文章编号 10258-7106 (2009) 03-0251-14

新疆阿勒泰市阿巴宫铁矿磷灰石微量和稀土元素 特征及矿床成因探讨^{*}

刘 锋¹ 杨富全¹ 李延河¹ ,马宝钦² ,柴凤梅³ 耿新霞¹

(1 中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室,北京 100037;2 新疆地质矿产局物化探大队,新疆昌吉,831100;3 新疆大学地质与勘查工程学院,新疆乌鲁木齐,830046)

摘 要 阿巴宫铁矿床产于阿尔泰南缘晚志留世—早泥盆世的酸性火山岩中。矿体呈透镜状、脉状及似层状, 受火山断裂构造控制,与围岩界线清楚,围岩蚀变不很发育,矿石品位较高,磷灰石与磁铁矿共生。其特征可以与瑞 典北部 Kiruna 型铁矿床、宁芜玢岩铁矿床等进行对比。对阿巴宫铁矿床两个不同矿区磷灰石的稀土元素及微量元 素组成的分析结果表明,磷灰石中∑REE 变化于 1352.96×10⁻⁶~6986.33×10⁻⁶之间,平均值为 3717.70×10⁻⁶; (La/Yb)_x比值变化于 1.37~9.77 之间,平均值 5.22; 这Eu 范围在 0.22~0.30 之间,平均值 0.25;以轻稀土元素富 集、轻重稀土元素分馏较弱和 Eu 的显著负异常为特征,与瑞典北部 Kiruna 型铁矿床、宁芜玢岩铁矿床相一致,表明 阿巴宫铁矿床与上述铁矿床成因相同,均属岩浆分异成因。变质流纹岩稀土元素分布曲线形态与磷灰石的非常相 似,微量元素特征也基本一致,表明铁的成矿作用与花岗质岩浆的分异-矿浆侵入有关。

关键词 地球化学 磷灰石 稀土元素 成矿作用 阿巴宫 阿尔泰 中图分类号:P618.31 文献标志码 A

Trace element and rare earth element characteristics of apatite from Abagong iron deposit in Altay City, Xinjiang

LIU Feng¹, YANG FuQuan¹, LI YanHe¹, MA BaoQin², CHAI FengMei³ and GENG XinXia¹ (1 MRL Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 2 Geophysical and Geochemical Exploration Party, Xinjiang Bureau of Geology and Mineral Resources, Changji 831100, Xinjiang, China; 3 College of Geology and Prospecting Engineering, Xinjiang University, Urumqi 830046, Xinjiang, China)

Abstract

Located in late Silurian-early Devonian felsic volcanic rocks along the southern margin of Altay, the Abagong iron deposit occurs as lens, veins and stratoid bodies controlled by volcanic fault structures, with an obvious boundary between the iron body and the host rocks, unclear alteration in host rocks, high ore grade and coexisting apatite and magnetite in iron ore. These features suggest that the Abagong iron deposit is comparable with the Kiruna type iron deposit in northern Sweden and the porphyrite iron deposits in Ningwu area. Trace element and rare earth element compositions of the apatite from two different places in the Abagong iron deposit were analyzed, and the results show that the apatite from the Abagong iron ore contains about 1352.96×10^{-6}

^{*} 本文得到中央级公益性科研院所基本科研业务费专项资金项目(K0811)、国家自然科学基金项目(40672065)、"十一五"国家科技支撑 计划重点项目(2006BAB07B02-01)和国土资源大调查项目(1212010786006)的联合资助

第一作者简介 刘 锋,男,1968年生,博士,高级工程师,主要从事金属矿床及同位素地球化学的研究工作。电话:010-68999096; Email:lf128743@163.com

收稿日期 2009-01-06;改回日期 2009-03-15。李德先编辑。

~6986.33 \times 10⁻⁶ REE with an average of 3717.70 \times 10⁻⁶, that there exist LREE enrichment, a weak LREE/ HREE fractionation with (La/Yb)_N being 1.37~9.77 (5.22 on average), and marked negative Eu anomalies with δ Eu being 0.22~0.30 (averagely 0.25). These characteristics indicate that the Abagong iron ore deposit, the Kiruna type iron ore deposit in northern Sweden and the porphyrite iron ore deposits in Ningwu area have a common genesis of magmatic differentiation. The apparently similar shape of the REE curve and the consistency of a variety of trace elements between apatite and metamorphic rhyolite indicate that the iron ore-forming process might have been related to the differentiation of granitic magma or the ore magma intrusion.

Key words: geochemistry, apatite, REE, mineralization, Abagong area, Altay

在一些产于火山岩或次火山岩的铁矿床中,常 见较多的磷灰石与矿石矿物磁铁矿共生 ,形成矿物 组合对,如安徽宁芜地区玢岩型铁矿床、瑞典 Kiruna 型铁矿床等。对于磁铁矿和磷灰石共生的成因,不 同学者有不同的认识: Frietsch 等(1995;1997)将其 归为两种,一种是与后期热液作用或侵入岩有关,另 一种是产于钙碱-碱性中酸性火山岩(安山岩-流纹 岩)中的 Kiruna 型铁矿,其磁铁矿-磷灰石-阳起石共 生组合归入晚期的分异岩浆(矿浆)侵入成因,形成 于岩浆活动的晚期阶段 ;Barton 等(1996)认为主要是 热液交代成因 ;Philpotts 1967)认为磁铁矿和磷灰石共 生就是由岩浆熔融体演化发生不混熔作用形成的。 对宁芜玢岩铁矿床中磁铁矿和磷灰石的成因则主要 认为是岩浆分异的矿浆成因(陈毓川等,1981;常印佛 等 1991;翟裕生等 1992;余金杰等 2002)也有人认 为是岩浆-热液过渡型成因(林新多,1999)。

阿巴宫铁矿床是新疆阿勒泰-富蕴铁多金属成 矿带众多铁矿床中的一个中小型矿床。该矿床产于 火山岩中,具有磁铁矿-磷灰石以及磁铁矿-赤铁矿-磷灰石共生的特点,局部形成磷灰石矿。其成因类 型有矿浆贯入型、矽卡岩型、火山喷流沉积型等(张 振福 2003;王登红等 2002)不同认识。对与磁铁矿 共生的磷灰石稀土及微量元素的系统研究是探讨这 类矿床成因的重要途径。目前,国内针对该方面的 研究较少。余金杰等(2002)研究了宁芜玢岩铁矿床 中磷灰石和成矿母岩辉长闪长玢岩的稀土元素特 征,并与 Kiruna 型铁矿床和斜长岩、苏长岩、钛铁霞 辉岩中磷灰石的稀土元素特征进行对比,认为宁芜 玢岩型铁矿床主要是由岩浆不混熔作用形成的矿浆 成矿。

本文在对阿巴宫铁矿矿床特征的研究基础上, 从磷灰石微量、稀土元素特征入手,与宁芜玢岩铁矿 床、Kiruna型铁矿床、岩浆期后热液铁矿床中的磷灰 石特征进行对比,同时与矿体围岩中变质流纹岩的 微量、稀土元素特征进行对比 ,探讨了阿巴宫铁矿床 的成因 ,为阿尔泰区域铁矿成矿规律的研究总结奠 定基础 ,为进一步找矿提供重要的理论依据。

1 区域地质背景

阿巴宫铁矿床位于新疆阿尔泰南缘,大地构造 位置上属于西伯利亚板块的南阿尔泰晚古生代活动 陆缘、南阿尔泰的克兰泥盆纪-石炭纪弧后盆地,其 北与喀纳斯-可可托海古生代岩浆弧相接(何国琦 等 2004) 图 1)。

中国境内阿尔泰地区位于西伯利亚板块。北部 诺尔特泥盆纪——石炭纪上叠火山-沉积盆地位于红 山嘴-诺尔特断裂以北一带,主要由中晚泥盆世—早 石炭世火山-沉积岩组成 S型花岗岩侵入时代主要 为志留纪、泥盆纪 ,少数为二叠纪—侏罗纪(袁峰等 , 2001)。中部喀纳斯-可可托海古生代岩浆弧位于红 山嘴-诺尔特断裂与阿巴宫断裂、巴寨断裂之间,主 要为早古生代深变质岩系 ,出露地层主要有震旦纪 至中奥陶世的浅变质巨厚陆源复理石建造(哈巴河 群)、晚奥陶世的火山-磨拉石及陆源碎屑建造(东锡 勒科组、白哈巴组),中-晩志留世变砂岩(库鲁姆提 组)。花岗岩类分布广泛 ,主要为片麻状黑云母二长 花岗岩、片麻状黑云母花岗岩、片麻状斜长花岗岩、 黑云母花岗岩、二云母花岗岩等。 时代以早泥盆世 为主,少数为中奥陶世(如阿巴宫岩体, 462.5 Ma; 刘 锋 2008)。

南阿尔泰主要由上志留统-下泥盆统康布铁堡 组(柴凤梅 2009)和中泥盆统阿勒泰镇组变质火山-沉积岩系组成,其次是石炭纪火山-沉积岩系。康布 铁堡组、阿勒泰镇组和中泥盆统阿舍勒组海相火山 岩主要分布在北西向4个斜列的火山沉积盆地中, 从北西至南东依次为阿舍勒盆地、冲乎尔盆地、克兰 盆地和麦茲盆地,与火山岩系有关的铜、铅、锌、铁、

Fig. 1 Geological map of the Abagong iron deposit , showing mineral resources

(geological map modified from No. 706 Geological Party of Xinjiang Nonferrous Geoexploration Bureau ;regional tectonic units

modified from He et al. , 2004) $\,$

金矿床主要分布在上述盆地中。花岗岩类以早泥盆 世为主,岩性为片麻状斜长花岗岩、片麻状花岗岩、 片麻状花岗闪长岩、片麻状英云闪长岩等,其次是晚 石炭世、二叠纪,少数岩体形成于中奥陶纪(如切木 切克岩体,462 Ma;Wang et al. 2006)和侏罗纪。

2 矿床地质特征

2.1 含矿岩系

阿巴宫铁矿床位于阿尔泰市南东 25 km 处,克 兰火山-沉积盆地内。矿区及附近出露地层有中上 志留统库鲁姆特群、上志留统-下泥盆统康布铁堡 组、中泥盆统阿勒泰镇组和第四系(图1)。铁矿赋存 于上志留统-下泥盆统康布铁堡组上亚组第二岩性 段,由变质基性火山碎屑岩(晶屑凝灰岩)、变质基性 熔岩、变质流纹岩、变质火山角砾岩、含角砾片岩、含 电气石片岩、变粒岩和斜长角闪岩组成。含矿岩系 火山岩岩相变化较大。矿体围岩主要为变质流纹 岩,其次为凝灰岩、斜长角闪岩,云母石英片岩中也 见有少量磁铁矿体。SHRIMP 测年表明,流纹岩形 成于 413~407 Ma(柴凤梅等,2009),属于晚志留世 末—早泥盆世早期岩浆活动的产物。

2.2 构造及侵入岩

阿巴宫铁矿床位于阿巴宫断裂带北缘的构造破 碎带内。矿区内构造形迹最普遍的表现为岩层的高 角度倾斜,倾角多为 75~85°之间,局部近直立。以 NW-NWW 向延伸的线性构造为主,包括一系列倒转紧闭褶皱、片理、劈理及构造破碎角砾岩带等。层间小揉皱及肠状小褶曲较为发育,其轴面走向多为NW向。NW-NWW向火山断裂构造控制了铁矿体的产出,走向305~315°,倾角70~80°。还发育一组 NNW向断裂构造,属压扭性断裂,略晚于NW-NWW向断裂,走向340~355°,多数NEE向倾斜,倾角70~80°。该区发育一组NE向断层,晚于上述两组断层,对岩层、矿体等具有破坏作用。

区内侵入岩主要为花岗岩,喇嘛昭岩体位于矿 区北西部,岩性为黑云母二长花岗岩,属于海西晚期 (276 Ma)后造山产物(王涛等,2005)。北侧的阿巴 宫岩体(或称之为乌里奇岩体)呈 NW 向带状岩基, 为片麻状二云母正长花岗岩体。该岩体一直被认为 是海西早-中期侵入,但 SHRIMP 测年表明,岩体形 成于加里东中期(462.5 Ma,刘锋等,2008)。显然, 岩体早于矿床形成。

脉岩广泛发育,主要有伟晶岩脉、石英脉、斜闪 煌斑岩脉、辉绿岩脉等。

2.3 矿体及矿石特征

阿巴宫铁矿床主要由3个铁矿体组成,矿体与 围岩接触界线清楚,接触面平滑,呈舒缓波状。矿体 形态呈透镜状、脉状或似层状,总体略斜切地层。矿 体总体走向290~300°,沿走向长200~1800 m,厚 1.00~43.23 m。矿体倾向SW,倾角一般在80°以 上,常见矿体分枝或分枝复合现象。

矿石类型以细粒致密块状磁铁矿矿石(图 2A) 和稠密浸染状磁铁矿矿石为主,条带状磁铁矿矿石 (图 2B)、角砾状磁铁矿矿石次之(图 2C、D),局部可 见石英-赤铁矿矿石、角砾状镜铁矿赤铁矿矿石。在矿

体与围岩接触带附近,含粗晶自形磁铁矿和斜长角 闪岩中可见浸染状含黄铁矿贫铁矿石,为后期热液 蚀变矿化叠加所致。矿石中常见磷灰石与磁铁矿、 赤铁矿共生。致密块状磁铁矿主要分布在矿体的中 部及靠近底板的下部位置,是矿体的主要组成部分; 稠密浸染状磁铁矿主要分布在矿体(层)顶部和底部 及矿体两端,角砾成分与矿体围岩一致,大小不一,形态 各异,由磁铁矿胶结成角砾状矿石。

矿石结构以细粒粒状变晶结构为主,其次为交 代残余结构、粗粒变晶结构、磷片粒状变晶结构和胶 状结构等。矿石构造以块状构造为主,浸染状构造、 角砾状构造次之。

矿石矿物以磁铁矿为主,假像赤铁矿次之,另外 还有镜铁矿和褐铁矿,少量针铁矿、纤铁矿。脉石矿 物以石英为主,磷灰石、黑云母、白云母(绢云母)阳 起石、榍石次之,少量钠长石。

2.4 围岩蚀变

围岩蚀变不很发育,局部富铁矿体与围岩间不 具有热液蚀变现象。蚀变在上、下盘差异明显,上盘 为云英岩化,次为高岭土化、绿泥石化、绿帘石化、碳 酸盐化和褐铁矿化;下盘具绿帘石化、绿泥石化、角 (透)闪石化和少量石榴石化等组合的矽卡岩化,局 部可见褐铁矿化、黄铁矿化和碳酸盐化,另外还可见 阳起石化、重晶石化、萤石化等。

3 地球化学特征

3.1 样品及分析方法

15件磷灰石样品分别采自阿巴宫矿区和西铁山 矿区(表3)。其中在西铁山矿区采集9件,为磁铁 矿-赤铁矿-磷灰石共生组合,阿巴宫矿区采集6件样 品,为磁铁矿-磷灰石组合。

磷灰石单矿物挑选由河北省廊坊市诚信地质技 术服务公司完成。样品测试由中国科学院地质与地 球物理研究所测试中心完成。样品经(1+1)HNO₃、 HF 溶解制样后,用 Finnigan MAT 公司制造的 ICP-Ms ELEMENT 分析。分析方法采用标准曲线法(即 外标法 – External calibration),以 In 内标校准仪器 漂移。质量监控以国家标准参考物质(花岗岩 GSR1,安山岩 GSR2;玄武岩 GSR3)进行质量监控, RSD≤10。

3.2 稀土元素特征

阿巴宫铁矿磷灰石稀土元素分析结果和组成特 征参数列于表 1。为便于对比研究 同时将瑞典北部 Kiruna 型铁矿的 5 个铁矿床、岩浆期后热液型 2 个 铁矿床 的磷 灰石稀土元素组成(Frietsch et al., 1995)及平均值、宁芜玢岩型铁矿平均值(余金杰, 2002)以及阿巴宫铁矿床直接赋矿围岩中变质流纹 岩的稀土元素组成(柴凤梅,2008)—并列在表 1 中。 表中 Eu 异常用 δ Eu = Eu_N/(Sm_N × Gd_N)^{0.5}(Taylor et al.,1985)表示 δ Ce = Ce_N/(La_N × Pr_N)^{0.5},代表 Ce 异常。

由表 1、表 2 可知 阿巴宫铁矿磷灰石的 REE 特 征表现为轻稀土元素轻度富集,轻、重稀土元素有一 定程度分馏,但分馏程度不高,重稀土元素分馏总体 略强于轻稀土元素,Eu 负异常显著。宁芜玢岩铁矿 床中磷灰石稀土元素以中度富集轻稀土元素、轻重 稀土元素中等分馏、轻稀土元素分馏略强于重稀土 元素为特征。其 dEu 在 0.27~0.60 之间,平均值 0.41(余金杰等,2002),显示明显 Eu 负异常。瑞典 北部 5 个 Kiruna 型铁矿床中磷灰石稀土元素组成各 项指标或程度介于阿巴宫铁矿床和宁芜玢岩铁矿床 之间 和阿巴宫铁矿床中磷灰石稀土元素特征最为接 近。总体上,三者的组成基本特征和分布型式相似。

●产于斜长岩-淡色苏长岩中的挪威 Hesnes、 Eigeroy 矿床和产于钛铁霞辉岩中的 Kodal、Vestfold 矿床,都属于岩浆成因(Kolker,1982)。它们的磷灰 石稀土元素组成特征和上述三者相似,更接近于宁 芜玢岩铁矿床。

阿巴宫铁矿床赋矿围岩中变质流纹岩的稀土元 素总量较之磷灰石明显偏低,但其各参数和分布型 式与阿巴宫铁矿床中磷灰石稀土元素以及瑞典 Kiruna型铁矿床较为接近。

加拿大 Great Bear Lake 铁矿床和美国 Iron Springs 铁矿床中磷灰石稀土元素组成特征则与上 述稀土元素组成有较明显区别。Great Bear Lake 矿 床产于安山岩中 和侵入的钙碱性岩体有关(Badham et al., 1976; Hildebrand, 1982;1984;1986),其磁铁 矿-磷灰石-阳起石组合的形成是岩浆后期热液活动 的结果(Gandhi, 1988;1990; Reardon et al., 1991; Frietsch, et al., 1995)。美国 Iron Springs 铁矿床产 于石英二长斑岩和侏罗纪灰岩接触带,是典型的岩 浆热液交代矿床(Mackin, 1968; Frietsch et al., 1995)。上述矿床均具有很高的稀土元素总量 羟稀

表 1 磷灰石和变质流纹岩稀土元素组成表(w_B/10⁻⁶)

Table 1 REE composition of apatite and metamorphic rhyolite($w_B/10^{-6}$)

	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y
阿巴宫铁矿石中磷灰石															
ABG08-09	366.45	688.78	101.67	384.40	981.74	132.50	27.57	68.73	9.53	52.11	6.32	823.05			
ABG08-10	129.43	306.49	55.54	281.55	103.33	11.20	127.50	29.02	189.01	35.28	86.96	11.67	59.53	6.83	1145.72
ABG08-11	159.64	340.49	47.48	215.70	67.92	7.47	88.05	21.77	160.46	35.76	99.30	14.63	83.41	10.87	1142.80
ABG08-12	332.17	943.15	146.12	730.68	222.77	19.17	242.45	49.57	305.74	57.37	127.77	14.85	70.27	7.08	1667.27
ABG08-13	272.10	796.12	111.35	498.24	139.76	12.02	134.24	27.38	184.46	39.21	103.04	14.79	79.92	9.57	1252.22
ABG08-15	858.05	2106.98	272.67	1090.82	239.18	21.59	267.87	53.78	327.15	64.88	147.45	17.71	85.23	9.19	1932.78
ABG08-16	1092.75	2686.51	364.14	1404.99	310.05	25.81	364.34	59.57	360.75	64.24	147.79	16.76	80.26	8.36	1805.01
ABG08-18	700.90	1790.24	267.67	1259.24	361.04	31.84	436.72	77.33	486.55	81.34	184.88	20.80	99.96	10.35	2220.40
ABG08-19	1108.86	2606.73	334.05	1340.42	306.69	32.07	336.71	58.12	345.75	63.90	157.24	20.86	103.31	10.80	1807.12
ABG08-20	383.34	700.24	87.42	395.94	109.77	9.15	139.32	24.85	168.27	38.68	110.75	16.27	93.26	13.77	1336.73
ABG08-21	537.14	1045.04	137.95	629.44	152.85	13.35	171.71	28.35	175.95	38.29	101.85	15.24	85.28	12.54	1316.07
ABG08-22	276.23	539.00	68.14	307.55	78.48	6.48	99.60	17.93	117.57	29.47	88.21	13.30	81.72	12.13	1040.18
ABG08-23	942.56	1736.28	213.19	897.12	178.22	13.69	195.43	28.82	185.26	36.74	99.35	14.32	81.22	12.03	1288.23
ABG08-25	998.48	1856.48	222.28	885.92	184.47	14.16	189.76	29.65	181.26	37.71	99.45	14.66	82.40	12.32	1322.59
ABG08-26	635.61	1254.55	159.55	659.68	147.05	11.55	158.41	24.68	151.91	32.09	88.59	12.21	70.47	10.37	1086.43
平均值	586.25	1293.14	172.62	732.11	179.91	15.88	203.95	36.84	231.51	45.5	114.09	15.17	80.56	10.17	1412.4
瑞士 Kiruna 型铁	矿石中磷	灰石										GI			
Kiirunavaara	252.00	782.00	101.00	524.00	122.00	14.90	157.00	23.20	130.00	25.20	75.80	9.11	65.80	8.41	802.00
Kiirunavaara	544.00	1650.00	188.00	846.00	151.00	21.50	163.00	23.40	108.00	20.30	58.80	6.98	51.10	6.33	638.00
Rektorn	923.00	2460.00	260.00	1130.00	190.00	21.40	213.00	31.60	143.00	26.80	76.50	8.94	63.90	7.90	795.00
Henry	549.00	1670.00	193.00	899.00	169.00	20.50	197.00	28.50	132.00	24.00	67.00	7.71	55.00	6.64	714.00
Malmberget	805.00	2456.00	440.00	1605.00	275.00	46.10	382.00	64.20	278.00	68.00	148.00	27.50	127.00	18.10	1417.00
平均值	614.60	1803.60	236.40	1000.80	181.40	24.88	222.40	34.18	158.20	32.86	85.22	12.05	72.56	9.48	873.20
宁芜玢岩型铁矿	中磷灰石	UK													
平均值	1043.80	2342.20	276.20	933.00	187.20	25.20	185.60	23.10	103.90	20.10	47.30	4.48	37.50	7.20	650.20
岩浆后期热液型	铁矿石中	磷灰石													
Great bear lake , Canada	3148.00	7190.00		2562.00	416.00	36.20	264.00		178.00	47.50	91.10		51.30	5.65	
Iron Springs USA	3667.00	7437.00		4241.00	506.00	52.00	367.00		169.00	35.00	69.20		48.00	6.50	713.00
平均值	3407.50	7313.50		3401.50	461.00	44.10	315.50		173.50	41.25	80.15		49.65	6.08	
阿巴宫铁矿流纹	岩														
Abg159	11.9	28.1	4.08	19.2	4.89	0.83	4.28	0.65	3.38	0.62	1.70	0.26	1.76	0.27	7.28
Abg160	13.6	32.4	4.56	20.5	5.00	0.84	4.67	0.80	4.56	0.90	2.67	0.40	2.81	0.44	15.3
Abg160-1	57.7	119	14.7	60.4	13.1	2.11	9.65	1.49	7.32	1.27	3.46	0.50	3.24	0.50	15.8
Abg178	81.6	156	18.9	72.8	15.9	2.40	12.8	2.36	14.2	2.78	8.12	1.19	7.57	1.07	65.9
平均值	41.20	83.88	10.56	43.23	9.72	1.55	7.85	1.33	7.37	1.39	3.99	0.59	3.85	0.57	26.07
球粒陨石标准化	值														
	0.237	0.612	0.095	0.467	0.153	0.058	0.2055	0.037	0.254	0.057	0.1655	0.026	0.17	0.0254	

续表 1 Continued Table 1

		$w_{\rm B}/10^{-6}$				特征	正参数	Continued Table 1		
	ΣREE	LREE	HREE	LREE/HREE	(La/Yb) _N	(La/Sm) _N	(Gd/Lu),	(Ce/Yb) _N	δEu	ðСе
阿巴宫铁矿石中磷灰	石									
ABG08-09	2072.74	1647.08	425.66	3.87	5.04	2.44	2.10	3.67	0.26	0.86
ABG08-10	1433.32	887.53	545.79	1.63	1.56	0.81	2.31	1.43	0.30	0.89
ABG08-11	1352.96	838.70	514.26	1.63	1.37	1.52	1.00	1.13	0.30	0.95
ABG08-12	3269.17	2394.07	875.10	2.74	3.39	0.96	4.23	3.73	0.25	1.05
ABG08-13	2422.18	1829.58	592.60	3.09	2.44	1.26	1.73	2.77	0.26	1.12
ABG08-15	5562.52	4589.28	973.24	4.72	7.22	2.32	3.60	6.87	0.26	1.06
ABG08-16	6986.33	5884.25	1102.08	5.34	9.77	2.28	5.39	9.30	0.23	1.04
ABG08-18	5808.86	4410.93	1397.93	3.16	5.03	1.25	5.22	4.97	0.24	1.01
ABG08-19	6825.50	5728.81	1096.69	5.22	7.70	2.33	3.85	7.01	0.30	1.04
ABG08-20	2291.01	1685.85	605.16	279	2.95	2.25	1.25	2.09	0.23	0.90
ABG08-21	3144 96	2515 76	629 19	4 00	4 52	2 27	1 69	3 40	0.25	0.92
ABG08-22	1735 80	1275 87	459 93	2 77	2 42	2.27	1.01	1.83	0.22	0.92
ABG08-23	4634 23	3981_06	653 17	6.09	8 32	3 41	2 01	5 94	0.22	0.91
ABC08 25	4808 08	4161 78	647 20	6.43	8 69	3 40	1 90	6.26	0.22	0.91
ABC08-25	3416 71	2867 00	548 72	5 23	6.47	2 70	1.90	4.05	0.23	0.95
ADG08-20	2717 70	2007.99	546.72 727.70	2.01	5 12	2.19	2.61	4.95	0.25	0.94
〒22頃 瑞士 Kiruno 刑姓矿石	5/17.70	2979.91	131.19	5.91	5.15	2.11	2.01	14,50	0.25	0.97
「「「」」 Kiirunayaara	2290 42	1795 90	494 52	3 63	2 75	1 1 33	2 31	3 30	0.33	1 20
Kiirunavaara	3838.41	3400.50	437.91	7.77	7.64	2.33	3.18	8.97	0.33	1.20
Rektorn	5556.04	4984.40	571.64	8.72	10.36	3.14	3.33	10.69	0.32	1.21
Henry	4018.35	3500.50	517.85	6.76	7.16	2.10	3.67	8.43	0.34	1.26
Malmberget	6739.90	5627.10	1112.80	7.48	4.55	1.89	2.61	5.37	0.43	1.00
平均值	4488.62	3861.68	626.94	6.87	6.49	2.16	3.02	7.35	0.37	1.19
宁芜玢岩型铁矿中磷	灰石									
平均值	5236.78	4807.60	429.18	11.20	19.97	3.60	3.19	17.35	0.41	1.05
岩浆后期热液型铁矿	石中磷灰石									
Great bear lake , Canada	13989.75	13352.20	637.55	20.94	44.02	4.89	5.78	38.93	0.31	1.10
Iron Springs , USA	16597.70	15903.00	694.70	22.89	54.80	4.68	6.98	43.04	0.35	0.94
平均值	15293.73	14627.60	666.13	21.92	49.41	4.78	6.38	40.99	0.33	1.02
阿巴宫铁矿流纹岩										
Abg159	81.92	69.00	12.92	5.34	4.85	1.57	1.96	4.43	0.54	0.99
Abg160	94.15	76.90	17.25	4.46	3.47	1.76	1.31	3.20	0.52	1.00
Abg160-1	294.44	267.01	27.43	9.73	12.77	2.84	2.39	10.20	0.55	0.98
Abg178	397.69	347.60	50.09	6.94	7.73	3.31	1.48	5.72	0.50	0.94
平均值	217.05	190.13	26.92	6.62	7.21	2.37	1.78	5.89	0.53	0.98

Table 2 Characteristics of REE parameters										
铁矿类型	$\sum \text{REE}/10^{-6}$	LREE/HREE	(La/Yb) _N	(La/Sm) _N	(Gd/Lu) _N	δEu				
阿巴宫铁矿	1352.96~6986.33 均值 3717.7	1.63~6.43 均值 4.04	1.37~9.77 均值 5.22	0.81~3.49 均值 2.10	1.00~5.39 均值 2.48	0.22~0.30 均值 0.25				
宁芜玢岩铁矿	3031.48~12080 均值 5236.78	7.12~18.52 均值 11.2	8.00~47.7 均值 19.97	均值 3.6	均值 3.19	0.27~0.60 均值 0.41				
瑞典 Kiruna 型铁矿	2290.42~6739.90 均值 4164.60	3.63~8.72 均值 6.27	2.75~10.36 均值 6.24	1.33~3.14 均值 2.32	2.31~3.67 均值 2.78	0.32~0.43 均值 0.37				
挪威 Hesnes、 Eigeroy 铁矿	6046.2~8230.0	5.00~13.57	7.2~17.8			0.31~0.71				
流纹岩	81.92~397.69 均值 217.05	4.46~9.73 均值 6.62	3.47~12.77 均值 7.69	1.57~3.31 均值 2.37	1.31~2.39 均值 1.78	0.50~0.55 均值 0.53				
Great Bear Lake 和 Iron Springs 铁矿	13989.75~16597.70	20.94~22.89	44.02~54.80	4.68~4.89	5.78~6.98	0.31~0.35				

表 2 稀土元素特征参数变化

表 3 阿巴宫铁矿磷灰石微量元素含量表(w_B/10⁻⁶)

Table 3 Trace element content of apatite from the Abagong iron deposi ($w_{\rm B}/10^{-6}$)

样品号	矿区	Sc	V	Со	Ni	Cu	Zn	Ga	Rb	Sr	Zr
ABG09	西铁山	1.31	42.50	1.88	6.98	2.99	2.76	27.35	15.13	222.46	281.25
ABG10	西铁山	0.92	5.19	1.04	10.02	0.28	3.00	16.34	0.96	251.68	10.76
ABG11	西铁山	1.58	16.87	1.47	8.13	4.16	10.02	16.24	30.40	179.48	44.20
ABG12	西铁山	0.39	5.74	1.12	9.35	0.81	3.11	41.43	7.15	322.91	8.33
ABG13	西铁山	0.81	16.25	0.80	3.58	0.85	7.97	34.93	98.01	114.48	71.64
ABG15	西铁山	0.43	7.04	0.97	7.95	5.33	4.19	74.14	1.06	295.53	5.32
ABG16	西铁山	0.60	7.62	1.07	10.38	1.96	3.61	92.07	1.31	301.55	35.01
ABG18	西铁山	0.31	28.53	1.75	9.35	1.10	6.22	71.57	5.88	321.17	13.51
ABG19	西铁山	0.53	14.90	1.10	6.36	0.59	5.55	105.84	58.54	291.52	11.12
ABG20	阿巴宫	1.03	12.66	1.41	9.09	6.98	10.89	27.15	1.32	244.92	10.52
ABG21	阿巴宫	0.99	9.89	1.50	9.30	6.97	3.33	39.43	1.16	268.00	6.17
ABG22	阿巴宫	0.59	8.67	2.90	9.23	4.51	11.07	20.98	1.40	163.70	13.02
ABG23	阿巴宫	0.47	7.28	0.98	9.92	3.49	3.63	57.57	1.14	294.82	6.54
ABG25	阿巴宫	0.29	7.68	1.07	13.31	3.99	6.07	59.66	1.15	297.58	6.64
ABG26	阿巴宫	0.14	6.91	1.32	8.45	7.90	3.79	45.10	1.10	255.08	7.96
样品号	矿区	Nb	Cs	Ba	Hf	Ta	Tl	Pb	Bi	Th	U
ABG09	西铁山	1.66	0.40	107.80	6.82	0.28	0.07	8.04	1.34	7.77	6.25
ABG10	西铁山	0.66	0.26	11.99	0.96	0.21	0.03	5.34	1.42	5.74	5.32
ABG11	西铁山	1.07	0.56	240.28	0.98	0.20	0.12	11.48	1.56	15.36	26.74
ABG12	西铁山	0.56	0.32	35.00	1.34	0.29	0.05	13.00	1.65	6.55	6.28
ABG13	西铁山	1.11	1.30	572.35	2.54	0.24	0.32	29.00	4.14	12.09	12.89
ABG15	西铁山	1.04	0.27	13.49	1.39	0.33	0.03	19.65	2.48	29.07	7.51
ABG16	西铁山	1.17	0.25	14.63	1.38	0.29	0.03	8.05	2.52	24.57	6.57
ABG18	西铁山	1.40	0.38	41.27	1.73	0.37	0.05	10.37	2.51	13.56	28.82
ABG19	西铁山	1.53	1.12	330.67	1.68	0.40	0.22	17.08	3.78	37.24	18.69
ABG20	阿巴宫	0.64	0.25	12.88	0.77	0.18	0.03	6.58	3.39	157.18	13.19
ABG21	阿巴宫	0.63	0.24	7.10	0.75	0.19	0.03	6.17	2.37	139.70	13.17
ABG22	阿巴宫	0.61	0.25	7.83	0.69	0.15	0.03	6.56	2.73	161.45	12.62
ABG23	阿巴宫	0.67	0.25	9.59	0.74	0.19	0.03	12.73	1.45	197.06	15.39
ABG25	阿巴宫	0.68	0.25	10.05	0.75	0.19	0.03	12.63	1.52	210.78	16.50
ABG26	阿巴宫	0.67	0.25	8.17	0.66	0.16	0.03	6.97	1.31	183.63	14.77

注 球粒陨石标准化值引用 Thompson ,1982。

土元素富集程度高,分馏较强,重稀土元素分馏程度 明显大于轻稀土元素。Eu负异常显著,这与前述几 种稀土元素特征类似。

Frietsch 等(1995)在研究了海相沉积物和磷酸 盐中磷灰石稀土元素特征后发现,沉积环境下形成 的磷灰石中稀土元素总量普遍较低,一般小于1000 ×10⁻⁶、轻重稀土元素弱分馏、弱的负(或无)Eu 异 常 *C*e 亏损特征显著,与岩浆成因和后期热液成因 的磷灰石稀土元素的组成有明显区别。

由磷灰石稀土元素分布型式图(图3)可以看出, 阿巴宫铁矿床不同矿区磷灰石中稀土元素分布型式 一致 均轻度富集轻稀土元素和显著 Eu 负异常 反 映出它们具有相同的成因;与赋矿围岩变质流纹岩 稀土元素分布曲线形状很相似、表明其同源的特征。 但变质流纹岩的∑REE 明显偏低 ,且 Eu 负异常弱 于磷灰石 这是由于稀土元素在岩石、矿物形成过程 中发生分馏,火成矿物的稀土元素含量受其在矿物-熔体中分配系数和母岩浆的稀土元素模式控制 (Taylor et al. ,1985)的缘故。磷灰石在矿物和岩石 的稀土元素分配上扮演非常重要的角色 ,三价的稀 土元素结合 Na⁺能够替换磷灰石中 Ca²⁺,较容易进 入磷灰石(Fleischer et al., 1969; Fleischer, 1983; Hugles et al., 1991) 而 Eu 异常受控于长石,尤其是 长英质岩浆中,Eu²⁺可以被斜长石和钾长石容纳。 比较几种磷灰石稀土元素曲线可以看出,阿巴宫铁 矿床、瑞典北部 Kiruna 型铁矿床以及宁芜玢岩铁矿 床磷灰石稀土元素分布型式比较相似(图3)表明它 们成因机理相同。后期热液型铁矿磷灰石稀土元素 分布曲线虽然和上面 3 种磷灰石稀土元素分布曲线 形状相似 但前者曲线明显陡倾 稀土元素总量偏高 (图 3d、3f) 反映了后期热液型铁矿床虽然与岩浆作 用有关,但受热液作用影响明显。

磷灰石的稀土元素分布型式由于形成环境的不同而有很大变化。沉积环境下形成的磷灰石稀土元素分布型式明显区别于岩浆-侵入成因和热液成因磷灰石(图 3g)具有稀土元素总量低、典型 Ce 负异常特征,与海水稀土元素组成相似(Altschuler et al., 1967; Fleischer et al., 1969; Altschuler, 1980; Humphris, 1984;)。Ce 是唯一可以被氧化成四价的稀土元素,在相对氧化的海水环境,Ce⁴⁺能被海水中微粒子(如锰结核)带走,造成 Ce 亏损(Fryer,1977; Appel,1983; Bau et al., 1991)。阿巴宫铁矿床磷灰石中稀土元素分布型式不同于沉积型磷灰石,其 &Ce

基本表现为无异常 ,显示出相对的还原环境。

3.3 微量元素特征

表 3 列出了阿巴宫铁矿床磷灰石微量元素含 量。磷灰石中大多数微量元素含量较低,Ta、Nb、 Hf、Tl、Ni、Cu、Zn、Bi、V等元素含量均在检测限附 近,因此,数据只能作为参考;Rb、Ba、Zr等微量元素 变化范围大,具有较大的标准偏差,大多数值位于检 测限附近,最低值与最高值相差100倍左右。这可 能反映了母熔体在结晶分异时期的组分演化,早期 含量最高,晚期含量低或者没有(Belousova et al., 2002),说明磷灰石经历了较长时期的结晶过程。

阿巴宫铁矿床中磷灰石微量元素蛛网图(图4) 显示出一致的分布模式,具有显著的Ba、Nb、Ta、Sr 的负异常和Th、U、Pb正异常特征,和阿巴宫流纹 岩微量元素特征一致(柴凤梅,2008),反映它们同 源磷灰石中Zr、Hf负异常可能是由于受控于岩浆 中锆石的形成。

4 矿床成因探讨

磷灰石作为磁铁矿的共生矿物 ,它们具有相同 的成因机理。磷灰石的形成条件可以代表磁铁矿成 因,能够反映铁矿床的成矿作用。 瑞典北部的 Kiruna型磷灰石-磁铁矿矿床形成于长英质岩浆的 晚期分异,属于岩浆-侵入成因(Frietsch et al., 1995) 宁芜玢岩型铁矿也是由岩浆分异产生的富铁 矿浆成因(陈毓川等,1981;常印佛等,1984;翟裕生 等 ,1992 ,余金杰等 ,2002) ;产于斜长岩-淡色苏长岩 中的挪威 Hesnes、Eigeroy 矿床和产于钛铁霞辉岩中 的 Kodal、Vestfold 矿床,同样属于岩浆成因(Kolker, 1982)。这些矿床产地不同,成矿母岩的岩石类型不 同,但矿床中磷灰石稀土元素组成相似,分布型式具 有一致性,反证了相同的成因机理。 阿巴宫铁矿床 与上述铁矿床具有较为一致的磷灰石稀土元素组成 和分布型式,明显区别于沉积矿床磷灰石稀土元素 模式,也区别于后期热液型铁矿床。其与瑞典北部 Kiruna 型铁矿床稀土元素组成及分布型式最为接 近 表明阿巴宫铁矿床同为岩浆成因。

研究表明(Paster et al., 1974; Schock, 1977; Appel, 1983),含磷灰石铁矿床中磷灰石、磁铁矿和 成矿母岩的稀土元素分配型式具有相似性。阿巴宫 变质流纹岩虽然稀土元素总量较之磷灰石明显偏 低,但其各参数和分布型式与阿巴宫铁矿床中磷灰石

Fig. 3 Chondrite-normalized REE patterns of apatite

a. Xitieshan district in the Abagong iron deposit; b. Abagong district in the iron deposit; c. Kiruna type iron deposit in northern Sweden; d. late stage hydrothermal type iron deposit; e. metamorphic rhyolite from Abagong area; f. average REE contents of rapatite; g. apatite in sedimentary environment

260

稀土元素以及瑞典 Kiruna 型铁矿床中磷灰石的稀 元素特征相似;其微量元素显著的 Ba、Nb、Ta、Sr 负 异常和 Th、U、Pb 正异常特征与磷灰石微量元素特 征也具有一致性,这些都说明阿巴宫铁矿床磷灰石 与流纹岩具有同源性,铁的成矿作用与花岗质岩浆 的分异-侵入有关。

岩浆-侵入成因矿床和后期岩浆热液成因矿床, 具有不同的稀土元素特征,利用稀土元素分布型式 一般能够加以区分。事实上,Friestch(1995)研究了 众多含磷灰石铁矿床后发现,利用不同矿床中磷灰 石稀土元素特征及分布型式可以很好地区分沉积成 因矿床和与岩浆或岩浆热液有关的矿床,但并不能完

全区分岩浆成因磷灰石和后期热液成因磷灰石(可 能是由于上述两种成因类型都与岩浆作用有关)。 不管是 Kiruna 型还是宁芜玢岩型铁矿床,或多或少 均受到后期热液作用的影响,在共生的磷灰石中留 下"热液痕迹"。因此,热液交代蚀变作用以及氧化 还原状态的变化都可能改变稀土元素组成模式 ,如 稀土元素总量变化、分馏变化、La 和 Ce 的亏损等 等,但两种成因类型磷灰石的区分目前存在一定困 难。Belousova(2002)等研究了大量不同类型岩石中 磷灰石微量和稀土元素特征,揭示出各种类型岩石 中磷灰石微量和稀土元素的变化特征 利用稀土元 素、Sr、Y等的关系图解能够较为清晰地反映出磷灰 石来源的岩石类型性质。在 Y-&Eu 图解中(图 5a)中, 磷灰石样品绝大多数落入基性岩和花岗质岩石的重 叠区 只有一个样品在花岗伟晶岩区内边部与花岗质 岩的重叠区 表明岩浆后期热液作用对阿巴宫铁矿共 生磷灰石的形成影响很有限 这与矿床地质特征表现 相一致。阿巴宫铁矿床直接赋矿围岩为变质流纹岩, Sr-Y 图解 图 5b 则显示大多数样品落入花岗质岩区, 少数样品位于区外侧边部附近 印证了磷灰石的形成 与花岗质岩浆侵入有关,为岩浆分异成因。

综上所述,阿巴宫铁矿成矿过程可简述如下:晚 志留世—泥盆纪早期,阿尔泰南缘为活动大陆边缘 的陆缘火山弧环境,板块俯冲形成了一系列拉张断 陷盆地(牛贺才等,2006;丛峰等;2007;杨富全等, 2008;柴凤梅等;2009)。在板块俯冲作用过程中,下

图 5 磷灰石微量稀土元素判别图解 a. Y-ôEu 图解; b. Sr-Y 图解.

Fig. 5 Discrimination plots based on trace elements and REE a. Y-&Eu plot ; b. Sr-Y plot 地壳发生部分熔融,形成花岗质岩浆。这种岩浆在 向上运移过程中,由于温度、压力以及氧化还原环境 的改变,发生分异甚至不混熔作用,形成分异岩浆和 铁质矿浆。早期酸性岩浆喷出地表,形成了康布铁 堡组流纹质火山岩组合。在火山喷发过程中形成了 火山断裂,晚期铁质矿浆沿着火山断裂构造贯入充 填、沉淀,形成阿巴宫铁矿床。

5 结 论

(1)阿巴宫铁矿床产于晚志留世-早泥盆世康布 铁堡组火山岩系中。矿体呈透镜状、脉状及似层状 沿断裂构造产出,与围岩界线清楚,围岩蚀变不很发 育,磷灰石与磁铁矿共生。

(2) 阿巴宫铁矿床磷灰石稀土元素组成及分布 型式与瑞典北部 Kiruna 型铁矿床、宁芜玢岩铁矿床 以及挪威 Hesnes、Eigeroy 矿床和 Kodal、Vestfold 矿 床中磷灰石稀土元素分布型式具有一致性,说明它 们同为岩浆分异成因。

(3)阿巴宫铁矿床中磷灰石与赋矿围岩变质流 纹岩稀土元素分布曲线形状很相似,反映其同源特 征。磷灰石微量元素特征与流纹岩的一致性以及矿 床地质特征均说明阿巴宫铁矿床与形成流纹岩的岩 浆有密切的成因联系,是花岗质岩浆的分异-矿浆侵 入的产物。

志 谢 本文野外工作得到新疆地矿局第四地 质大队以及阿巴宫铁矿工作人员的大力支持;样品 测试工作由中国科学院地质与地球物理研究所测试 中心靳新娣精心完成,在此一并表示感谢。

References

- Altschuler Z S , Berman S and Cuttitta F. 1967. Rare earths in phosphorites -geochemistry and potential recovery [J]. U. S. Geol. Surv. Prof. Pap. 575-B , 1-9.
- Altschuler Z S. 1980. The geochemistry of trace elements in marine phosphorites, I. Characteristic abundance and enrichment[J]. Soc. Econ. Paleontol. Mineral. Spec. Publ., 29:19-30.
- Appel P W U. 1983. Rare earth elements in the early Archaean Isua iron-formation, west Greenland [J]. Precambrian Res., 20:243-258.
- Badham J P N and Morton R D. 1976. Magnetite-apatite intrusions and calcalkali magnatism , Camsell River , N. W. T. Can[J]. Earth

Sci., 13:348-354.

- Bau M and Möller P. 1991. REE systematics as source of information of minerogenesis A]. In : Pagel M and Leroy J L , ed. Proc. 25 years SGA Anniv. Mee [C]. Nancy , 1991. 17-19.
- Barton M D and Johnson D A. 1996. Evaporitic-source model for igneous-related Fe oxide(REE-Cu-Au-U) mineralization [J]. Geology , 24(3):259-262.
- Belousova E A, Griffin W L, O 'Reilly Suzanne Y and Fisher N I. 2002. Apatite as an indicator mineral for mineral exploration :Traceelement compositions and their relationship to host rock type[J]. Journal of Geochemical Exploration, 76:45-69.
- Chang Y F , Liu X P and Wu Y C. 1991. The copper-iron belt of the Lower and Middle Reaches of the Changjiang River[M]. Beijing : Geol. Pub. House. 379p (in Chinese).
- Chai F M, Mao J W, Dong L H, Yang F Q, Liu F, Geng X X, Zhang Z X and Huang C K. 2009. Geochronology and genesis of the metarhyolites in the Kangbutiebao Formation from the Kelang basin at the southern margin of the Altay, Xinjiang J]. Acta Petrologica Sinica (in Chinese with English abstract) (in press).
- Chen Y C , Sheng J F and Ai Y D. 1981. Meishan iron deposit—An ore magma-hydrothermal deposit J]. Bulletin of the Chinese Academy of Geological Sciences , 2(1):26-48 (in Chinese with English abstract).
- Cong F, Tang H F and Su Y P. 2007. Geochemistry and tectonic setting of Devonian rhyolites in southern Altay, Xinjiang, northwest China
 [J]. Geotectonica et Metallogenia, 31(3): 359-364 (in Chinese).
- Fleischer M and Aitschuler Z S. 1969. The relationship of the rare-earth composition of minerals to geological environmen [J]. Geochim. Cosmochim. Acta , 33 : 725-732.
- Fleischer M. 1983. Distribution of the lanthanides and yttrium in apatites from iron ores and its bearing on the genesis of ores of the Kiruna type J. Econ. Geol. , 78:1007-1010.
- Fryer B J. 1977. Rare earth evidence in iron formation for changing Precambrian oxidation states[J]. Geochim. Cosmochim. Acta , 41: 361-367.
- Frietsch R and Perdahl J A. 1995. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types J J. Ore Geol. Rev., 9:489-510.
- Frietsch R, Tuisku P, Martinsson O, et al. 1997. Early Proterozoic Cu-(Au) and Fe ore deposits associated with regional Na-Cl metasomatism in northern Fennoscandia J]. Ore Geol. Rev., 12:1-34.
- Gandhi S S. 1988. Volcano-plutonic setting of Cu-U bearing magnetite veins of FAB claims, southern Great Bear magnatic zone northwest Territories J J. Geol. Surv. Can. Pap., 88-1C:177-187.
- Gandhi S S. 1990. Paragenesis of magnetite-dominated and arsenopyritedominated polymetallic deposits in the southern Great Bear magnatic zone, northwest Territories, Canada A J. Abstr. 8th IAGOD Symp [C]. Ottawa, Ont. A 197.

- Humphris S E. 1984. The mobility of the rare earth elements in the crus[A]. In : Henderson P , ed. Rare earth element geochemistry developments in geochemistry , Elsevier [C], Amsterdam , 317-373.
- Hildebrand R S. 1982. Magnetite-apatite-actinolite rocks, Great Bear Lake: Origin by groundwater convection in subductionrelated intermediate plutons J J. Abstr. Geol. Assoc. Can.
- Hildebrand R S. 1984. Geology of the Rainy Lake-White Eagle Falls area, district of Mackenzie : Early Proterozoic cauldrons, stratovolcanoes and subvolcanic plutons [J]. Geol. Sure. Can. Pap., 83-20: 42.
- Hilderbrand R S. 1986. Kiruna-type deposits Their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, northwest Canada J. Econ. Geol., 81:640-659.
- Hughes J M, Cameron M and Mariano A N. 1991. Rare-earth element ordering and structural variations in natural rare-earth beating apatites J. Am. Mineral. , 76 :1165-1173.
- He G Q , Cheng S D , Xu X , Li J Y and Hao J. 2004. An introduction to the explanatory text of the map of tectonics of Xinjiang and its neighbouring areas [M]. Beijing : Geol. Pub. House. 1-65 (in Chinese with English abstract).
- Kolker A. 1982. Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis[J]. Econ. Geol. , 77(5):1146-1158.
- Lin X D. 1999. Magmatic-hydrothermal transitional type deposit M J. Wuhan China University of Geoscience Press. 33-78 (in Chinese).
- Liu F, Li Y H, Mao J W, Yang F Q, Chai F M, Geng X X and Yang Z X. 2008. The SHRIMP U-Pb ages of Abagong granites in the Altai orogen and its geologic implication [J]. Acta Geoscientica Sinica, 29(6):795-804 (in Chinese with English abstract).
- Mackin J H. 1968. Iron ore deposits of the Iron Springs district south western Utah A I. In : Ridge J D. ed., Ore deposits of the United States C I. 1933-1967. Am. Inst. Min. Metall. Eng., New York, N.Y., 992-1019.
- Niu H C , Yu X Y , Xu J F , Shan Q , Chen F R , Zhang H X and Zheng Z P. 2006. Late Paleozoic volcanism and associated metallogenesis in the Altay area , Xinjiang , China[M]. Beijing : Geol. Pub. House. 1-184 (in Chinese with English abstract).
- Philpotts A R. 1967. Origin of certain iron-titanium oxide and apatite rocks J. Econ. Geol. , 62(3):303-315.
- Paster T P , Schauwecker D S and Haskin L A. 1974. The behavior of some trace elements during solidification of the Skaergaard layered series J J. Geochim. Cosrnochim. Acta , 38 :1549-1577.
- Reardon N C , Taylor B E and Hildebrand R S. 1991. Kiruna type deposits , subvolcanic plutons and stratovolcanoes : Geologic and isotopic cross-sections through magnatic hydrothermal systems in the northwestern Canadian Shield J J. Geol. Soc. Am.
- Schock H H. 1977. Trace element partitioning between phenocrysts of plagioclase, pyroxenes and magnetite and the host pyroclastic matrix

[J]. Radioanal. Chem., 38: 327-340.

Taylor S R and Mclennan S M. 1985. The continental crust : Its composition and evolutior[M]. Oxford : Blackwell. 312p.

- Thompson R N. 1982. British Tertiary volcanic province J. Scott. J. Geol., 18:59-107.
- Wang D H , Chen Y C , Xu Z G , Li T D and Fu X J. 2002. Minerogenetic series and regularity of mineralization in the Altai metallogenetic Province , China M]. Beijing : Atomic Energy Press. 1-493 (in Chinese)
- Wang T , Hong D W , Tong Y , Han B F and Shi Y R. 2005. Zircon U-Pb SHRIMP age and origin of post-orogenic Lamazhao granitic pluton from Altai orogen : Its implications for vertical continental growth [J]. Acta Petrologica Sinica , 21(3): 640-650 (in Chinese with English abstract).
- Wang T , Hong D W , Jahn B M , Tong Y , Wang Y B , Han B F and Wang X X. 2006. Timing , petrogenesis , and setting of Paleozoic synorogenic intrusions from the Altai Mountains , northwest China : Implications for the tectonic evolution of an accretionary orogen[J]. The Journal of Geology , 114 : 735-751.
- Yang F Q, Mao J W, Yan S H, Liu F, Chai F M, Zhou G, Liu G R, He L X, Geng X X and Dai J Z. 2008. Geochronology, geochemistry and geological implications of the Mengku synorogenic plagiogranite pluton in Altay, Xinjiang J J. Acta Geologica Sinica, 82(4):485-499 (in Chinese with English abstract).
- Yuan F , Zhou T F adn Yue S C. 2001. The ages and the genetic types of the granites in the Nurt area , Altay[J]. Xinjiang Geology , 19 (4):292-296 (in Chinese with English abstract).
- Yu J J and Mao J W. 2002. Rare Earth Elements in Apatite from porphyrite iron deposits of Ningwu area J J. Mineral Deposits , 21(1): 65-73 (in Chinese with English abstract).
- Zhai Y S , Yao S Z , Lin X D , et al. 1992. Fe-Cu(Au) metallogeny of the Middle-Lower Reaches area of Changjiang[M]. Beijing : Geol. Pub. House (in Chinese).
- Zhang Z F. 2003. Analysis of characteristics of typical Fe deposit in Altai region, Xinjiang and their genesis and potential J l. Contributions to Geology and Mineral Resources Research, 18(Supp.): 80-83 (in Chinese with English abstract).

附中文参考文献

- 常印佛,刘湘培,吴言昌.1991. 长江中下游铜铁成矿带 M].北京: 地质出版社.379页.
- 柴凤梅,毛景文,董连慧,杨富全,刘 锋,耿新霞,张志欣,黄承科. 2009. 阿尔泰南缘克朗盆地康布铁堡组变质火山岩年龄及岩石 成因[j].岩石学报(待刊).
- 陈毓川,盛继福,艾永德. 1981. 梅山铁矿——一个矿浆热液矿床 [J]. 中国地质科学院院报矿床地质研究所所刊,2(1):26-48.

- 丛 峰,唐红峰,苏玉平. 2007. 阿尔泰南缘泥盆纪流纹岩的地球化
 学和大地构造背景[J]. 大地构造与成矿学 31(3):359-64.
- 何国琦,成守德,徐 新,李锦轶,郝 杰. 2004. 中国新疆及邻区 大地构造图(1.2500000)说明书[M]. 北京 地质出版社. 1-65.
- 林新多.1999. 岩浆-热液过渡型矿床[M]. 武汉:中国地质大学出版 社.33-78.
- 刘 锋,李延河,毛景文,杨福全,柴凤梅,耿新霞,杨宗喜. 2008.
 阿尔泰造山带阿巴宫花岗岩体锆石 SHRIMP 年龄及其地质意义
 []].地球学报,2%(6):795-804.
- 牛贺才,于学元,许继峰,单 强,陈繁荣,张海祥,郑作平.2006. 中国新疆阿尔泰晚古生代火山作用及成矿[M].北京:地质出版社.1-184.
- 王登红 陈毓川 徐志刚 ,李天德 ,傅旭杰. 2002. 阿尔泰成矿省的成 矿系列及成矿规律 M].北京:原子能出版社. 1-493.

- 王 涛,洪大卫,童 英,韩宝福,石玉若. 2005. 中国阿尔泰造山 带后造山喇嘛昭花岗岩体锆石 SHRIMP 年龄、成因及陆壳垂向 生长意义[J]. 岩石学报,21(3) 540-650.
- 杨富全,毛景文,闫升好,刘 锋,柴凤梅,周 刚,刘国仁,何立 新,耿新霞,代军治.2008.新疆阿尔泰蒙库同造山斜长花岗岩 年代学、地球化学及其地质意义[J].地质学报 82(4):485-499.
- 袁峰,周涛发,岳书仓. 2001. 阿尔泰诺尔特地区花岗岩形成时代
 及成因类型[J]. 新疆地质,19(4):292-296.
- 余金杰,毛景文.2002. 宁芜玢岩铁矿磷灰石的稀土元素特征[J]. 矿床地质,21(1):66-73.
- 翟裕生,姚书振,林新多,等. 1992. 长江中下游地区铁铜(金)成矿 规律[M]. 北京:地质出版社.
- 张振福. 2003. 新疆阿尔泰一带典型铁矿床特征、成因及找矿前景分 析[1]. 地质找矿论丛,18(增刊):80-83.