文章编号:0258-7106(2013)02-0397-08

广西栗木锡铌钽矿田成矿物质来源的惰性 气体同位素示踪[。]

梁玲慧¹,彭振安^{1**},汪 明¹,长尾敬介²,蔡明海¹,黄敦杰¹,郭腾飞¹, 刘 虎¹,程 柳³

(1 广西大学资源与冶金学院,广西南宁 530004;2 东京大学大学院理学系地壳化学实验室,日本东京 113-0033;
 3 桂林矿产地质研究院,广西桂林 541004)

摘 要 文章利用黄铁矿流体包裹体惰性气体同位素,探讨了广西栗木锡铌钽矿田成矿流体的来源。黄铁矿 流体包裹体的³He/⁴He 比值为 0.14~0.97 Ra,远远低于地幔流体的比值,接近饱和大气水的比值,并与地壳流体的 比值处在相同的数量级上,⁴⁰Ar/³⁶Ar 比值为 555.98~855.11,平均 705.55,显然偏离大气氩的同位素组成,⁴⁰Ar * / ⁴He 比值为 0.08~0.27,平均值为 0.153,接近地壳值,²⁰Ne/²²Ne=9.671~9.748 和²¹Ne/²²Ne=0.0306~0.0330,具 有饱和大气水的 Ne 同位素比值特征。结果表明,广西栗木锡铌钽矿田老虎头、牛栏岭和金竹源 3 个矿床的成矿流 体是大气水和地壳流体的混合流体,心溪庙矿床的成矿流体也主要是大气水和地壳流体的混合流体,但可能有少量 地幔流体的加入。

关键词 地球化学 ,惰性气体同位素 ;成矿流体 ,黄铁矿 ,栗木锡铌钽矿田 中图分类号 : P618.44 ; P618.79 ; P618.86 文献标志码 :A

Noble gas isotopic tracing of ore-forming fluids in Limu tin-niobium-tantalum deposit

LIANG LingHui¹, PENG ZhenAn¹, WANG Ming¹, NAGO Keisuke², CAI MingHai¹, HUANG DunJie¹, GUO TengFei¹, LIU Hu¹ and CHENG Liu³

(1 College of Resources and Metallurgy, Guangxi University, Nanning 530004, Guangxi, China; 2 Laboratory for Earthquake Chemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan; 3 Guilin Research Institute for Mineral Resources, Guilin 541004, Guangxi, China)

Abstract

In this paper, ore-forming fluids and ore genesis are discussed based on the analyses of noble gases isotopes of fluid inclusions trapped in pyrite. ${}^{3}\text{He}{}^{4}\text{He}$ ratios of fluids in the Limu tin-niobium-tantalum deposit are 0.14 \sim 0.97 Ra (under 1.0 Ra). These values are smaller than values of mantle fluids and are close to the values of atmosphere saturated water and crust fluids. ${}^{40}\text{Ar}{}^{36}\text{Ar}$ ratios of fluids are 555.98 \sim 855.11 with an average of 705.55, far away from Ar isotopic composition of atmosphere. ${}^{40}\text{Ar}{}^{*}{}^{4}\text{He}$ ratios of fluids are 0.08 \sim 0.27 with an average of 0.153, close to the values of the crust and lower than the values of crust fluids. ${}^{20}\text{Ne}{}^{22}\text{Ne}$ ratios

第一作者简介 梁玲慧,女,1985年生,硕士研究生,金属矿床成因及找矿研究方向。Email:huila1115@126.com

收稿日期 2012-03-28;改回日期 2013-03-04。秦思婷编辑。

本文得到广西科学基金项目(桂科回 0991001)和广西大学科研基金项目(BXZ090946)的联合资助

^{**} 通讯作者 彭振安,男,1961年生,博士,教授,从事金属矿床科研和教学工作。Email:pengzhenan@hotmail.com

are $9.671 \sim 9.748$, ²¹ Ne/²² Ne ratios are $0.0306 \sim 0.0330$, having the characteristics of the atmosphere saturated water. He-Ar isotope composition shows that ore-bearing fluids in the Laohutou, Niulanling and Jinzhuyuan deposits were mainly mixed with the atmosphere saturated water and the crust fluids. The data obtained suggest that the ore-bearing fluids were mainly derived from the atmosphere saturated water and the crust fluids. The data obtained suggest that the ore-bearing fluids were mainly derived from the atmosphere saturated water and the crust fluids, with some mantle fluids probably involved in the ore-forming process of the Shuiximiao deposit.

Key words: geochemistry, noble gas isotopes, ore-forming fluids, pyrite, Limu tin-niobium-tantalum deposit

地球不同圈层的稀有气体同位素具有不同的特征同位素比值,因而稀有气体同位素(特别是 He、Ar)是壳-幔相互作用过程极灵敏的示踪剂(王先彬,1989;马锦龙等,2002)。He、Ar 同位素在地质学研究中应用较早,应用范围广,研究程度也较深入。20世纪60年代,Zartman等(1961)用 He、Ar 同位素示踪地壳现代流体的来源与演化。Kennedy等(2006)用其对美国内华达州的热泉、喷气孔(天然 CO 气藏)和井水中稀有气体丰度及其组成进行了研究。时至今日,He、Ar 同位素示踪的研究方法得到蓬勃发展。

广西栗木锡铌钽矿田位于南岭锡多金属成矿带 的南部。该矿田作为华南重要的铌钽钨锡矿床之 一,自上世纪 50 年代发现以来,广西 270 地质队、 271 地质队对其的找矿勘查评价做出了巨大贡献(李 人科等 ,1994)。许多学者对矿田的矿床地质地球化♡ 学特征和花岗岩成因进行了大量的研究 ,认为该矿 床为陆壳重熔花岗岩型矿床(林德松等,1987;1988; 陈儒庆等 ,1988 :甘晓春等 ,1991 ;覃宗光等 ,2011 :唐 章焕 1991 徐启东等 1988 法金初等 1996 ;周凤英 等,1995;Xu et al., 1992)。最新的同位素年代学数 据表明其为晚三叠世—早侏罗世,即印支晚期至燕 山早期的产物。其中,史明魁等(1981)用锆石 U-Pb 法测得第一阶段花岗岩年龄为 195~184 Ma ,第二 阶段为 173 Ma 第三阶段为 159 Ma ;杨锋等(2009) 利用⁴⁰Ar/³⁹Ar 法获得栗木花岗岩白云母的坪年龄 和等时线年龄分别为(214.1±1.9) Ma 和(214.3± 4.5) Ma.

然而,对广西栗木锡铌钽矿包括成矿流体在内 的成矿物质同位素示踪研究尚属空白,制约了对其 成矿机制的深入认识。成矿的流体性质及来自何处 值得研究。本文以矿田普遍发育的黄铁矿为对象, 通过对其流体包裹体氦、氩同位素研究,探讨了成矿 物质来源。

1 矿床地质特征

栗木矿田位于南岭 EW 向构造带中段、恭城复 式向斜北部扬起端。矿田内地层主要有寒武系边溪 组浅变质砂岩、板岩、泥质灰岩 ;泥盆系砂岩、石英砂 岩、白云质灰岩和泥质灰岩、石炭系碳质灰岩、条带 状灰岩、泥质灰岩和碳质页岩等(图1)。 矿田内断裂 构造发育,以SN向、EW向断裂为主,其次为NNE 向、NE 向断裂。其中,近 SN 向展布的恭城-栗木断 裂为主要的控岩控矿断裂。SN 向断裂被 EW 向断 裂切割 构成特殊的" 廿 "字形构造。矿田内小构造 极发育 主要有纵弯褶皱、横弯褶皱和节理构造。纵 弯褶皱主要分布在远离隐伏岩体的地层中 ;横弯褶 皱及扇状、弧形和 X 型共轭剪切节理构造 ,分布在隐 伏岩体的上覆地层中 ,是隐伏岩体预测的标志(曹瑞 欣 2009)。岩体分为 3 个阶段:第一阶段为细粒斑 状锂白云母花岗岩 主要有泡水岭岩体 第二阶段为 中粗粒锂白云母花岗岩 ,与钨矿关系密切 ,并伴有锡 铌钽矿化 ,主要有牛栏岭、香檀岭、金竹源岩体等 ;第 三阶段为中细粒含锂云母钠长石花岗岩 ,呈钟乳状 突起 ,与锡钨铌钽矿关系密切 ,主要有老虎头、水溪 庙岩体。老虎头、水溪庙和金竹源除了长石-石英脉 型钨锡矿床、花岗伟晶岩脉型锡铌钽矿床外 ,主要锡 铌钽矿体呈厚薄不均的似层状或皮壳状产于岩体顶 部。林德松(1996)研究表明,栗木矿田内的花岗岩 体具有高的⁸⁷Sr/⁸⁶Sr初始比值和 8¹⁸O 值 ,属典型的 陆壳重熔型或 S 型花岗岩。

矿田内的花岗岩体侵入于寒武系、泥盆系、石炭 系中,大部分为隐伏岩体,沿 SN 向断裂或 SN 向与 NE 向断裂交汇部位侵入,呈岩株形式产出,出露面 积约为1.5 km²,据钻孔资料显示,深部侧隐岩体的 面积为8 km²左右(Li et al.,1989)。

目前,研究区内发现具有工业意义的内生金属

Fig. 1 Simplified geological map of the Limu deposit (modified after Qin, 2008)

1—Early Carboniferous ; 2—Upper Devonian ; 3—Middle Devonian ; 4—Early Devonian ; 5—Cambrian ; 6—Granite ; 7—Measured and inferred boundary ; 8—Angular discordance ; 9—Facies zone of granite ; 10—Fault and inferred ; 11—Deposit

矿床有:花岗岩型锡铌钽钨矿床、石英脉型钨锡矿 床、长石石英脉型锡钨矿床和花岗伟晶岩脉型钽铌 矿床4种类型(汪恕生等,2008)。金属矿物主要为 锡石、铌钽锰矿,其次有细晶石、钽金红石、黑钨矿、 黝锡矿、胶态锡石、毒砂、黄铁矿、磁黄铁矿等。脉石 矿物主要有石英、钠长石、锂云母、黄玉、微斜长石、 萤石以及氟磷锰矿、绢云母、碳酸盐等。

2 样品分析方法

本次研究的黄铁矿样品特征见表 1。其中,有分 布于老虎头、水溪庙、金竹源花岗岩中与锡石共生的 浸染状黄铁矿,也有产于大理岩中的牛栏岭黄铁矿-锡石-黝锡矿-石英脉中的黄铁矿。黄铁矿样品经人 工破碎、淘洗,在双目镜下挑纯,样品新鲜,纯度达 99%。黄铁矿流体包裹体氦、氩同位素分析在日本 东京大学研究生科学院地球化学实验室完成。测试 仪器为该实验室研制的改进型 VG-5400 稀有气体同 位素质谱计,这种改进型的质谱计,能分析低至 6× 10⁻¹⁶ cm³ STP 的氦气,获得高精度的³He/⁴He 比值。 质谱计由进样系统、纯化系统、分离系统和改进型 VG5400 质量分析仪 4 部分组成,³He 用 DALLY 倍 增器接收(在 5% 峰高处的分辨能力大于 550),⁴He 用高级法拉第杯接收(分辨率为 200),离子加速电压

 Table 1 Characteristics and location of samples for noble gas analysis

 样品号
 矿床
 采样位置
 样品描述

 LM4-1
 老虎头
 老虎头标高 345 m 地表,距高点 559 正东向 480 m
 黄铁矿呈浸染状分布于花岗岩中,浅黄铜色,他形-半自 形 粒径 1~3 mm

 LM6-1
 牛栏岭
 牛栏岭标高 250 m 地表,距高点 326 正南向 140 m
 产于大理岩中含黄铁矿石英脉,金属矿物除黄铁矿外,还 有黝锡矿、黄铜矿,偶见绿色孔雀石

表 1 惰性气体测试样品采集位置及样品特征

		100 111	
LM6-1	牛栏岭	牛栏岭标高 250 m 地表 距高点 326 正南向 140 m	产于大理岩中含黄铁矿石英脉,金属矿物除黄铁矿外,还 有黝锡矿、黄铜矿,偶见绿色孔雀石
LM7-1	水溪庙	水溪庙 PD-25 m 中段,距风井口约 100 m	黄铁矿-锡石呈浸染状分布于花岗岩中,他形-半自形 粒径 1~4 mm,同时还见有黑色黝锡矿
LM8-1	金竹源1	金竹源 PD-190 m 中段内 101 号线内	含黄铁矿石英脉产于花岗岩中,脉宽12 cm,金属矿物为黄铁矿-锡石-黝锡矿组合
LM8-2	金竹源2	金竹源 PD-190 m 中段内 101 号线内	黄铁矿呈团斑状、浸染状产于花岗岩中 ,见少量锡石

为 4.6 kV ,电子加速电压为 80 V ,推斥电压为 14 V ; Trap 电流 800 μ A ,工作标准为日本氦标准(HESJ), 其中 ,³He/⁴He =(2.908±0.034)×10⁻⁵。使用改进 型的 VG5400 质谱计 ,实现在超高真空环境下压碎 黄铁矿 释放流体包裹体中的气体 ,通过烘烤加热 , 去除大气中稀有气体影响 ,通过热 Ti-Zr 吸收剂从主 要气体组成中捕捉释放的稀有气体 ,活性炭冷阱在 液氮温度下吸收氩、氪和氙气体 ,经过第二次的 Ti-Zr 吸收和液氮温度下的活性炭冷阱和 SORB-AC 吸 气剂纯化 ,使用该实验室开发的计算机软件自动测 定氦元素的同位素比值。在低温冷却到 10⁵ K 时 ,氪 和氙元素被抑制 ,氩元素进入质谱计进行同位素比 值的测定(Hirochika et al. 2001)。

3 结果与讨论

由于成矿后地质过程仍很复杂,因此,在利用 氦、氩同位素示踪成矿流体来源的研究中 应对后生 过程中流体包裹体初始氦、氩同位素组成的影响作 出正确评估(胡瑞忠等,1997)。研究表明,矿物内的 He-Ar 主要有 3 种赋存状态:① 圈闭在流体包裹体 中;②封闭在矿物晶格中,由U+Th和K衰变而产 生的后生放射性成因 He 和 Ar; ③ 矿物表面吸附的 He和 Ar。Baptiste 等(1996)研究表明,黄铁矿具很 低的氦扩散系数,是保存氦的理想矿物。与氦相比, 氩在黄铁矿及其流体包裹体中的扩散系数更低 (Burnard et al., 1999;李延河等, 2001)。故黄铁矿 是研究成矿流体稀有气体同位素组成的理想寄主矿 物。流体包裹体被捕获后,寄主矿物黄铁矿晶格中 由 U、Th 衰变所产生的放射性成因⁴He 难以大量扩 散进入流体包裹体,且包裹体溶液中因 U、Th 含量 很低 由其衰变而产生的 4 He 的量很少(Hu et al., 1998)。Trull 等(1991)、Stuart 等(1994) Hu 等 (1998,2004)和 Burnard 等(1999)研究证明,用真空 压碎样品来提取稀有气体,矿物晶格内放射性成因 的⁴He和⁴⁰Ar并未释放出来。此外,黄铁矿中钾的 含量很低,因此,其中钾的衰变也不可能生成较可观 的⁴⁰Ar。黄铁矿中流体包裹体的⁴He和⁴⁰Ar 同位素组 成基本上可以代表其成矿流体的氦、氩同位素体系 (范世家等,2006)。

3.1 流体包裹体稀有气体同位素特征

3.1.1 He-Ar 同位素

前人的研究表明,热液流体中稀有气体可能有 3 种来源,而且不同来源气体的氦、氩同位素组成及其 特征比值具有显著差别(Simmons et al.,1987):① 大气饱和水(ASW),包括大气降水和海水,其典型的 He-Ar 同位素组成为: 3 He/ 4 He = 1 Ra(Ra 代表大气 He 的 3 He/ 4 He 比值,为 1.4 × 10⁻⁶), 40 Ar/ 36 Ar = 295.5 40 Ar* 4 He 比值,为 1.4 × 10⁻⁶), 40 Ar/ 36 Ar = 295.5 40 Ar* 4 He = 0.01, 38 Ar/ 36 Ar = 0.1880。② 地 壳物质放射性成因的 He 和 Ar, 3 He/ 4 He 特征比值为 0.01~0.05 Ra, 40 Ar/ 36 Ar > 29.5 40 Ar* 4 He 比值为 0.16~0.25。③ 地幔流体具有高³He 的特征, 3 He/ 4 He 比值的特征值一般为 6~9 Ra,陆下地幔相对较 低,为 6~7 Ra。 40 Ar/ 36 Ar > 40 000, 40 Ar* 4 He 比值 为 0.33~0.56(Simmons et al., 1987;胡瑞忠等, 1997)。

表 2 为栗木矿田内的黄铁矿中流体包裹体的惰 性气体同位素组成分析结果。从表中可以看出,矿 田中黄铁矿流体包裹体的⁴He 值介于(1.195~ 9.880)×10⁻⁶ ccSTP/g。³He/⁴He 比值为 0.14~ 0.97 Ra,其中老虎头、牛栏岭和金竹源的³He/⁴He 值 比较相近,为 0.14~0.22 Ra;水溪庙的³He/⁴He 值相 对较高,为 0.97 Ra。反映了老虎头、牛栏岭和金 竹源3个矿床在成矿流体演化过程中,以饱和大气

表 2 栗木矿田黄铁矿惰性气体同位素组成

Table 2	Noble gases	isotopic	components	of	pyrite in	Limu	area
---------	-------------	----------	------------	----	-----------	------	------

长口炉旦	矿床 -	u(B)/10 ⁻⁹ ccSTP/g					³ He/ ⁴ He		2051 (2251	
作中的病方		⁴ He	²⁰ Ne	³⁶ Ar	⁴⁰ Ar	⁸⁴ Kr	¹³² Xe	($ imes 10^{-6}$)		- ner - ne
LM4-1	老虎头	9880	0.962	2.380	2035	0.0606	0.00359	0.276 ± 0.0	012	9.671 ± 0.076
LM6-1	牛栏岭	1195	0.223	0.582	495	0.0169	0.00111	$0.200 \pm 0.$	08	9.733 ± 0.058
LM7-1	水溪庙	2027	0.196	0.528	331	0.0144	0.00134	$1.350~\pm~0.0$	025	9.718 ± 0.072
LM8-1	金竹源1	3730	0.605	1.314	1011	0.0367	0.00255	0.313 ± 0.0	012	9.748 ± 0.059
LM8-2	金竹源 2	5248	0.821	2.152	1196	0.0572	0.00319	0.195 ± 0.0	009	9.738 ± 0.061
样品编号	矿床	²¹ Ne	^{/22} Ne	³⁸ Ar/	^{′36} Ar	⁴⁰ Ar	/ ³⁶ Ar	$^{40}\mathrm{Ar}^{*}$ / $^{4}\mathrm{He}$	R/Ra	$^{40}\text{Ar}^*/10^{-9}$
LM4-1	老虎头	0.0315	± 0.0013	$0.18828 \pm$	0.00059	855.11	± 1.28	0.135	0.197	1331.998
LM6-1	牛栏岭	$0.033 \pm$	0.0014	$0.18821 \pm$	0.00075	850.83	\pm 1.48	0.270	0.143	323.300
LM7-1	水溪庙	0.0306	± 0.0012	$0.18878 \pm$	0.00061	627.52	\pm 1.57	0.087	0.965	175.376
LM8-1	金竹源1	0.0325	± 0.0011	$0.18976 \pm$	0.00071	769.41	± 2.78	0.167	0.224	622.774
LM8-2	金竹源 2	0.0307	± 0.0010	0.18831±	0.00051	555.98	± 0.82	0.107	0.139	560.561

注:⁴⁰Ar*为经过大气校正的放射性成因⁴⁰Ar,⁴⁰Ar*=³⁶Ar×(⁴⁰Ar/³⁶Ar-295.5)。

Fig. 2 3 He- 4 He diagram of ore-forming fluids in the Limu deposit (modified after Hu et al. , 1999)

水组分为主,加入有地壳物质放射性成因的 He,而 水溪庙则表现为地壳物质加入相对较少的特点。 ³⁸Ar/³⁶Ar 比值为0.18821~0.18878,平均0.18867, 与饱和大气水成分基本相同,也反映了与³He/⁴He 相似的特点。测试结果显示,广西栗木矿田的³He/ ⁴He 比值高于地壳流体的比值,而远远低于地幔流 体的比值,反映了成矿流体的主体来自饱和大气水 经地壳深循环,同时有深部地壳重熔岩浆脱气加入

到该流体中并与之混合。将该矿田成矿流体 He 同 位素的组成投在 3 He- 4 He 同位素演化图解(图 2)上, 投点均位于地壳与地幔之间的过渡带。其中,老虎 头、牛栏岭和金竹源 3 个矿床的 3 He/ 4 He 比值在 10-7 投影在图上偏向于地壳,显示老虎头、牛栏岭 和金竹源这3个矿床的成矿流体以饱和大气水和地 壳物质混合为主 :而水溪庙的³He/⁴He 比值在 10⁻⁶ , 投点在图上偏地幔组成一侧 推断水溪庙矿床的成 矿流体以饱和大气水为主,地壳物质混合相对较少, 可能有少量来自地幔流体。刘云华等(2006)对南岭 中段主要锡矿床的黄铁矿等进行了流体包裹体的 HesAr 同位素研究,认为南岭中段成矿流体与地幔 柱的活动有关,为地幔、地壳和大气水的混合产物。 蔡明海等(2004)对广西大厂锡多金属矿床的流体包 裹体的氦、氩同位素进行了测试 ,认为其成矿流体主 要为岩浆流体与地幔流体的混合产物 ,且有部分大 气水加入 ;晚期锑矿成矿流体则主要为岩浆流体与 大气水的混合物。华南锡多金属矿床多为地幔、地 壳和大气水的混合产物,而本区是以大气水和地壳 混合流体为主,可能有少量的地幔来源。

研究区 5 个样品的⁴⁰Ar 和³⁶Ar 值分别为(0.331 ~2.035)×10⁻⁶ ccSTP/g 和(0.528~2.380)×10⁻⁹ ccSTP/g,两者相差 3 个数量级。⁴⁰Ar/³⁶Ar 比值为 555.98~855.11,平均 705.55。溶解在雨水中的大 气氩的同位素组成⁴⁰Ar/³⁶Ar 比值为 295.5。显然, 该矿田成矿流体的⁴⁰Ar/³⁶Ar 值大大低于地幔(⁴⁰Ar/ ³⁶Ar>40 000)流体的⁴⁰Ar/³⁶Ar 比值,反映出早期成 矿流体中有大量的大气水的加入。老虎头、牛栏岭

Fig. 4 $^{3}{\rm He}/^{4}{\rm He}$ versus $^{40}{\rm Ar}^{*}/^{4}{\rm He}$ diagram of ore-forming fluids in the Limu deposit modified after Hu et al. , 1997)

和金竹源 3 个矿床在³He/⁴He-⁴⁰Ar/³⁶Ar 图(图 3)和 ³He/⁴He-⁴⁰Ar*/⁴He 图(图 4)上的投影点偏向于地 壳组成,表明其成矿流体组成主要为大气水和壳源 流体。而水溪庙矿床在³He/⁴He-⁴⁰Ar/³⁶Ar(图 3)图 和³He/⁴He-⁴⁰Ar*/⁴He 图(图 4)上的投影点偏向于 地幔流体,说明水溪庙矿床成矿流体的主体来自于 地壳流体和大气水,可能有少量地幔物质的加入。 这个结论与该矿田成矿流体在³He-⁴He 同位素演化 图解(图 2)上得出的结论是一致的。

矿田成矿流体的⁴⁰ Ar*/⁴He 比值为 0.08~0.27,平均值 0.153(⁴⁰Ar*为经过大气校正的放射性成因⁴⁰Ar) 其中 老虎头、水溪庙和金竹源 3 个矿区

的⁴⁰Ar*/⁴He 值接近一致,而牛栏岭的⁴⁰Ar*/⁴He 值 相对较高(为 0.270),反映了在成矿流体演化过程 中,有深部岩浆脱气加入到地壳流体中,并与之混 合,反映出与 He 同位素相同的成因信息。总体上, 该矿田成矿流体的⁴⁰Ar*/⁴He 值高于雨水的该值(约 0.01) Stuart et al.,1995),介于地壳流体(0.16~ 0.25) Stuart et al.,1995)与地幔流体(0.33~ 0.56) 胡瑞忠等,1999)之间,为地壳流体和深部岩 浆脱气共同作用的结果。

由于 He 在大气中的含量极低,不足以对流体中 He 的丰度和同位素组成产生明显影响(Stuart et al.,1995),因此,成矿流体中的 He 主要有地幔和地 壳 2 个可能的来源。根据简单二元混合模式,应用 下面公式计算出成矿流体中幔源 He 所占比例:

地幔 He=(R-Rc)(Rm-Rc)

其中,Rm、Re、R 分别代表地幔流体、地壳流体 以及样品的³He/⁴He值,Rm、Rc 分别取 6 Ra 和 0.01 Ra,求得流体包裹体中地幔 He 所占成矿流体的比例 为 2.2%~15.9%。水溪庙矿床流体包裹体中地幔 He 的比例最高,为 15.9%。计算是在只考虑地壳和 地幔 2 个来源的个例情况下,而未考虑大气水的加 入,因此只能做个参考。但由此也可以看出,水溪庙 矿床成矿流体地幔物质的加入较其他 3 个矿床的可 能性要大。

3.1.2 Ne 同位素

不同来源 Ne 具有不同的同位素组成:大气中 ²⁰Ne/²²Ne 为 9.80、²¹Ne/²²Ne 为 0.029;地壳中 ²⁰Ne/²²Ne和²¹Ne/²²Ne分别为0~0.3和0.1~0.47; 原始(太阳风)²⁰Ne/²²Ne 和²¹Ne/²²Ne分别为13.5~ 14.0和0.0305~0.034;地幔流体的²⁰Ne/²²Ne和 ²¹Ne/²²Ne分别为9.80~13.2和0.058~0.068 (Hilton et al., 2002)。栗木矿田5个样品的 $\alpha(^{20}Ne)$ 为(0.196~0.962)×10⁻⁹ ccSTP/g, ²⁰Ne/²²Ne和²¹Ne/²²Ne 值变化范围较小,分别为 9.671~9.748和0.0306~0.0330;²⁰Ne/²²Ne平均值 9.722;²¹Ne/²²Ne平均值0.0317,与相应的大气值 9.80和0.029基本一致,低于地幔流体端员同位素 组成,具有饱和大气水的Ne同位素比值特征。在 ²⁰Ne/²²Ne-²¹Ne/²²Ne图(图5)上,所有样品均落在大 气范围附近,路偏向于地壳Ne的演化曲线。

3.2 流体包裹体稳定同位素

前人的数据表明,老虎头、金竹源和水溪庙矿床 的锶同位素(伍勤生等,1983;甘晓春等,1991;林德松,

4	0	3
	o	~

表 3 米不如 田氢氧同位系组成								
Table 3 Oxygen and hydrogen isotope compositions of Limu area								
样品编号	位置	测定对象	形成温度/℃	δ ¹⁸ O矿岩/‰	$\delta^{18}O_{H_2O} / \%$	δD _{H2} 0∕‰	资料来源	
L-N-2γB	牛栏岭	石英	600	12.01	10.46	-	章锦统 ,1989	
87-1	水溪庙	石英	600	10.87	9.32	-66.0	谢世业 ,1988	
87-2	水溪庙	石英	600	10.96	9.41	-68.8	谢世业 ,1988	
G16-2	金竹源1	石英	650	10.96	9.96	- 53.9	林德松 ,1996	
C 10 2	全価酒っ	石苗	540	10.16	e 22	- 61 0	林海松 1006	

图 5 栗木矿田成矿流体²⁰Ne/²²Ne²¹Ne/²²Ne 图解 (据 Hilton et al., 2002 修改) Fig. 5 ²⁰Ne/²²Ne versus ²¹Ne/²²Ne of ore-forming fluid of Limu area (modified after Hilton et al., 2002)

1996 》⁷Sr/⁸⁶Sr初始值均高于 0.7076 ,且变化范围较 大(0.7439~0.8307)。

由老虎头、牛栏岭、水溪庙和金竹源矿床的氢、 氧同位素(表3),可以看出,含矿岩体的 $\delta^{18}O_{H_2O}$ 值为 $8.32\% \sim 10.46\%$,这一数值范围略低于张理刚 (1985)划分的钨锡系列花岗岩初始混合岩浆水的 $\delta^{18}O$ 值($8.5\% \sim 12.5\%$)。从氢同位素组成来看,栗 木矿田石英包裹体水的 δ D 值在 $-53.9\% \sim$ -68.8%这些数值在正常岩浆水范围内($-40\% \sim$ -80%)。上述研究均表明,栗木矿田成矿流体主要 是由地壳岩石的重熔改造形成的。

本次惰性气体示踪研究显示,大气水经地壳深 部循环、地壳重熔改造、花岗岩浆活动,形成了该矿 田的成矿流体,其主要为大气水和地壳物质的混合 流体,而可能只在水溪庙有少量地幔源的加入。这 与上述稳定同位素得出的结论是一致的。

4 结 论

本次惰性气体同位素研究表明,广西栗木矿田 黄铁矿流体包裹体的³He/⁴He 比值为 0.14~0.97 Ra,接近大气饱和水,并与地壳流体的比值在相同的 数量级上,而远远低于地幔源流体的值。⁴⁰Ar/³⁶Ar 比值为 555.98~855 11,平均 705.55,显然偏离大 气氩的同位素组成。⁴⁰Ar*/⁴He 比值为 0.08~ 0.27,平均值为 0.153。²⁰Ne/²²Ne=9.671~9.748 和²¹Ne/²²Ne=0.0306~0.0330。

本次研究结果显示,老虎头、牛栏岭和金竹源矿 床的 He-Ar 同位素组成基本一致,指示它们具有统 一的流体来源,应为同期成矿作用的产物,成矿流体 主要为大气水和地壳源流体的混合流体;水溪庙矿 床的成矿流体也主要为大气水和壳源流体的混合流 体,但可能有少量地幔流体的加入。这与前人对该 矿田的研究结果为地壳重熔花岗岩型钨锡稀有金属 矿床是一致的。大气水经地壳深部循环、地壳重熔 改造、花岗岩浆活动,形成了栗木矿田的成矿流体, 其主要为大气水和地壳物质的混合流体。

志 谢 桂林矿产研究院栗木项目组邓贵安教 授级高工、林德松高工、何政才高工、吴开华高工、栗 木矿朱晓波总经理、冯飞龙总工、申树德高工等在野 外工作中给予了大力支持,审稿专家提出了宝贵的 修改意见,在此一并表示衷心的感谢。

参考文献/References

- 蔡明海,毛景文,梁 婷,吴付新. 2004. 广西大厂锡多金属矿床氦、 氩同位素特征及其地质意义[J]. 矿床地质,23(2)225-231.
- 曹瑞欣. 2009. 广西栗木水溪庙矿化花岗岩特征及岩体成因研究(硕 士论文 [D]. 导师: デ光生. 北京:中国地质大学. 5-10.

陈儒庆 袁奎荣. 1988. 栗木-圆石山地区花岗岩浆的地质流变学特 征和侵位定位环境 []. 桂林冶金地质学院学报 & (4):367-377.

范世家,王安建,刘汉斌,修群业,曹殿华,李瑞萍,高 辉,陈其慎.

2006. 论兰坪盆地白秧坪铜(钴)矿床成因的氦氩同位素证据 [J].地质论评 *5*6(5) :628-635.

- 丰成友 余宏全 涨德全 李大新 李进文 崖艳合. 2006. 青海驼路沟 铉(金)矿床成矿物质来源的黄铁矿氦氩硫铅同位素示踪[J]. 地 质学报 80(9):1465-1473.
- 甘晓春 沈渭洲 朱金初. 1991. 广西栗木水溪庙矿床同位素地质研 究 J] 南京大学学报(地球科学)(1):48-55.
- 胡瑞忠,毕献武,Turner G,Burnard PG. 1997. 马厂箐矿床黄铁矿流 体包裹体 He-Ar 同位素体系[J]. 中国科学(D辑) 27 503-508.
- 胡瑞忠,毕献武,Turner G. 1999. 哀牢山金矿带金成矿流体 He 和 Ar 同位素地球化学[J]. 中国科学 29(4) 321-330.
- 李人科 潘其云. 1994. 广西恭城栗木钨锡稀有金属矿区发现史[J]. 广西地质 *,*(4):85-88.
- 李延河,李金城,宋鹤彬,郭立鹤,2001.中国东部新生代玄武岩中幔 源包体和高压巨晶的氦同位素研究[J].中国科学(D辑),(31) 8 :641-647.
- 林德松,王开选. 1987. 栗木矿田花岗岩型锡矿床成矿特征[J]. 矿产 与地质,1(2):1-9.
- 林德松,王开选. 1988. 栗木矿田花岗岩中氟磷锰矿的研究[J]. 矿产 与地质 众2)54-58.
- 林德松. 1996. 华南富钽花岗岩矿床[M]. 北京:地质出版社. 97-107.
- 刘云华,付建明,龙宝林,魏君奇,刘国庆,杨晓君,杨永强. 2006. 南 岭中段主要锡矿床 He, Ar 同位素组成及其意义[J]. 吉林大学学 报(地球科版),36(5):774-780.
- 马锦龙 陶明信. 2002.稀有气体同位素地球化学研究进展 J].地球 学报 23(5):471-476.
- 史明魁 孙恭安. 1981. 广西栗木稀有金属花岗岩的岩石学和地球化○ 学特征 J]. 宜昌地质矿产研究所所刊 3:96-107.
- 覃宗光,姚锦其. 2008. 广西栗木锡铌钽矿床中氟的作用及地表找矿 评价标志[J]. 矿产与地质 22(1):1-5.
- 覃宗光 邓贵安 ,董业才 ,吴开华,林德松. 2011. 栗木矿田鱼菜花岗 岩型锡钨矿麻 J]. 矿产与地质 25(1):1-8.
- 唐章焕. 1991. 水溪庙花岗岩型锡矿床地质特征与成矿规律[J]. 西 南矿产地质 〔2):29-33,49.
- 汪恕生 张启钻 覃宗光 王 玲. 2008, 广西栗木花岗岩型锡铌钽矿 床地质特征及控矿因素 J] 大众科技 (11)11-112.
- 王先彬. 1989. 稀有气体同位素地球化学和宇宙化学[M]. 北京 科 学出版社. 451.
- 伍勤生,许俊珍,林天根,徐信根, 1983. 磷灰石中锶同位素地球化学 特征及其应用的研究[J].中国科学,7 53-55.
- 谢世业. 1988. 广西栗木花岗岩型锡矿床地质地球化学特征及成矿 机理研究 硕士论文 [D]. 导师:黄有德. 桂林:中国有色金属 工业总公司矿产地质研究院.
- 徐启东 涨锦统. 1988. 广西栗木稀有金属花岗岩的稀土元素配分模 式及其意义[J]. 地球科学 ,13(2):187-193.
- 杨 锋 李晓峰 冯佐海,白艳萍. 2009. 栗木锡矿云英岩化花岗岩白云 母⁴⁰Ar/³⁹Ar年龄及其地质意义[J] 桂林工学院学报 29(1)21-24.
- 章锦统.1989. 广西栗木铌、钽、钨、锡矿床. 南岭地区与中生代花岗 岩有关的有色及稀有金属矿床地质[M]. 北京:地质出版社. 130-140.
- 张理刚. 1985. 稳定同位素在地质科学中的应用[M]. 西安:陕西科

学出版社. 152-185.

- 周凤英 朱金初 汪汝成 熊小林. 1995. 水溪庙花岗伟晶岩脉的成因 研究 J]. 南京大学学报 31(4):641-648.
- 朱金初,李人科,周凤英,王汝成,熊小林,许红忠.1996. 广西栗木水 溪庙不对称层状伟晶岩-细晶岩岩脉的成因讨论[J]. 地球化学, 25(1):1-9.
- Baptiste P J and Fouquet Y. 1996. Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13°N [J]. Geochim Cosmochim Acta, 60:87-93.
- Burnard P G ,Hu R Z ,Turner G and Bi X W. 1999. Mantle , crustal and atmosphere noble gases in Ailaoshan gold deposit , Yunnan Province , Ching J J. Geochim. Cosmochimica Acta , 63 :1595-1604.
- Hilton D R , Fischer T P and Marty B. 2002. Noble gases and volatile recycling at subduction zones A . In : Porcelli et al. , ed. Noble gases in geochemistry and cosmochemistry , reviews in mineralogy & geochemistry C . vol 47 , 319-370.
- Hirochika S, Keisuke N and Kenji N. 2001. Highly sensitive and precise measurement of helium isotopes using a mass spectrometer with Double collector system[J]. Technical Reporter , 49(2).
- Hu R Z , Burnard P G , Turner G and Bi X W. 1998. Helium and argon isotope systematic in fluid inclusions of Machangqing copper deposit in west Yunnan Province , Ching J]. Chem. Geol. , 146 : 55-63.
- Hu R Z , Burnard P G , Bi X W , Zhou M F , Peng J T , Su W C and Wu K X. 2004. Helium and argon isotope geoc hem istry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt , SW Ching J J. Chem. Geo1. , 203 305-317.
- Kennedy B M and Soest M C. 2006. A helium isotope perspective on the Dixie Valley ,Nevada ,hydrothermal system[J]. Geothermics , 35 : 26-43.
- Li R K and Zhu J C. 1989. Tin bearing granite and vertical zonation of Limu tin deposit J. Rare metal granitiod , Abstracts.
- Simmons S F , Sawkins F J and Schlutter D J. 1987. Mantle-derivedhelium in two Peruvian hydrothermal ore deposits[J]. Nature , 329 : 429-432.
- Stuart F, Turner G and Taylor R. 1994. He-Ar isotope systematics of fluid inclusions: Resolving mantle and crustal contributions to hydrothermal fluid A J. In : Noble gas geochemistry and cosmochemistry [C]. Tokyo: Terra Scientific Publishing Company, 261-277.
- Stuart F M , Bunard P G , Taylor R P and Turner G. 1995. Resolving mantle and crustal contributions to ancient hydrothermal fluids :He-Ar isotopes in fluid inclutions from Dae Hwa W-Mo mineralizatiou [M]. South Korea , 59 :4663-4673.
- Trull T W , Kurz M D and Jenkins W J. 1991. Diffusion of cosmogenic ³He in olivine and quartz : Implications for surface exposure dating [J]. Earth Planet Sci. Lett. , 103 : 241-256.
- Xu Q D and Xia W Z. 1992. Petrogenetic peculiarities of rare-metal granite of Limu, Guangx[J]. Journal of China University of Geosciences, 3(1):63-70.
- Zartman R E , Wasserburg G J and Reynods J H. 1961. Helium , argonand carbon in some natural gases J J. Journal of Geophysical Research , 66 277-306.