DOi:10.16111/j.0258_7106.2016.05.003
新疆西天山松湖铁矿床火山岩年代学和岩石地球化学
段士刚1,2,张作衡3,蒋宗胜2,李凤鸣4,任毅5,肖燕洪5,史维鑫 6

(1 中国地质科学院矿产资源研究所 国土资源部成矿作用与资源评价重点实验室, 北京100037; 2 长安大学地球科学与资源学院, 陕西 西安710054; 3 中国地质科 学院, 北京100037; 4 新疆维吾尔自治区地质矿产勘查开发局, 新疆 乌鲁木齐 830000; 5 新疆地质矿产勘查开发局第七地质大队, 新疆 乌苏833300; 6 国土资 源实物地质资 料中心,河北 燕郊065201)

第一作者简介段士刚, 男, 1983年生, 博士, 副研究员, 主要从事矿床学与矿床地 球化学研究。 Email: dsg1102231@163.com

收稿日期2015_08_23;

改回日期2016_06_23

本文得到国家重点基础研究发展计划(编号: 2012CB416803)、国家自然科学基金项目 (编号: 41203035)、地质矿产调查评价项目(编号:12120113090301)和国家科技支撑 计划(编号: 2011BAB06B02)联合资助

摘要:新疆西天山阿吾拉勒铁成矿带内众多铁矿床的围岩火山岩时代、岩石 成因和构造背 景迄今尚未得到很好地约束。文章对该铁成矿带内的松湖铁矿床围岩粗面英安岩和流纹岩进 行了锆石LA_ICP_MS U_Pb测年和地球化学研究。粗面英安岩和流纹岩的锆石206P b/238U加权平均年龄分别为(326.8±2.7) Ma和(327.3±1.7) Ma。粗面英安 岩和流纹岩准铝质,均富集轻稀土元素、Rb、K、Zr、Hf,显示中等Eu负异常,亏损Ba、Sr 、P、Ta、Nb和Ti。锆石饱和温度计算结果显示,粗面英安岩的母岩浆温度较高(774~812 ℃,平均792℃),流纹岩母岩浆的温度较低(713~790℃,平均750℃)。粗面英安岩 具有非常低Sr高Yb的特征,Nb/Ta比值为10.8~11.4,具有较高的w(Th)(≥8 .1×10-6)和高的Th/Ce比值(≥0.31);流纹岩具有低Sr低Yb特征,Nb/Ta比值 为 8.5~9.7,w(Th)(≥5.3×10-6)较高,Th/Ce比值为0.14~0.75,据 此推测粗面英安岩 母岩浆可能是上地壳部分熔融的产物,流纹岩母岩浆可能源 于比粗面英安岩母岩浆更深的地壳的部分熔融。松湖铁矿区粗面英安岩和流纹岩具有弧火山 岩的地球化学特征,结合构造环境判别图解和区域地质情况,推断其形成于大陆弧环境。
关键词: 地球化学;锆石LA_ICP_MS U_Pb测年;海相火山岩型铁矿;松湖铁矿 ;西天山
文章编号: 0258_7106 (2016) 05_0913_20 中图分类号: P618.31  文献标志码: A 
Geochronology and rock geochemistry of volcanic rocks from Songhu iron deposit 
in West Tianshan Mountains, Xinjiang 
DUAN ShiGang1,2, ZHANG ZuoHeng3, JIANG ZongSheng2, LI FengMing4, REN Yi5, XIAO YanHong5 
and SHI WeiXin6

(1 MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Minera l Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 2 Co llege of Earth Science and Land Resources, Chang’an University,Xi’an 710054, Shaanxi, China; 3 Chinese Academy of Geological Sciences, Beijing 100037, Chin a; 4 Xinjiang Bureau of Geology and Mineral Resources, Urumqi 830000, Xinjiang, China; 5 No. 7 Geological Party, Xinjiang Bureau of Geology and Mineral Resource s, Wusu 833300, Xin_ jiang, China; 6 Cores and Samples Center of Land and Resources, China Geological Survey, Yanjiao 065201, Hebei, China)

Abstract:The Awulale Iron Metallogenic Belt (AIMB) in West Tianshan Mountains hosts huge amounts of rich iron ore deposits. However, the age, genesis and tectonic settin g of the wall rocks of these rich iron ore deposits have been poorly known. This paper reports the zircon LA_ICP_MS U_Pb dating result and rock geochemistry of the trachydacite and rhyolite which host the Songhu rich iron orebodies in the A IMB. The weighted average age of 206Pb/238U for trachydacite and rhyolite is (326.8±2.7) Ma and (327.3±1.7) Ma, respectively. Both the trachydacite and rhyolite are metaluminous, rich in light REE, Rb, K, Zr, Hf, b ut display medium Eu negative anomaly and strong depletion of Ba, Sr, P, Ta, Nb and Ti. The zircon saturat ion temperature calculation shows high temperatures (774℃ to 812℃, averagely 7 92℃) for the parent magma of trachydacite, but low temperatures (713℃ to 7 90℃, averagely 750℃) for that of rhyolite. The trachydacite is characterized by very low Sr content but high Yb content with Nb/Ta ratio between 10.8 to 11 .4, high Th content (≥8.1×10-6) and Th/Ce ratio (≥0.31). The rhyoli te has features of low Sr and Yb content, Nb/Ta ratio between 8.5 to 9.7, high Th content (≥5.3×10-6), and Th/Ce ratio between 0.14 to 0.75. Based on the above evidence, it is held that the parent magma for trachydacite originated from partial melti ng of the upper crust, which was deeper than the parent magma of the trachydacit e. The trachydacite and rhyolite in the Songhu iron deposit have geochemical cha racteristics similar to those of volcanic arcs. In combination with results from tectonic environment discrimination diagrams and other regional geological fact s, the authors consider that there existed a continental arc setting for the for mation of trachydacite and rhyolite.
Key words: geochemistry, zircon LA_ICP_MS U_Pb dating, marine volcanic s_hosted iron deposit, Songhu iron deposit, West Tianshan Mounains 
        中国铁矿资源丰富,但富矿资源严重短缺,危及国家资源安全。近年来在新疆西天山阿吾拉 勒铁成矿带内探明不少规模大、富矿比例高的铁矿床,使阿吾拉勒铁矿带成为中国供应富铁 矿石的选区之一。阿吾拉勒铁成矿带已入选中国十大重要金属矿产资源接替基地(张作衡等 ,2012),其内的代表性矿床有备战铁矿、敦德铁矿、智博铁矿和查岗诺尔铁矿等4个大型 矿床,松湖、式可布台、阿克萨依、铁木里克、穹库尔及雾岭等多个中_小型铁矿床(张作 衡等,2012;王春龙等,2012;陈杰等,2014;段士刚等,2014a;2014b;王大川等,2014 ;郑仁乔等,2014;田敬等,2015)。这些铁矿床赋存在石炭纪的一套火山岩或火山碎屑 岩中。根据岩性对比,其中大部分矿床的围岩被划分为下石炭统大哈拉军山组,少数被划分 为上石炭统依什基里克组。然而,最新研究表明,一些矿床围岩存在时代划分错误,如被划 分为大哈拉军山组的备战铁矿和敦德铁矿围岩火山岩锆石U_Pb测年分别得到304 Ma和316 Ma 的 年龄(Zhang et al., 2012a; Duan et al., 2014)。这印证了前人关于区域上“ 大哈拉军 山组"火山岩的推测,即其不仅包括了中泥盆世至早石炭世的火山岩,也包括有晚石炭世的 火山岩,需要重新进行厘定(朱永峰等,2005;2006a;2006b;翟伟等,2006;安芳等,20 08)。因此,对阿吾拉勒铁成矿带内各典型矿床的火山岩进行锆石U_Pb测年具有重要 意义, 是准确确定各铁矿床围岩火山岩时代的重要证据。松湖铁矿是阿吾拉勒铁成矿带内一处中型 铁矿床,前人对该矿床开展了矿床地质特征分析(王军年等,2009;王春龙,2012)、矿物 化学和稳定同位素组成(单强等,2009;王春龙,2012;朱维娜,2014)、矿石稀土 和微量 元素示踪(王春龙等,2012)及流体包裹体显微测温(王春龙,2012)等研究,但未见矿床 围 岩年代学研究的报道。
本文对松湖铁矿床围岩火山岩进行了锆石LA_ICP_MS U_Pb测年与主量 元素、稀土和微量元素地球化学特征研究,并浅析了这些研究结果在成岩成矿时代、岩石成 因及大地构造背景等方面的指示意义。
1区域地质背景
        阿吾拉勒铁成矿带位于新疆西天山伊犁地块之内,松湖铁矿床位于该铁成矿带的中部(图1 )。伊犁地块具有太古宙和古元古界结晶基底(Krner et al., 2007),晚古生代早期伊 犁地块南北分别为南天山洋和北天山洋所俯冲(Gao et al., 2009; Long et al., 2011) 。南天山洋在泥盆纪末至早石炭世末期间逐渐闭合,塔里木板块与伊犁地块发生碰撞。北天 山洋在晚石炭世末闭合,从早二叠世开始整个西天山地区进入后碰撞演化阶段(Allen et a l. , 1992; Windley et al., 1990; 王强等,2006; Wang et al., 2007; Gao et al., 2009 )。阿吾拉勒铁成矿带出露的岩石地层有:中元古界星星峡群基底变质岩石,主要 为大理岩、黑云母斜长片麻岩和角闪二长片麻岩;志
图 1西天山区域地质简图(据王大川等,2014)
1—中—新生界; 2—二叠系; 3—石炭系; 4—泥盆系; 5—早古生界; 6—前寒武系; 7—花 岗岩类; 8—高压增生楔; 9—蛇绿岩; 
10—地质界线; 11—断层; 12—铁矿床; 13—国 界
YB—伊犁地块; NTA—北天山弧增生体; NMYB—伊犁地块北缘活动陆缘; SMYB—伊犁地块南 缘活动陆缘; CT—中天山复合弧地体; 
NTM—塔里木北部陆缘; ①—天山北缘断裂带; ② —尼古拉耶夫线—那拉提北坡断裂; ③—中天山南断裂
Fig. 1Simplified geological map of West Tianshan Mountains (modified after Wan g et al., 2014)
1—Meso_Cenozoic; 2—Permian; 3—Carboniferous; 4—Devonian; 5—Early Paleozoic; 6—Precambrian; 7—Granitoids; 8—High pressure 
accretionary wedge; 9—Ophio lite; 10—Geological boundary; 11—Fault; 12—Iron ore deposit; 13—Border
YB—Yili Block; NTA—North Tianshan Accretionary Wedge; NMYB—Northern Active Co ntinental Margin of Yili Block; SMYB—Southern Active Continental Margin of Yili Block; CT—Central Tianshan Arc Terrane; NTM—Northern margin of Tarim Block; ①—North Tianshan Suture; 
②—Nikolaev Line_North Nalati Suture; ③—So uth Central Tianshan Suture    
        留系主要为一套碳酸盐岩_火山岩建造;中泥盆 统为一套海相火山碎屑岩建造夹少量正常碎屑沉积岩,上泥盆统为一套滨海_海陆交替 相火山岩、陆源碎屑岩和碳酸盐岩建造;石炭系为区内铁矿围岩,分布最广泛,被划分为下 石炭统大哈拉军山组的一套海相火山喷发_沉积碎屑岩夹碳酸盐岩建造,和上石炭统伊什基 里克组的一套局部夹正常沉积岩和灰岩的火山角砾岩、凝灰岩和熔岩;下二叠统为一套正常 陆源碎屑沉积岩;下_中三叠系为一套紫红色陆源碎屑岩;侏罗系主要为砾岩、砂岩夹碳质 泥岩及煤层(栾新东等,2008;李永军等,2009a;2009b;冯金星等,2010)。
阿吾拉勒铁成矿带断裂构造十分发育,最显著的断裂是呈北西西走向的大断裂及其两侧发育 的一系列近于平行的断裂,共同构成了近东西向或北西西向的断裂带。此外北东向和北西向 断裂在区内分布也十分广泛,它们往往错断北西西向的大断裂,形成菱形的构造格局(张玄 杰等,2011)。与区域主要构造形迹相关,阿吾拉勒山的褶皱构造轴迹方向亦为近东西向, 规模较大的褶皱以开阔褶皱为主,规模较小的以同斜褶皱为特征(冯金星等,2010)。
阿吾拉勒山侵入岩比较发育,空间上以中部(查岗诺尔铁矿及以西地区)分布最为广泛,向 东西两侧减弱;时代上从东向西由泥盆纪为主,到石炭纪为主,再到二叠纪侵入岩为主。东 部主要为泥盆纪石英闪长岩,石炭纪花岗岩、花岗闪长岩、闪长岩及石英闪长岩,二叠纪花 岗岩等;中部主要为大面积的二叠纪花岗岩、闪长岩和石英闪长岩,少量二长花岗岩、正长 花岗岩,及少量石炭系闪长岩、花岗闪长岩(李永军等,2007; 杨高学等,2008;Zhang et al., 2012a; 蒋宗胜等,2012);西部主要为二叠纪花岗斑岩、闪长玢岩、闪长岩和少量 辉绿岩、埃达克质钠长斑岩(Zhao et al., 2008)
2矿床地质和样品特征
        松湖铁矿区出露一套火山岩_火山碎屑岩_碳酸盐岩组合,被划分为下石炭统大哈拉军山组第 二岩性段。区域上该岩性段北与大哈拉军山组第一岩性段整合或断层接触,南与上石炭统伊 什基里克组断层接触。该岩性段在松湖矿区表现为单斜地层,倾向南西,倾角变化于60~ 85°,主要由流纹岩、粗面英安岩、熔结凝灰岩、含角砾凝灰岩、凝灰质砂岩、钙质粉砂岩 和夹层状灰岩组成,不同岩性间为整合接触(图2)。该岩性段火山碎屑物以紫红色、灰紫 色为主,中上部层序中含火山角砾,上部熔结凝灰岩中熔结结构发育,表明火山作用发育于 陆相或浅海相环境(王春龙,2012)。矿区未见任何侵入岩。构造主要表现为断裂,褶皱不 发育,断裂以NWW向、EW向逆断层为主,与区域主要构造线方向一致,断层可能为成矿后 形 成,但断距规模不大,对矿体错动不明显,对矿体和围岩岩石稳定性有较大破坏作用;NE向 左行正断层为次,在成矿期后形成,与矿体有一定距离;矿区内还发育大量成矿期后节理裂 隙,规模较小,对矿体无明显破坏。
松湖铁矿矿体在地表有露头,主要圈定L1和L2两个铁矿体(图2),矿体与围岩界线清晰, 直接围岩为凝灰质砂岩和凝灰质粉砂岩。矿体北部下盘岩性由凝灰质砂岩、粗面英安岩和少 量流纹岩组成,矿体南部上盘由凝灰质砂岩、钙质砂岩、钙质粉砂岩、灰岩、含角砾凝灰岩 和流纹岩组成。矿体形态为层状矿脉,中间厚,边缘薄,发育膨大收缩、分支复合现象(图 3,图4a),与围岩层理整合产出或小角度斜切围岩层理。矿体围岩蚀变根据产出特征可分 为2种,一种是紧紧围绕矿体、在矿体两侧仅2 m范围以 内发育并且在矿体中也有同种矿物发育的蚀变,呈
图 2新疆西天山松湖铁矿地质图(据王春龙, 2012)
1—第四系; 2—流纹岩; 3—灰紫色含角砾凝灰岩; 4—灰绿色凝灰质砂岩; 5—粗面英安岩 ; 6—矿体; 7—地质界线; 8—实测与推测断层; 
9—勘探线及编号; 10—样品位置及 编号
Fig. 2Geological map of the Songhu iron deposit (modified after Wang, 2012) 
1—Quaternary; 2—Rhyolite; 3—Grayish purple breccia_contained tuff; 4—Gray ish green tuffaceous sandstone; 5—Trachydacite; 
6—Orebody; 7—Geological boundary; 8—Measured and inferred fault; 9—Exploration line and its serial n umber; 
10—Sampling location and its serial number    
图 3松湖铁矿A_A′勘探线剖面图(修改自王春龙, 2012)
1—流纹岩; 2—含角砾岩屑晶屑凝灰岩; 3—凝灰质砂岩; 4—粗面英安岩; 5—灰岩; 6— 矿体; 7—产状; 8—探槽及编号; 9—钻孔及编号Fig. 3Geological profile of A-A′ of the Songhu iron deposit 
(modified afte r Wang, 2012)
1—Rhyolite; 2—Breccia_contained lithic crystal tuff; 3—Tuffaceous sandstone ; 4—Trachydacite; 5—Limestone; 6—Orebody; 7—Atti_
tude; 8—Trench and its serial number; 9—Drill hole and its serial number     
        条带状出现,主要为钾长石化、绿帘石化和阳起石化;另一种是范围稍大、在矿 体两侧几十米以内不规则 出现的蚀变,在矿体内同种矿物可呈条带状与矿体平行出现,或者 呈细脉状或细网脉状叠加在矿体上,主要为绿泥石化、方解石化和局部的硅化。矿石主要有 块状(图4b)、条带状(图4c)和团块状(图4d)3种构造,另外还有角砾状、脉状、浸染状磁铁 矿化。矿物主要为半自形、他形粒状结构,另外碎裂结构、交代结构等也很发育。 金属矿物主要为磁铁矿 ,其次为赤铁矿、黄铁矿、黄铜矿;脉石矿物主要为钾长石、绿泥石、方解石、绿帘石、石 英、阳起石和绢云母。
本次研究的粗面英安岩样品采自矿体北部山顶,距离矿体约100 m,样品大致位于同一火山 岩层位,自西向东平均间隔约20 m;流纹岩样品采自矿体南部平台,样品位于不同层位,从 距 离矿体约60 m开始取样,样品自北向南平均间隔约15 m。本次采集的粗面英安岩样品呈深灰 紫 色(图4e),斑状结构(图4f),块状构造,斑晶主要由石英(约30%)、钾长石(约60%)、斜 长石(约6%) 和极少量角闪石组成,斑晶均有不同程度的熔蚀,是以含钾长石为主的钾质粗面英安岩,基 质为隐晶质,岩石发育轻度碳酸盐化蚀变。流纹岩样品呈灰紫色(颜色比粗面英安岩浅) (图4b),斑状结构(图4h),块状构造,斑晶由石英(约50%)、钾长石(约15%)、斜 长石(约35%)组成,基质由微晶_隐晶质长石和石英组成,岩石已轻度碳酸盐化。
3测试方法和测试结果
3.1测试方法
        火山岩样品经破碎后,采用常规重力和磁选方法分选出锆石,进行制靶,然后对锆石进行透 射光和反射光显微照相以及阴极发光图像分析,选取适宜的测试点位。锆石U_Th_Pb同位素 分析在中国地质大学(北京)科学研究院LA_ICP_MS实验室完成,所用仪器为连接New Wave 193ss激光剥蚀系统的Agilent 7500a型质谱仪。激光剥蚀束斑直径为36 μm,可控激光能量 8.5 J/cm2,采集时间为45 s,以He为载气,流量为0.8 L/min。激光剥蚀方式为单点方 式, 激光器工作频率为10 Hz。电感耦合等离子体质谱仪的冷却气为氮气,流量为15 L/min,辅 助器为氩气,流量为1.15 L/min。仪器短期稳定性RSD(相对标准偏差)<2.8%,长期稳定 性 RSD<5%。年龄计算以标准锆石91500(Wiedenbeck, 1995)为外标进行同位素比值分馏校正 ,TEMORA标样(417Ma)作为整个测试和计算过程的标样。同位素比值和元素含量的计算采 用Glitter(ver.4.4)软件。利用ISOPLOT程序(Ludwig, 2003)获得协和年龄和图解。
火山岩样品的主量、微量和稀土元素分析在中国地质科学院国家地质测试中心完成。先将样 品无污染粉碎至200目,主量元素SiO2、Al2O3、TFe2O3、Na2O、K2O、C aO、MgO、TiO2、MnO、P2O5等采用荧光光谱(XRF)法在X荧光光谱仪(3080E)上测 试(RSD<2%~8%),FeO采用滴定法分析(RSD<10%),CO2含量采用硫酸汞溶液加热释气 法 (RSD<8%),H2O+采用双球管灼烧冷凝水称重法(RSD<8%),LOI为高温加热后重量和 灼烧后重量之差(RSD<5%)。微量和稀土元素组成采用电感耦合等离子体质谱(ICP_MS)法 在离子质谱仪(X_series)上测试(RSD<2%~10%)。
3.2测试结果
3.2.1锆石LA_ICP_MS U_Pb测年结果
        松湖铁矿粗面英安岩和流纹岩典型锆石阴极发光图像见图5,锆石LA_ICP_MS U_Pb测试结果 见表1。粗面英安岩样品(12SH_32)锆石半自形到自形,
图 4新疆西天山松湖铁矿典型火山岩手标本和显微照片
a. 松湖铁矿体野外照片(拍摄方向面向东); b. 块状矿石; c. 条带状矿石; d. 团块 状矿石; e. 粗面英安岩; f. 粗面英安岩斑状结构, 斑晶 由石英、钾长石和斜长石组成 (+); g. 流纹岩; h. 流纹岩斑状结构,斑晶由石英、斜长石和钾长石组成(+)K_f—钾长石; Pl—斜长石; Qtz—石英
Fig. 4Representative photos and photomicrographs of volcanic rocks from the So nghu iron ore deposit
a. Field photo of the Songhu L1 orebody (facing east); b. Massive ore; c. Banded ore; d. Taxitic ore; e. Hand sample of trachydacite; f. Porphyritic texture of trachydacite with phenocrysts composed of mainly quartz, K.feldspar and plagiocl ase(+); g. Hand sample of rhyolite; h. Por_phyritic texture of rhyolit e with phenocrysts composed of mainly quartz, plagioclase and K_feldspar(+)K_f—Potassium feldspar; Pl—Plagioclase; Qtz—Quartz    
    
    

图 5松湖铁矿岩浆岩部分锆石阴极发光(CL)图像及测试位置
Fig. 5Some cathodoluminescence (CL) images of selected zircons from lava sampl es of the Songhu iron deposit    
图 6松湖铁矿火山熔岩锆石U_Pb谐和图
Fig. 6U_Pb concordia diagram of zircons from lava samples of the Songhu iron d eposit    
        粒状到短柱状,粒径一般40~100 μm,少数>100 μm,震荡环带发育(图5a),w(T h)=62.87× 10-6~614 .04×10-6w(U)=76.06× 10-6~447.82×10-6,Th/U= 0.66~1.64(表1),具有岩浆锆石的特点。18个分析点的206Pb/23 8U表面年龄在322~332 Ma之间,年龄十分集中,加权平均值为(326.8±2.7) Ma(MSWD =0.15)(图6a),认为该加权平均值代表了粗面英安岩的结晶年龄。
流纹岩样品(12SH_36)锆石半自形到自形,粒状到短柱状,粒径一般50~100 μm,震荡环 带发育(图5b),w(Th)=39.06×10-6~127.99×10-6, w(U)=93.31× 10-6~93.31×10-6,Th/U=0.42~ 0.71(表1),具有岩浆锆石的特点。32个分析点的206Pb/238U 表面年龄在324~329 Ma之间,年龄相当集中,32个点的加权平均值为(327.3±1.7) Ma( MSWD=0.061)(图6b),认为该加权平均值代表了流纹岩的结晶年龄。
3.2.2主量元素和微量元素测试结果
        松湖铁矿粗面英安岩和流纹岩主量、微量和稀土元素分析结果见表2。粗面英安岩 w(SiO2)在64.99%~68.97%之间,富铝和钾,w(Al2O3)在14.17%~ 15.00%之间,w(K2O)在6.32%~8.45%之间,K2O/Na2O在2.11~6 .76之间,在硅 碱图解中投影在粗面英安岩范围内(图7)。A/CNK在0.86~1.07之间,准铝质,AR= 3.3 1~4.46,σ=3.6~4.5,属于钾玄岩系列(图7)。粗面英安岩轻稀土元素富集(LREE /HREE = 3.56~3.90),显示Eu负异常,δEu=0.51~0 .63,在球粒陨石标准化配分图解中(图8),轻稀土元素部分显示很弱的分馏,呈 右倾型式分布,重稀土元素近似平坦。原始地幔标
   表 2松湖铁矿火山岩主量元素和微量元素组成
Table 2Major element and trace element compositions of volcanic rocks from the Songhu iron deposit 
图 7松湖铁矿火山岩硅_碱图解(a;Le Bas et al., 1986; 虚线为碱性和亚碱性系列分 界线,据Irvine and Baragar, 1971),SiO2_K2O图解(b;实线据Peccerillo and Taylor, 1976; 虚线据Middlemost, 1985),AFM图解(c)和A/CNK_A/NK图解(d)
●—粗面英安岩; ▲—流纹岩
Fig. 7Total alkali_silica diagram (a;after Le Bas et al., 1986) and dividing l ine for alkaline and sub_alkaline rocks (dashed line; after Irvine and Baragar, 1971),the subalkaline rocks further classification using the K2O_SiO2 diagr am (b;solid line after Pecceril_lo and Taylor, 1976; dashed line after Middlemost, 1985), AFM (c) and A/CNK_A/NK diagram (d)●—Trachydacite; ▲—Rhyolite     
        准化微量元素蛛网图显示,粗面英安岩富集Rb、 K、轻稀土(La、Ce、Nd、Sm)、Zr、Hf等元素,显示Ba、Th、U、Ta、Nb、Sr、P、Ti的负 异常。
流纹岩的w(SiO2)在73.72%~79.57%之间,w(Al2O3) 在9.61%~1 2.89%之间,w(Na2O+K2O)在3.80%~6.23%之间。A/CNK在0.73~1.25之 间,3个样品准铝质,2个样品过铝质,AR=1.74~2.70,σ=0.46~1.19,属于钙 碱性岩 石,在SiO2_K2O图解中投影于钙碱性系列和低钾(拉斑)系列分界线附近,在AFM图解 中显示钙碱性岩石系列特征(图7)。流纹岩稀土总量变化范围稍大,ΣREE=21.12×10 -6~96.52×10-6,轻稀土元素富集,LREE/HREE=2.77~8.59,具Eu负异常 ,δEu=0.49~0.67,在球粒陨石标准化配分图解中(图8),轻稀土元素呈 明显的右倾型式分布,重稀土元素近似平坦。原始地幔标准化微量元素蛛网图显示,流纹岩 富集Rb、Th、U、K、轻稀土元素(La、Ce、Nd、Sm)、Zr、Hf,显示Ba、Ta、Nb、Sr、P、T i负异常。
4讨论
4.1火山岩形成时代的厘定及其对成矿时限的约束
锆石LA_ICP_MS U_Pb同位素测年结果表明,
图 8松湖铁矿火山岩稀土元素球粒陨石标准化配分图(a. 粗面英安岩; b. 流纹岩) 和原 始地幔标准化的微量元素蛛网
图(c. 粗面英安岩;d. 流纹岩; 标准值自Sun et al., 19 89) 
Fig. 8Chondrite_normalized REE distribution patterns (a. Trachydacite; b. Ryho lite) and primitive mantle_normalized trace 
element spider diagram (c. Trachyd acite; d. Rhyolite) (after Sun et al., 1989) of volcanic rocks from 
the Songhu iron deposit    
        松湖铁矿围岩粗面英安岩年龄为(326.8±2.7) Ma,流纹岩年龄为(327.3±1.7) Ma,火山岩地层在早石炭世晚期喷发形成,证明将松湖 铁矿区火山岩地层划分为下石炭统大哈拉军山组是正确的。前人从西天山下石炭统大哈拉军 山组中识别出中晚泥盆世火山岩和晚石炭世火山岩(朱永峰等,2005;2006a;2006b;翟伟 等,2006;安芳等,2008;Duan et al., 2014), 说明在西天山地区有部分火山岩地层被 错误的 划分为大哈拉军山组。这可能与火山岩地区岩性和岩相变化快、火山喷发岩厚度变化大、缺 乏统一标志层等有关,导致岩性地层对比容易产生错误。大哈拉军山组创名的原始剖面有明 确的上、下不整合面和大量早石炭世中期化石证据支持(蔡土赐等,1999),因此笔者不同 意大哈拉军山组“需要解体"的提法,正确的表述应是目前西天山地区的大哈拉军山组中存 在 时代划分错误的火山岩地层,需要识别出来。在阿吾拉勒山,早石炭世火山岩地层岩石主要 显示紫红色、红色、黑色,而晚石炭世火山岩主要显示绿色、灰绿色、灰白色,表明两者形 成环境有所不同。例如,在阔尔库河谷地层剖面,下石炭统大哈拉军山组主要由一套紫色、 灰黑色玄武岩_安山岩及同质火山碎屑岩和紫灰色、褐色流纹质、英安质熔结晶屑玻屑凝灰 岩组成,其上被下石炭统阿克沙克组一套浅海相碎屑岩及碳酸盐岩角度不整合覆盖,阿克沙 克组之上又被依什基里克组的一套灰绿色安山岩、英安岩及及同质火山碎屑岩角度不整合覆 盖(李永军等,2009a);智博铁矿区出露下石炭统紫红色安山岩,锆石LA_ICP_MS U_Pb年 龄为(328.7±2.1) Ma(蒋宗胜,2014);敦德铁矿围岩为一套灰绿色玄 武安山质凝灰岩和浅灰绿色英安岩,英安岩锆石 LA_ICP_MS U_Pb年龄为(316.0±1.7) Ma(Duan et al., 2014) 。阿吾拉勒山从下石炭统到上石炭统火山岩地层颜色的系统性变化,可能与区内从早石炭世 到晚石炭 世古水深的整体变化有关。因此,岩石颜色可以近似作为区分阿吾拉勒山地区石炭系火山岩 时代的一种手段。
        关于松湖铁矿的成因,存在火山喷流沉积型(王军年等,2009;单强等,2009)和海相火山 热液型(王春龙,2012;朱维娜,2014)的争议。如果松湖铁矿为火山喷流沉积成因,那么 松湖铁矿年龄应介于上、下盘火山岩围岩年龄之间,即在327 Ma左右。如果松湖铁矿为后生 的火山热液型铁矿,那么它的年龄应晚于327 Ma。笔者根据以下几点推断松湖铁矿为 后生热液矿床 :松湖铁矿体并非完全顺层发育,而是小角度穿切围岩层理,这在Fe2号矿体表现更为明显 ,因此具有后生矿床的特点;矿体两侧均发育强烈蚀变,且蚀变具有很好的分带性,出现阳 起石、绿帘石等矽卡岩蚀变矿物;流体包裹体显微测温结果显示,石英中原生气液两相包裹 体均一温度集中在200~240℃,最高达355℃(王春龙,2012),而围岩显示紫红色、形成 于 滨浅海相环境,这种温度的成矿流体在滨浅海环境会因沸腾而无法成矿,因此不可能发生喷 流沉积成矿;围岩凝灰质砂岩、砂屑灰岩、钙质粉砂岩和粉晶_鲕粒灰岩发育粒序层理、水 平层理和波纹状斜层理,凝灰质砂岩粒度较粗,粉晶_鲕粒灰岩中同心鲕、放射鲕、变形鲕 共生,表明沉积环境为能量较强、水体动荡的环境,并非形成于一个宁静的盆地内,与喷流 沉积型矿床要求的盆地中静海和低能环境不一致,因此围岩岩相不支持喷流沉积成矿观点。 松湖铁矿火山岩年龄对确定松湖铁矿年龄有一定的限定意义。所以,松湖铁矿应该在327 Ma 之后形成。
        阿吾拉勒铁矿带铁矿床具有诸多相似性,成矿 可能与同一地质事件有关(Zhang et al., 20 12b),因此成矿时代可能会比较接近。洪为等(2012)对查岗诺尔矿区的石榴子石进行了S m_Nd同位素等时线测年,获得(316±7) Ma的等时线年龄,张喜(2013)在查岗诺尔铁矿获 得蚀变岩全岩矿物Sm_Nd等时线年龄为(313±7) Ma。对于智博铁矿,Zhang等(2012a)认为 (320.3±2.5) Ma的花岗岩脉切断了智博矿区15号铁矿体,但Duan等(2014)认为,智博 矿 区铁矿中的花岗岩类岩脉有2种,一种为早于矿化的花岗岩脉,特点是其内发育绿帘石脉, 并且暗色矿物(黑云母或角闪石)均已绿泥石化,对应于Zhang等(2012a)的(320.3±2. 5) Ma的花岗岩脉;另一种为晚于矿化的花岗斑岩脉和闪长岩脉,蚀变不发育,其中花岗斑 岩脉 为斑状结构,斑晶为酸性长石,基质微晶质,可能对应于Zhang等(2012a)的(294.5±1. 6) Ma的花岗岩脉,而闪长岩脉锆石LA_ICP_MS U_Pb年龄为(305.0±1.1) Ma(蒋宗胜等,20 12)。因此,Duan等(2014)推测智博铁矿矿化年龄在320~305 Ma之间。该推测受到了蒋 宗胜 (2 014)在智博铁矿开展的榍石LA_ICP_MS原位U_Pb测年结果的支持。蒋宗胜(2014)获得智博 铁矿榍石LA_ICP_MS U_Pb同位素年龄分别为(310.0±2.1) Ma、(310.6±2.6) Ma、(315 .2± 2.8) Ma。雾岭铁矿体产在闪长岩接触带,闪长岩锆石LA_ICP_MS U_Pb年龄为(307.7±0. 8) Ma(段士刚等,2014b),可以代表雾岭铁矿的年龄。最近,笔者在备战铁矿挑选了5件 自形 粗粒黄铁矿进行Re_Os同位素测年,获得5个近似相等的Re_Os模式年龄,为302.4~305.3 Ma,加 权平均年龄为(303.7±1.6 Ma)(尚未发表)。综上可见,阿吾拉勒铁矿带内铁矿成矿时 代集中在晚石炭世。因此,有理由认为松湖铁矿亦在晚石炭世成矿。
4.2岩石成因和构造背景探讨
        中酸性火山岩成因模式主要有如下2种:一是基性岩浆的分离结晶或基性岩石的部分熔融, 通常基性母岩浆经过90%的分离结晶作用才能形成一定量的酸性岩浆;二是玄武质岩浆底侵 导致地壳岩石部分熔融(孟凡超等,2010)。松湖铁矿粗面英安岩和流纹岩产于发育在伊 犁地块之上的火山弧环境(后文有论述),与大量酸性火山物质共生,粗面英安岩发育角闪 石斑晶,准铝质。锆石饱和温度计算表明,形成粗面英安岩的母岩浆具有较高温度(774_81 2℃,平均792℃),这种较高温度花岗岩浆的形成可能与幔源岩浆底侵有关(Miller et al., 2003; Sun et al., 2008);形成流纹岩的母岩浆具有较低温度(713~790℃ ,平均750℃),这种富含继承锆石的低温岩浆被认为源区存在流体的参与(Miller et al ., 2003)。
花岗岩质岩石的Sr、Yb地球化学特征可大概指示花岗质岩浆形成时的压力条件(张旗等,20 06)。粗面英安岩具有非常低Sr高Yb(w(Sr)<100×10-6w(Yb) >2×10-6)的特征,表明岩浆形成的压力较低,深度较浅(<15 km);流纹岩一个 样品为非常低Sr高Yb型(样品12SH37),其他样品为低Sr低Yb型(w(Sr)<120×1 0-6w(Yb)<2×10-6),表明岩浆在中等压力或更低压力下形成( 可能≤30 km)(张旗等,2006)。
元素Nb和Ta电价相同,离子半径相近,在岩浆演化过程中具有相似的地球化学行为,Nb/Ta 比值相当稳定。源于地幔的岩浆熔体Nb/Ta比值为17.5 ± 2.0(Hofmann, 1988; Dostal et al., 2000),大陆地壳和源于大陆地壳的岩浆熔体Nb/Ta的比值明显变低,约为11(Taylo r et al., 1985; Green, 1995;单强等,2011)。松湖铁矿区粗面英安岩和流纹岩Nb/Ta比 值分别为10.8~11.4和8.5~9.7,与大陆地壳Nb/Ta比值非常接近,指示成岩物质主要来 源于 地壳。粗面英安岩与流纹岩在稀土元素球粒陨石标准化配分图和原始地幔标准化的微量元素 蛛网图中不同的变化趋势(图8),暗示两者可能为不同物质熔融的产物。粗面英安岩具有 较高的Th含量(≥8.1×10-6)和高的Th/Ce比值(≥0.31),与上地壳Th/Ce比 值≥0.2一致(Kerrich et al., 1999),表明粗面英安岩母岩浆可能是上地壳部分熔融 的 产物。流纹岩母岩浆可能源于比粗面英安岩母岩浆更深的地壳的部分熔融。在查岗诺尔铁矿 ,相近时代 的流纹岩与大量安山岩和少量玄武岩共生,流纹岩与玄武岩在地球化学特征和Sr、Nd同位素 组成方面均不一致,流纹岩εNd(t)=1.75~2.07,初始Sr同位素( 87Sr/86Sr)i=0.7089~ 0.7163,汪帮耀等(2011)认为玄武岩、安山 岩、流纹岩来自不同的源区。流纹岩正εNd(t)值特点与中亚造山带显生宙 花岗岩相似,具有“初生"特点(Jahn et al., 2000),可能源于新生玄武质地壳的 部分熔融。因此,松湖粗面英安岩和流纹岩可能由玄武质岩浆底侵作用下 的上、中地壳岩石不同程度的部分熔融 形成。酸性岩浆在形成过程中地壳混染和分离结晶是 常见现象(孟凡超等,2010)。但松湖粗面英安岩和流纹岩在 部分熔融-结晶分离曲线上分 别构成一条较好的斜线(图9),结合二者源区的中、低压特征,指示平衡部分熔融作用在 二者形成中具有重要作用。粗面英安岩和流纹岩亏损Sr、Ba,显示中等Eu负异常,可能暗示 源区有斜长石残留或经历过斜长石结晶分离;Ti、Nb、Ta的亏损表明有富钛矿物相(如金红 石和/或钛铁矿)在源区残留或结晶分离。
松湖铁矿粗面英安岩和流纹岩在w(CaO)_w(TFeO+MgO) 构造环境判别图解 (Maniar et al., 1989)中投影在岛弧、大陆弧和大陆碰撞花岗岩范围内,在Rb/10_Hf_Ta ×3构造环境判别图解(Harris et al., 1986)中落在火山弧花岗岩范围内,在Pearce等( 1984)的Y_Nb和Yb_Ta构造环境判别图解中位于火山弧花岗岩范围内(图10)。结合阿吾拉 勒山位于伊犁地块之内的地质事实,
本文认为松湖地区下石炭统大哈拉军山组火山岩形成于大陆弧环境。
图 9松湖铁矿火山岩平衡部分熔融作用判别曲线
(据赵振华等,1997)
●—粗面英安岩; ▲—流纹岩
Fig. 9Curve of balanced partial melting volcanic rocks
from the Songhu iron deposit(after Zhao et al., 1997)
●—Trachydacite; ▲—Rhyolite    
        该认识 与许多研究阿吾拉勒铁铜成矿带的学者研究结论一致(李永军等,2007; Zhu et al., 200 9;汪帮耀等, 2011;蒋宗胜,2014)。
大哈拉军山组火山岩形成于大陆弧环境的认识与西天山地区诸多地质现象吻合。例如,西天 山地区大哈拉军山组火山岩石地球化学普遍富集大离子亲石元素和轻稀土元素,亏损Nb、Ta 、Zr和Hf等高场强元素,显示火山弧岩浆岩地球化学特征,并在一系列构造环境判别图解中 投影在火山弧范围内(孙林华等,2007;安芳等,2008;Zhu et al., 2009;段士刚,2011 ;汪帮耀等,2011;蒋宗胜,2014);在北部的阿拉套山艾比湖一带发育正常岛弧安山岩_ 英安岩_流纹岩组合和320 Ma的埃达克岩_高镁安山岩_富Nb玄武质岩组合(Wang et al., 20 07);在伊犁地块南、北缘均保留有证明古缝合线存在的早石炭世蛇绿岩套,如南缘的欧西 达坂蛇绿岩中辉长岩的Ar_Ar坪年龄331 Ma(王学潮等,1995),黑英山阿尔滕卡什组硅质 岩 中发现大量早石炭世放射虫化石(Liu, 2001),证明早石炭世南天山洋盆仍然存在(高俊 等,2006)。伊犁地块北缘也发现有蛇绿岩,其中巴音沟蛇绿混杂岩中堆晶辉 长岩年龄为34 4 Ma(徐学义等,2006a),斜长花岗岩年龄为325 Ma(徐学义等,2006b),硅质岩中发现 大量早石炭世放射虫化石(肖序常等,1992),可能是向伊犁微陆块之下俯冲的北天山洋存在 的证据(高俊等,2009)。
图 10松湖火山岩w(CaO)_w(TFeO+MgO)(a, 据Maniar et al., 1989)、Rb/10_ Hf_Ta×3(b, 据Harris et al., 1986)、
Y_Nb(c)和Yb_Ta(d, 据Pearce et al., 1984)构造 环境判别图解
●—粗面英安岩; ▲—流纹岩
Fig. 10w(CaO)_w(TFeO+MgO) (a,Maniar et al., 1989), Rb/10_Hf_T a×3 (b,Harris et al., 1986), Y_Nb(c) 
and Yb_Ta geotectonic discrimination d iagrams (d,Pearce et al., 1984) for volcanic rocks from the Songhu iron deposit 
●—Trachydacite; ▲—Rhyolite    
因此,西天山地区大哈拉军山组火山岩可能在统一的大陆弧环境下形成。尽管目前关于大哈 拉军山组火山岩形成的大地构造背景也存在裂谷(车自成等,1996; Xia et al., 2004; 20 08)、碰撞后(韩宝福等,2004; 王京彬和徐新,2006)、与地幔柱有关(夏林圻等,2004 )等其他不同观点,但本研究支持被更多学者所接受的火山弧环境(Windley et al., 1990 ; Gao et al., 1998; 2009; Xiao et al., 2008; 左国朝等,2008)的认识。
5结论
(1) 新疆西天山阿吾拉勒铁成矿带内松湖铁矿床矿体两侧粗面英安岩和流纹岩锆石LA_ICP _MS U_Pb年龄分别为(326.8±2.7) Ma和(327.3±1.7) Ma,揭示其形成于早石炭世晚期 ,将松 湖铁矿区火山岩地层划分为下石炭统大哈拉军山组是正确的。结合矿床地质特征分析和区内 其他铁矿测年结果,推测松湖铁矿床在晚石炭世成矿。
(2) 锆石饱和温度计算结果和Sr、Yb、Nb、Ta、Th、Ce等元素特征显示,松湖铁矿区粗面 英安岩母岩浆可能是上地壳部分熔融的产物,流纹岩母岩浆可能源于比粗面英安岩母岩浆更 深的地壳的部分熔融。
(3) 松湖铁矿区粗面英安岩和流纹岩具有弧火 山岩的地球化学特征,结合构造环境判别图解和区 域地质情况,推断其形成于大陆弧环境。
志谢在野外工作中得到了新疆第三地质大队石福品总工程师的帮助,在此表示 衷心的感谢!感谢2位审稿人对
本文的评论和提出的修改意见。
参考文献
Allen M B, Windley B F and Zhang C. 1992. Palaeozoic collisional tectoni cs and m agmatism of the Chinese Tien Shan, central Asia[J]. Tectonophysics, 220: 89_11 5.
An F and Zhu Y F. 2008. Study on trace elements geochemistry and SHRIMP chronolo gy of volcanic rocks in Tulasu Basin, Northwest Tianshan[J]. Acta Petrologica Sinica, 24(12): 2741_2748 (in Chinese with English abstract).
Cai T C, Sun Q L, Miao C Q, et al. 1999. Stratigraphy (Lithostratic) of Xinjiang Uygur Autonomous Region[M].Wuhan: China University of Geosciences Press.143_ 317 (in Chinese).
Che Z C, Liu L, Liu H F and Luo J H. 1996. Review on the Ancient Yili Rift, Xinj iang, China[J]. Acta Petrologica Sinica, 12: 478_490 (in Chinese with English abstract).
Chen J, Duan S G, Zhang Z H, Luo G, Jiang Z S, Luo W J, Wang D C and Zheng R Q. 2 014. Geology, mineral chemistry and sulfur isotope geochemistry of the Shikebuta i iron deposit in West Tianshan mountains, Xinjiang: Constraints on genesis of t he deposit[J]. Geology in China, 41(6): 1833_1852(in Chinese with English abstract).
Dostal J and Chatterjee A K. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ra tios in a peraluminous granitic pluton (Nova Scotia, Canada) [J]. Chemical Geo logy, 163(1_4): 207_218.
Duan S G. 2011. Regional metallogenic regularity and prospecting direction of sa ilimu micro_massif, western Tianshan, China (dissertation for doctor degree)[D ]. Supervisor: Xue C J. Beijing: China University of Geoscience.1_192 (in Chinese with English abstract).
Duan S G, Zhang Z H, Jiang Z S, Zhao J, Zhang Y P, Li F M and Tian J Q. 2014. Ge ology, geochemistry, and geochronology of the Dunde iron_zinc ore deposit in wes tern Tianshan, China[J]. Ore Geology Reviews, 57: 441_461.
Duan S G, Dong M H, Zhang Z H, Jiang Z S and Li F M. 2014a. A laser ablation ICP MS analysis of elements of magnetite from the Dunde iron deposit in western Tia nshan, Xinjiang Province: Constraints on genesis of the deposit[J]. Mineral De posits, 33(6): 1325_1337 (in Chinese with English abstract).
Duan S G, Zhang Z H, Wei M Y, Tian J Q, Jiang Z S, Li F M, Zhao J and Wang H F. 2014b. Geochemistry and zircon U_Pb geochronology of the diorite associated with the Wuling iron deposit in western Tianshan mountains, Xinjiang[J]. Geology i n China, 41(6): 1757_1770(in Chinese with English abstract).
Feng J X, Shi F P, Wang B Y , Hu J M, Wang J T and Tian J Q. 2010. Volcanogenic iron deposits in the Awulale metallogenic belt in western Tianshan[M]. Beijing : Geological Publishing House. 16_112 (in Chinese).
Gao J, Li M S, Xiao X C, Tang Y Q and He G Q. 1998. Paleozoic tectonic evolution of the Tianshan orogen, northwestern China[J]. Tectonophysics, 287: 213_231. 
Gao J, Long L L, Qian Q, Huang D Z, Su W and Klemd R. 2006. South Tianshan: A la t e Paleozoic or a Triassic orogen[J]? Aeta Petrologica Sinica, 22(5): 1049_1061 (in Chinese with English abstract).
Gao J, Qian Q, Long L L, Zhang X, Li J L and Su W. 2009. Accretionary orogenic p rocess of western Tianshan, China[J]. Geological Bulletin of China, 28:1804_1 816 (in Chinese with English abstract).
Gao J, Long L L, Klemd R, Qian Q, Liu D Y, Xiong X M, Su W, Liu W, Wang Y T and Yang F Q. 2009. Tectonic evolution of the South Tianshan orogen and adjacent reg ions, NW China: Geochemical and age constraints of granitoid rocks [J]. Intern ational Journal of Earth Sciences, 98: 1221_1238.
Green T H. 1995. Significance of Nb /Ta as an indicator of geochemical processes in the crust_mantle system [J]. Chemical Geology, 120(3_4) : 347_359.
Han B F, He G Q, Wu T R and Li H M. 2004. Zircon U_Pb dating and geochemical fea tures of early Paleozoic granites from Tianshan, Xinjiang: Implications for tect onic evolution[J]. Xinjiang Geology,22(1): 4_11 (in Chinese with English abst ract).
Harris N B W, Pearce J A and Tindle A G. 1986. Geochemical characteristics of co llision_zone magmatism [A]. In: Coward M P and Reis A C,eds. Collision tecton ics [C]. Special Publications, Geological Society of London. 67_81.
Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship betwe en mantle, continental crust, and ceanic crust[J]. Earth and Planetary Scienc e Letters, 90(3): 297_314.
Hong W, Zhang Z H, Li H Q, Li F M and Liu X Z. 2012. Metallogenic epoch of Chaga ngnuoer iron deposit in western Tianshan mountains, Xinjiang: Information for ga rnet Sm_Nd isochron age[J]. Mineral Deposits, 31(5):1067_1074 (in Chinese wi th English abstract).
Irvine T N and Baragar W R A. 1971. A guide to the chemical classification of th e common volcanic rocks[J]. Canadian Journal of Earth Science, 8: 523_548.
Jahn B M, Wu F, Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91:181_193.
Jiang Z S, Zhang Z H, Wang Z H, Li F M and Tian J Q. 2012. Alteration mineralogy , mineral chemistry and genesis of the Zhibo iron deposit in western Tianshan mo untains, Xinjiang[J]. Mineral Deposits, 31(5): 1051_1066 (in Chinese with Engl ish abstract).
Jiang Z S. 2014. Carboniferous volcanism and Fe mineralization at the Zhibo iron deposit in the western Tianshan (dissertation for doctor degree)[D]. Supervis or : Zhang Z H. Beijing:Chinese Academy of Geological Sciences.1_154 (in Chinese wi th English abstract).
Kerrich R, Wyman A P D and Hollings P. 1999. Trace element systematics of Mg_, t o Fe_tholeiitic basalt suites of the Superior Province: Implications for Archean mantle reservoirs and greenstone belt genesis[J]. Lithos, 46(1) : 163_187.
Krner A, Windley B F, Badarch G, Tomurtogoo O, Hegner E, Jahn B M, Gruschka S, Khain E V, Demoux A and Dingate M T D. 2007. Accretionary growth and crust forma tion in the central Asian orogenic belt and comparison with the Arabian_Nubian s hield[J]. Geological Society of America Memoirs, 200: 181_209.
Le Bas M J, Le Maitre R W, Streckeisen A and Zanettin B. 1986. A chemical classi fication of volcanic rocks based on the total alkali_silica diagram [J]. Jou rnal of Petrology ,27: 745_750.
Li Y J, Yang G X, Guo W J, Bi M B, Luan X D, Li Z C, Li H and Tong L M. 2007. Th e disintegration and geological significance of the Kuoerku granite batholiths i n Awulale, western Tianshan[J]. Xinjiang Geology, 25(3):233_236(in Chinese wit h English abstract).
Li Y J, Li Z C, Zhou J B, Gao Z H, Gao Y L, Tong L M and Liu J. 2009a. Division of the Carboniferous lithostratigraphic units in Awulale area, wetern Tianshan[ J ]. Acta Petrologica Sinica, 25(6):1332_1340(in Chinese with English abstract). 
Li Y J, Gao Y L, Tong L L, Guo W J and Tong L M. 2009b. Tempestite of Akeshake F ormation in Awulale Area, western Tianshan and its significance[J]. Earth Scie nce Frontiers, 16: 341_348 (in Chinese with English abstract).
Liu Y. 2001. Early carboniferous radiolarian fauna from Heiyingshan, south of th e Tianshan mountains and its geotectonic significance [J]. Acta Geologica Sini ca, 75(1): 101_108.
Long L L, Gao J, Klemd R, Beier C, Qian Q, Zhang X, Wang J B and Jiang T. 2011. Geochemical and geochronological studies of granitoid rocks from the western Tia nshan Orogen: Implications for continental growth in the southwestern Central As ian Orogenic Belt[J]. Lithos, 126: 321_340.
Luan X D, Zhang B, Gao Y L, Yang J Q and Li Y J. 2008. New materials of stratigr aphic classification and correlation of the carboniferous in Awulale area, weste rn Tianshan[J]. Xinjiang Geology, 26(3): 231_235 (in Chinese with English abst ract).
Ludwig K R. 2003. User s manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center, Special Publication, 4: 3 7_41.
Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids[J] . Geological Society of American Bulletin, 101:635_643.
Meng F C, Liu J Q, Li M, Liu X, Yin C H, Lu J M and Cui Y. 2010. Geochemistry an d tectonic implications of rhyolites from Yincheng Formation in Xujiaweizi, Song liao Basin[J]. Acta Petrologica Sinica, 26(1): 227_241(in Chinese with English abstract).
Middlemost E A K. 1985. Magmas and Magmatic Rocks[M]. London: Longman.266.
Miller C F, McDowell S M and Mapes R W. 2003. Hot and cold granites: Implica tion s of zircon saturation temperatures and preservation of inheritance[J]. Geolo gy, 31(6): 529_532.
Pearce J A, Harris N B W and Tindle A G. 1984. Trace element discrimination diag rams for the tectonic interpretation of granitic rocks[J]. Journal of Petr ology, 25: 956_983.
Peccerillo R and Taylor S R. 1976. Geochemistry of Eocene calc_alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contribution to Mineralog y and Petrology, 58: 63_81.
Shan Q, Zhang B, Luo Y, Zhou C P, Yu, X Y, Zeng Q S, Yang W B and Niu H C. 2009. Characteristics and trace element geochemistry of pyrite from the Songhu iron d eposit, Nilek County, Xinjiang, China[J]. Acta Petrologica Sinica, 25(6): 1456 _1464 (in Chinese with English abstract).
Shan Q, Zeng Q S, Luo Y, Yang W B, Zhang H, Qiu Y Z and Yu X Y. 2011. SHRIMP U_P b ages and petrology studies on the potassic and sodic rhyolites in Altai, North Xinjiang[J]. Acta Petrologica Sinica, 27(12): 3653_3665 (in Chinese with Eng lish abstract).
Sun L H, Peng T P and Wang Y J. 2007. Geochemical characteristics of basaltic an desites from Dahalajunshan Formation, Southeastern Tekesi (Xinjiang): Petrogenes is and its tectonic significance[J]. Geotectonica et Metallogenia, 31(3): 372 _379 (in Chinese with English abstract).
Sun L H, Wang Y J, Fan W M and Zi J W. 2008. Post_collisional potassic magmatism in the Southern Awulale Mountain, western Tianshan Orogen: Petrogenetic and tec tonic implications[J]. Gondwana Research, 14: 383_394.
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic ba salts: implication for mantle composition and process[J]. Geological Socie ty, London, Special Publications, 42:313_345,
Taylor S R and Mc Lennan S M. 1985. The continental crust: Its composition and e volution [M]. Oxford, UK: Blackwell.1_312.
Tian J Q, Duan S G, Peng W L, Li M, Jiang Z S and Yan R. 2015. Geochemistry of v olcanic and intrusive rocks in Zhibo iron ore deposit of western Tianshan mounta ins[J]. Mineral Deposits, 34(1) : 119_138 (in Chinese with English abstract). 
Wang B Y, Hu X J, Wang J T, Shao Q H, Ling J L, Guo N X, Zhao Y F, Xia Z D and J iang C Y. 2011. Geological characteristics and genesis of Chagangnur iron deposi t in western Tianshan, Xinjiang[J]. Mineral Deposits, 30: 385_402 (in Chin ese with English abstract).
Wang B Y and Jiang C Y. 2011. Petrogenesis and geochemical characteristics of Ca rboniferous volcanic rocks of Chagangnur iorn deposit area in western Tianshan, Xinjiang[J]. Geological Science and Technology Information, 30(6):18_27 (in C hinese with English abstract).
Wang C L, Wang Y T, Dong L H, Zhang B and Ren Y. 2012. Geochemical characteristi cs of rare earth and trace elements compositions of Songhu iron deposit in weste rn Tianshan of Xinjiang and their significance[J]. Mineral Deposits, 31(5): 1 038_1050 (in Chinese with English abstract).
Wang C L. 2012. A study on geology, geochemistry feature and genesis of the Song hu iron deposit in western Tianshan, Xinjiang (dissertation for master degree)[ D ]. Supervisor: Wang Y T. Beijing:Chinese Academy of Geological Sciences, 1_98 ( in Chinese with English abstract).
Wang D C, Jia J D, Duan S G, Zhang Z H, Jiang Z S and Chen J. 2014. Mineralogy a nd stable isotopic characteristics of the Tiemulike iron deposit in West Tiansha n mountains[J]. Geology in China, 41(6): 1853_1872(in Chinese with English abs tract).
Wang J B and Xu X. 2006. Post_collisional tectonic evolution and metallogenesis in northern Xinjinag, China[J]. Acta Geologica Sinica, 80(1):23_32 (in Chinese with English abstract).
Wang J N, Bai X L, Li Y L and Chen C M. 2009. Geological characteristics of Song hu iron deposit in Nilka County, Xinjiang[J]. Resources Environment & Enginee ring, 23(2): 104_107(in Chinese with English abstract).
Wang Q, Zhao Z H, Xu J F, Wyman D A, Xiong X L, Zi F and Bai Z H. 2006. Carbonif erous adakite_high_Mg andesite_Nb_enriched basaltic rock suites in the Northern Tianshan area: Implications for phanerozoic crustal growth in the Central Asia O rogenic Belt and Cu_Au mineralization[J]. Acta Petrologica Sinica, 22:11_30 (i n Chinese with English abstract).
Wang Q, Wyman D A, Zhao Z H, Xu J F, Bai Z H, Xiong X L, Dai T M, Li C F and Chu Z Y. 2007. Petrogenesis of Carboniferous adakites and Nb _enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implication for Pha nerozoic crustal growth of Central Asia Orogenic Belt[J]. Chemical Geology, 23 6: 42_64.
Wang X C, He G Q, Li M S, Gao J and Lu S N. 1995. Petrochemical characteristic a nd isotopic age of ophiolite in southern part of south Tianshan[J]. Journal o f Hebei College of Geology, 18(4):295_302 (in Chinese with English abstract).
Wiedenbeck M. 1995. An example of reverse discordance during ion microprobe zirc on dating: An artifact of enhanced ion yields from a radiogenic labile Pb[J]. Chemical Geology, 125(3): 197_218.
Windley B F, Allen M B, Zhang C, Zhao Z Y and Wang G R. 1990. Paleozoic accretio n and Cenozoic redeformation of the Chinese Tien Shan range, central Asia[J]. Geology, 18: 128_131.
Xia L Q, Xia Z C, Xu X Y, Li X M, Ma Z P and Wang L S. 2004. Carboniferous Tians han igneous mega province and mantle plume[J]. Geologcal Bulletin of China ,23(9_10): 903_910 (in Chinese with English abstract).
Xia L Q, Xu X Y, Xia Z C, Li X M, M Z P and Wang L S. 2004. Petrogenesis of Carb oniferous rift_related volcanic rocks in the Tianshan, northwestern China[J]. Geological Society of America Bulletin, 116: 419_433.
Xia L Q, Xia Z C, Xu X Y, Li X M and M Z P. 2008. Relative contributions of crus t and mantle to the generation of the Tianshan Carboniferous rift_related basic lavas, northwestern China[J]. Journal of Asian Earth Sciences, 31: 357_378.
Xiao X C, Tang Y Q, Li J Y, Zhao M, Feng Y M and Zhu B Q. 1992. Tectonic evoluti on of northern Xinjiang and its adjacent regions[M]. Beijing: Geological Publi shing House.1_169 (in Chinese with English abstract).
Xiao W J, Han C M, Yuan C, Sun M, Lin S F, Chen H L, Li Z L, Li J L and Sun S. 2 008. Middle Cambrian to Permian subduction_related accretionary orogenesis of No rthern Xinjiang, NW China: Implications for the tectonic evolution of central As ia[J]. Journal of Asian Earth Sciences, 32: 102_117.
Xu X Y, Xia L Q, Ma Z P, Xia L Q, Xia Z C and Peng S X. 2006a. SHRIMP zircon U_P b geochronology of the plagiogranites from Bayingou ophiolte in North Tianshan m ountains and the petrogenesis of the ophiolite[J]. Acta Petrologica Sinica, 22 (1): 83_94 (in Chinese with English abstract).
Xu X Y, Li X M, Ma Z P, Xia L Q, Ma Z P and Wang L S. 2006b. LA_ICPMS zircon U_P b dating of gabbro from the Bayingou ophiolite in the northern Tianshan mountain s[J]. Acta Geologica Sinica, 80(8): 1165_1176 (in Chinese with English abstrac t).
Yang G X, Zhou J B, Luan X D,Guo W J, Bi M B, Li H, Tong L M and Li Y J. 2008. T he geochemical evidence and its significance of the “disintegration" of the Kuo erk u granite batholith in Awulale, western Tianshan[J]. Xinjiang Geology, 26(2): 128_132 (in Chinese with English abstract).
Zhai W, Sun X M, Gao J, He X P, Liang J L, Miao L C and Wu Y L. 2006. SHRIMP dat ing of zircons from volcanic host rocks of Dahalajunshan Formation in Axi gold d eposit, Xinjiang, China, and its geological implications[J]. Acta Petrologica Sinica, 22(5): 1399_1404 (in Chinese with English abstract).
Zhang Q, Wang Y, Li C D, Wang Y L, Jin W J and Jia X Q. 2006. Garinte classifcai ton on the basis of Sr and Yb contents and its implications[J]. Acta Petrolog ica Sinica, 22(9): 2249_2269 (in Chinese with English abstract).
Zhang X J, Zheng G R, Fan Z L, Song Y B, Zhang W and Wen S X. 2011. Structural c haracteristics of aeromagnetic deduced faults in western Tianshan mountains, Xin jiang[J]. Geophysical and Geochemical Exploration, 35(4):448_454 (in Chinese w ith English abstract).
Zhang X, Tian J Q, Gao J, Klemd R, Dong L H, Fan J J, Jiang T and Hu C J and Qia n Q. 2012a. Geochronology and geochemistry of granitoid rocks from the Zhibo syn genetic volcanogenic iron ore deposit in the western Tianshan mountains (NW_Chin a): Constraints on the age of mineralization and tectonic setting[J]. Gondwana Research, 22: 585_596.
Zhang X. 2013. Tectonic setting and metallogenesis of the Zhibo and Chagangnuoer iron deposits in western Tianshan, Xinjiang (dissertation for doctor degree)[D ] . Supervisor: Dong L H and Gao J. Beijing:University of Chinese Academy of Scien ces. 1_226 (in Chinese with English abstract).
Zhang Z H, Hong W, Jiang Z S, Duan S G, Xu L G, Li F M, Guo X C and Zhao Z G. 20 12b. Geological characteristics and zircon U_Pb dating of volcanic rocks from th e Beizhan iron deposit in western Tianshan mountains, Xinjiang, NW China [J]. Acta Geologica Sinica (English Edition), 86(3):737_747.
Zhang Z H, Hong W, Jiang, Z S, Duan S G, Wang Z H, Li F M, Shi F P, Zhao J and Z heng R Q. 2012. Geological features, mineralization types and metallogenic setti ng of Late Paleozoic iron deposits in western Tianshan mountains of Xinjiang[J ]. Mineral Deposits, 31(5): 941_964 (in Chinese with English abstract).
Zhao Z H, Xiong X L, Wang Q, Wyman D A, Bao Z W, Bai Z H and Qiao Y L. 2008. Und erplating_related adakites in Xinjiang Tianshan, China[J]. Lithos, 102:74_391 .
Zhao Z H. 1997. Principle of trace element geochemical[M]. Beijing: Science P ress.1_204(in Chinese).
Zheng R Q, Duan S G, Zhang Z H, Luo G and Jiang Z S. 2014. Geological and geoche mical characteristics of Akesayi iron deposit in western Tianshan mountains, Xin jiang[J]. Mineral Deposits, 33(2): 255_270 (in Chinese with English abstract). 
Zhu W N. 2014. Metallogenic source and ore genesis of typical iron deposits in t he central segment of Awulale metallogenic belt, Xinjiang (dissertation for mast er degree)[D]. Supervisor: Mao J W. Beijing: China University of Geoscience.1_ 104 (in Chinese with English abstract).
Zhu Y F, Zhang L F, Gu L B, Guo X and Zhou J. 2005. SHRIMP dating and trace elem ent geochemistry of Carboniferous volcanic rocks in western Tianshan[J]. Chine se Science Bulletin 50, 2004_2014(in Chinese).
Zhu Y F, Zhou J and Guo X. 2006a. Petrology and Sr_Nd isotopic geochemistry of t he Carboniferous volcanic rocks in the western Tianshan mountains, NW China[J] . Acta Petrologica Sinica, 22: 1341_1350 (in Chinese with English abstract).
Zhu Y F, Zhou J, Song B, Zhang L F and Guo X. 2006b. Age of the “Dahalajunshan" Fo rmation in Xinjiang and its disintegration[J]. Geology in China 33, 487_49 7 (in Chinese with English abstract).
Zhu Y F, Guo X, Song B, Zhang L F and Gu L. 2009. Petrology, Sr_Nd_Hf isotopic g eochemistry and zircon chronology of the Late Palaeozoic volcanic rocks in the s outhwestern Tianshan mountains, Xinjiang, NW China[J]. Journal of the Geologi cal Society, 2009, 166 (6): 1085_1099.
Zuo G C, Zhang Z H, Wang Z L, Liu M and Wang L S. 2008. Tectonic division, strat igraphical system and evolution of western Tianshan mountains, Xinjiang[J]. Ge ological Review, 54(6): 748_767 (in Chinese with English abstract).

附中文参考文献

安芳, 朱永峰. 2008. 西北天山吐拉苏盆地火山岩SHRIMP年代学和微量元素地球化 学研究[J]. 岩石学报, 24(12): 2741_2748.
蔡土赐, 孙巧缡, 缪长泉, 等. 1999. 新疆维吾尔自治区岩石地层[M]. 武汉: 中国 地质大学出版社. 143_317.
车自成, 刘良, 刘洪福, 罗金海. 1996. 论伊犁古裂谷[J]. 岩石学报, 12(3): 478_490. 
陈杰, 段士刚, 张作衡, 罗刚, 蒋宗胜, 骆文娟, 王大川, 郑仁乔. 2014. 新疆西天山式可 布台铁矿地质、矿物化学和S 同位素特征及其对矿床成因的约束[J].中国地质, 41(6): 1 833_1852.
段士刚. 2011. 新疆西天山赛里木微地块区域成矿规律与找矿方向(博士论文)[D]. 导 师:薛春纪. 北京:中国地质大学. 1_192.
段士刚,董满华,张作衡,蒋宗胜,李凤鸣. 2014a. 西天山敦德铁矿床磁铁矿原位LA_ICP_ MS元素分析及意义[J]. 矿床地质, 33(6): 1325_1337
段士刚, 张作衡, 魏梦元, 田敬, 蒋宗胜, 李凤鸣, 赵军, 王厚方. 2014b. 新疆西天山 雾岭铁矿闪长岩地球化学及锆石U_Pb 年代学[J]. 中国地质, 41(6): 1757_1770.
冯金星, 石福品, 汪帮耀, 胡建明, 王江涛, 田敬. 2010. 西天山阿吾拉勒成矿带火山岩 型铁矿[M]. 北京: 地质出版社.10_150.
高俊, 龙灵利, 钱青, 黄德志, 苏文, Reiner KLEMD. 2006. 南天山:晚古生代还是三叠纪 碰撞造山带[J]. 岩石学报, 22(5): 1049_1061.
高俊, 钱青, 龙灵利, 张喜, 李继磊, 苏文. 2009. 西天山的增生造山过程[J]. 地质通 报, 28(12): 1804_1816.
韩宝福, 何国琦, 吴泰然, 李惠民. 2004. 天山早古生代花岗岩锆石U_Pb定年、岩石地球化 学特征及其大地构造意义[J]. 新疆地质, 22(1): 4_11.
洪为, 张作衡, 李华芹, 李凤鸣, 刘兴忠. 2012. 新疆西天山查岗诺尔铁矿床成矿时代—— 来自石榴子石Sm_Nd等时线年龄的信息[J]. 矿床地质, 31(5): 1067_1074.
蒋宗胜, 张作衡, 王志华, 李凤鸣, 田敬. 2012. 新疆西天山智博铁矿床蚀变矿物学、矿 物化学特征及矿床成因探讨[J]. 矿床地质, 31(5): 1051_1066.
蒋宗胜. 2014. 西天山智博铁矿石炭纪火山作用与铁成矿研究(博士论文)[D]. 导师: 张作衡. 北京:中国地质科学院, 1_154.
李永军, 杨高学, 郭文杰, 毕明波, 栾新东, 李注苍, 李宏, 佟黎明. 2007. 西天山阿吾拉 勒阔尔库岩基的解体及地质意义[J]. 新疆地质, 25(3): 233_236.
李永军, 李注苍, 周继兵, 高占华, 高永利, 佟黎明, 刘静. 2009a. 西天山阿吾拉勒一带 石炭系岩石地层单位厘定[J].岩石学报, 25(6):1332_1340.
李永军, 高永利, 佟丽莉, 郭文杰, 佟黎明. 2009b. 西天山阿吾拉勒一带石炭系阿克沙克 组风暴岩及其意义[J]. 地学前缘, 16(3): 341_348.
栾新东, 张兵, 高永利, 杨俊泉, 李永军. 2008. 西天山阿吾拉勒地区石炭系划分对比新资 料[J]. 新疆地质, 26(3):231_235.
孟凡超, 刘嘉麒, 李明, 刘晓, 印长海, 陆加敏, 崔岩. 2010. 松辽盆地徐家围子营城组流 纹岩地球化学特征及构造指示意义[J]. 岩石学报, 26(1):227_241.
单强, 张兵, 罗勇, 周昌平, 于学元, 曾乔松, 杨武斌, 牛贺才. 2009. 新疆尼勒克县松湖 铁矿床黄铁矿的特征和微量元素地球化学[J]. 岩石学报, (6): 1456_1464.
单强, 曾乔松, 罗勇, 杨武斌, 张红, 裘瑜卓, 于学元. 2011. 新疆阿尔泰康布铁堡组钾质 和钠质流纹岩的成因及同位素年代学研究[J]. 岩石学报, 27(12): 3653 _3665.
孙林华, 彭头平, 王岳军. 2007. 新疆特克斯东南大哈拉军山组玄武安山岩地球化学特征: 岩石成因和构造背景探讨[J]. 大地构造与成矿学, 31(3): 372_379.
田敬, 段士刚, 彭万林, 李明, 蒋宗胜, 严瑞. 2015. 新疆西天山智博铁矿床火山岩和侵 入岩岩石地球化学[J].矿床地质, 34(1): 119-138.
汪帮耀, 胡秀军, 王江涛, 邵青红, 凌锦兰, 郭娜欣, 赵彦锋, 夏昭德, 姜常义. 2011. 西 天山查岗诺尔铁矿矿床地质特征及矿床成因研究[J]. 矿床地质, 30(3): 385_402.
汪帮耀, 姜常义. 2011. 西天山查岗诺尔铁矿区石炭纪火山岩地球化学特征及岩石成因[J ]. 地质科技情报, 30(6):18_27.
王春龙, 王义天, 董连慧, 张兵, 任毅. 2012. 新疆西天山松湖铁矿床稀土和微量元素地球 化学特征及其意义[J]. 矿床地质, 31(5): 1038_1050.
王春龙. 2012. 新疆西天山松湖铁矿床地质地球化学特征与成因研究(硕士论文)[D]. 导师:王义天. 北京:中国地质科学院, 1_98.
王大川, 贾金典, 段士刚, 张作衡, 蒋宗胜, 陈杰. 2014. 西天山铁木里克铁矿床矿物学及 稳定同位素特征[J].中国地质, 41(6): 1853_1872.
王京彬, 徐新. 2006. 新疆北部后碰撞构造演化与成矿[J]. 地质学报, 80(1): 23_31.
王军年, 白新兰, 李岩龙, 陈春明. 2009. 新疆尼勒克县松湖铁矿地质特征[J]. 资源环 境与工程, 23(2): 104_107.
王强, 赵振华, 许继峰, Wyman D A, 熊小林, 资峰, 白正华. 2006. 天山北部石炭纪埃达 克岩_高镁安山岩_富Nb岛弧玄武质岩: 对中亚造山带显生宙地壳增生与铜金成矿的意义[J ]. 岩石学报, 22(l):11_30.
王学潮, 何国琦, 李茂松, 高俊, 陆书宁. 1995. 南天山南缘蛇绿岩岩石化学特征及同位素 年龄[J]. 河北地质学院学报, 18(4):295_302.
夏林圻, 夏祖春, 徐学义, 李向民, 马中平, 王立社. 2004. 天山石炭纪大火成岩省与地幔 柱[J]. 地质通报, 23(9_10): 903_910.
肖序常, 汤耀庆, 李锦轶, 赵民, 冯益民, 朱宝清. 1992. 新疆北部及邻区大地构造[M]. 北京: 地质出版社.1_169.
徐学义, 李向民, 马中平, 夏林圻, 夏祖春, 彭素霞. 2006a. 北天山巴音沟蛇绿岩形成于 早石炭世:来自辉长岩LA_ICPMS锆石U_Pb年龄的证据[J]. 地质学报, 80(8): 1168_1176. 
徐学义, 夏林圻, 马中平, 王彦斌, 夏祖春, 李向民, 王立社. 2006b. 北天山巴音沟蛇绿 岩斜长花岗岩SHRIMP锆石U_Pb年龄及蛇绿岩成因研究[J]. 岩石学报, 22(1): 83_94.
杨高学, 周继兵, 栾新东, 郭文杰, 毕明波, 李宏, 佟黎明, 李永军. 2008. 西天山阿吾拉 勒阔尔库岩基解体的地球化学证据及意义[J]. 新疆地质, 26(2): 128_132.
翟伟, 孙晓明, 高俊, 贺小平, 梁金龙, 苗来成, 吴有良. 2006. 新疆阿希金矿床赋矿围岩 _大哈拉军山组火山岩SHRIMP锆石年龄及其地质意义[J]. 岩石学报, 22(5): 1399_1404. 
张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 2006. 花岗岩的Sr_Yb分类及其地质意义 [J].岩石学报, 22( 9) : 2249_2269.
张喜. 2013.西天山智博和查岗诺尔铁矿成矿背景与成矿作用研究(博士论文)[D]. 导师 :董连慧,高俊. 北京:中国科学院大学.1_226.
张玄杰, 郑广如, 范子梁, 宋燕兵, 张婉, 温世新. 2011. 新疆西天山东段航磁推断断裂构 造特征[J]. 物探与化探, 35(4): 448_454.
张作衡, 洪为, 蒋宗胜, 段士刚, 王志华, 李凤鸣, 石福品, 赵军, 郑仁乔. 2012. 新疆西 天山晚古生代铁矿床的地质特征、矿化类型及形成环境[J]. 矿床地质, 31(5): 941_964. 
赵振华. 1997. 微量元素地球化学原理[M]. 北京: 科学出版社. 1_204.
郑仁乔, 段士刚, 张作衡, 罗刚, 蒋宗胜. 2014. 新疆西天山阿克萨依铁矿床地质及地球化 学特征[J]. 矿床地质, 33(2): 255_270.
朱维娜. 2014. 新疆阿吾拉勒成矿带中段典型铁矿床成矿物质来源与矿床成因研究(硕士论 文)[D]. 导师:毛景文. 北京:中国地质大学. 1_104.
朱永峰, 张立飞, 古丽冰, 郭璇, 周晶. 2005. 西天山石炭纪火山岩 SHRIMP 年代学及其微 量元素地球化学研究[J]. 科学通报, 50(18): 2004_2014.
朱永峰, 周晶, 宋彪, 张立飞, 郭璇. 2006a. 新疆“大哈拉军山组"火山岩的形成时代问题 及其解体方案[J]. 中国地质, 33(3): 487_497.
朱永峰, 周晶, 郭漩. 2006b. 西天山石炭纪火山岩岩石学及Sr_Nd同位素地球化学研究[J ]. 岩石学报, 22(5):1341_1350.
左国朝, 张作衡, 王志良, 刘敏, 王龙生. 2008. 新疆西天山地区构造单元划分、地层系统 及其构造演化[J]. 地质论评, 54(6):748_767.