. Econ. Geol. , 90 (3): 520 ~ 529.
- Morteani G, Preinfalk C and Horn A H. 2000. Classification and mineralization potential of the pegmatites of the Eastern Brazilian Province[J]. Mineralium Deposita, 35:638~655.
- Murphy J B , Anderson A J and Archibald D A. 1998. Postorogenic alkali feldspar granite and associated pegmatites in West Avalonia : the petrology of the Neoproterozoic Georgeville Pluton , Antigonish Highlands , Nova Scotia [J]. Canadian Journal of Earth Sciences , 35 : 110~120.
- Wang D H , Li H Y and Zou T R. 1998. Type and orogenic process of rare element deposit in Altai [J]. Mineral Deposits , 14 (Supp.): 25~28 (in Chinese).
- Wang D H , Chen Y C , Xu Z G , Li T D and Fu X J. 2002. Minerogenic series and minerogenic rule of Altai metallogenetic province [M]. Beijing : Atomic Energy Press. 1~493 (in Chinese with English abstract).
- Wang D H , Zou T R , Xu Z G , Yu J J and Fu X F. 2004. Advance in the study of using pegmatite deposits as the tracer of orogenic process
 [J]. Advances in Earth Science , 19 (4): 614 ~ 620 (in Chinese with English abstract).

附中文参考文献

- 侯立玮,付小方.2002. 松潘-甘孜造山带东缘穹隆状变质地质体 [M]. 成都:四川大学出版社.135~137.
- 四川省地质局. 1991. 四川省区域地质志 [M]. 北京 地质出版社.
- 王登红,李红阳,邹天人. 1998. 阿尔泰稀有金属矿床的类型与造山 过程[J]. 矿床地质,14(增刊):25~28.
- 王登红,陈毓川,徐志刚,李天德,傅旭杰. 2002. 阿尔泰成矿省的 成矿系列及成矿规律 M]. 北京:原子能出版社.1~493.
- 王登红, 邹天人, 徐志刚, 余金杰, 付小方. 2004. 伟晶岩矿产示踪 造山过程的研究进展 J]. 地球科学进展, 19(4):614~620.
- 中国地质矿产信息研究院. 1993. 中国矿产[M]. 北京:中国建材工 业出版社. 1~391.