DOi: 10.16111/j.0258_7106.2016.06.004
中扬子地区江汉盆地古新统沙市组物源——来自碎屑锆石U-Pb年代学及地球化学证据
余小灿1,刘成林2**,王春连2,徐海明2,孟令阳3,蔡睿3

(1 中国地质大学地球科学与资源学院,地质过程与矿产资源国家重点实验室, 北京100 083; 2 中国地质科学院矿产资源 研究所 国土资源部成矿作用与资源评价重点实 验室, 北京100037; 3 长江大学地球科学学院, 湖北 武汉430100)

第一作者简介余小灿, 男, 1988年生, 博士研究生, 岩石学、矿物学、矿床学专业。 Email: xiaocany1988@163.com **通讯作者刘成林, 男, 1963年生, 研究员, 主要从事沉积矿床研究工作。 Email: l iuchengl@263.net

收稿日期2016_08_15;

改回日期2016_09_15

本文得到973项目(编号: 2011CB403007)、中央级公益性科研院所基本科研业务费专项( 编号: K1415)、中国地质大调查项目(编号: 12120114051901)和国家自然科学基金青 年基金(编号: 41502089)联合资助

摘要:文章利用LA_ICP_MS分析技术,对江汉盆地西南缘古新统沙市组碎屑岩 进行了 碎屑锆石的U_Pb年代学研究,获得该区沙市组时期碎屑物源的重要信息。97组协和年龄数据 产生了12个年龄峰值,分别为2500 Ma、1870 Ma、995 Ma、850 Ma、708~775 Ma、603 ~640 Ma、50 5~553 Ma、408~458 Ma、356 Ma、300 Ma、235 Ma和172 Ma。锆石的年龄峰值主要集中于 古 元古代、新元古代和早古生代,这些年龄峰值与黄陵隆起和江南造山带中的锆石年龄相同。 早中生代年龄峰值也较明显,该年龄通常和大别山的高压和超高压变质岩有关,江南造山 带 也发育印支期花岗岩。结合该时期岩相古地理特征,认为沙市组主要物源来自黄陵隆起以及 扬子 板块与大别造山带之间的碰撞带,而南部江南造山带的贡献是次要的。黄陵隆起花岗岩含钾 量高,其风化可以给盆地带来丰富的成钾物源。
关键词: 地球化学;U_Pb年代学;碎屑锆石;物源;古新统;江汉盆地
文章编号: 0258_7106 (2016) 06_1169_21         中图分类号: P619.211         文献标志码:A
Provenance of Paleocene Shashi Formation in Jianghan Basin of Middle Yangtze 
    a rea: Evidence from U_Pb geochronology and geochemistry of detrital zircons 
 YU XiaoCan1, LIU ChengLin2, WANG ChunLian2, XU HaiMing2, MENG LingYa ng3 and CAI PengRui3

(1 China University of Geosciences, School of Earth Sciences and Resources, S tate Key Laboratory of Geological Processes and Mineral Resources, Beijing 10 0083, China; 2 MLR Key Laboratory of Metallogeny and Mineral Assessment, Insti tute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 1 00037, China; 3 School of Geosciences, Yangtze University, Wuhan 43 0100, Hubei, China)

Abstract:Using the U_Pb LA_ICP_MS analysis technique the authors analyzed geochronologica l features of detrital zircons from Paleocene clastic rock of Shashi Formation i n southwestern Jianghan basin. Significant clastic source information was obtain ed. The 97 groups of U_Pb age yielded 12 peak ages: 2500 Ma, 1870 Ma, 995 Ma, 85 0 Ma, 708~775 Ma, 603~640 Ma, 505~553 Ma, 408~458 Ma, 356 Ma, 300 Ma, 235 Ma and 172 Ma. The ages are concentrated in three epochs: Paleoproterozoic, Neoprotero zoic and Early Paleozoic. The peak ages are consistent with the zircon ages in H uangling dome and Jiangnan orogen. Predominant Early Paleozoic peak ages are usu ally related to high_ and ultrahigh_ pressure metamorphic rocks in Dabie orogen, and Indosinian granites are also developed in Jiangnan orogen. In conjunction w ith lithofacies paleogeography in this period, the provenance of Shashi formatio n might have mainly been derived from Huangling dome and the collision belt betw een Yangtze Block and Dabie Orogen, with the Jiangnan Orogen to the south playin g the subordinate role. Granites in Huangling dome are rich in potassium, and gr anite weathering could provide the basin with abundant source of potassium.
Key words:  geochemistry, U_Pb geochronology, detrital zircon, provena nce, Paleocene, Jianghan Basin 
        江汉盆地是中新生代发展起来的断陷盆地。大地构造单元上位于扬子板块中部,地处秦岭_ 大别造山带南缘、江南造山带北缘和黄陵隆起东缘。前人对江汉盆地古新统沙市组研究主要 集中在沉积环境、古气候、岩相古地理以及油气资源等方面(李俊,2009;刘中戎等,2009 ;王春连等,2013a;2013b;余小灿等,2014;Yu et al.,2015),而对其物源的研究较 少,徐政语等(2005)依据盆地内的碎屑组分分析认为,古近纪时期盆地物源主要由北部秦 岭_大别造山带提供,而南部的江南造山带则处于从属、次要地位。然而,目前对于古新统 沙市组碎屑物源及其聚集机制仍然不清楚。盆地碎屑沉积物是研究盆山关系的桥梁,可用于 描述沉积源区的特征,甚至古地理的重建(Roser et al.,1986;Sircombe,1999;闫义等 ,2002;Weltje et al.,2004)。各种分析测试技术被用于沉积物源的研究,由于在碎屑 沉积物中,碎屑锆石分布广泛且在沉积分异过程中能够保持稳定等特点,碎屑锆石年代学被 广泛用于限定地层时代、示踪沉积源区、反演地貌演化等方面的研究(Fedo et al.,1996 ;陆松年等,2006;Wu et al.,2007;杨宗永等,2012;Ershoval et al.,2015)。基于 以上方法理论,本文对江汉盆地西南缘古新统沙市组地层进行碎屑锆石年代学研究,以分析 其源区特征。
1地质背景
        江汉盆地是一个叠置在中扬子板块上的白垩纪—古近纪含油气断陷盆地,被一系列北北东向 的 正断层控制。江陵凹陷是该盆地最大的一个次级凹陷,位于其西南缘。该凹陷内沉积了较完 整的白垩系—古近系,厚度近万米,发育新沟嘴组含油岩系。古新统沙市组总体为一套滨 浅湖碎屑岩和盐湖沉积,发育河流、三角洲和滨浅湖_半深湖砂岩和泥岩以及盐湖沉积的蒸 发岩(刘丽军等,2003;王春连等,2012;尤英等,2013)。该盆地被大别造山带(东北) 、江南造山带(南)和黄陵隆起(西北)(图1)包围,这些可能成为古新统沙市组沉积物 的潜在源区。
        大别造山带形成于三叠纪,扬子板块向北俯冲于华北板块下部,主要由北部的淮阳构造岩浆 带、核部变质杂岩带(NDC)和南部高压(HP)、超高压(UHP)变质带组成(Grimmer et a l.,2003;Li et al.,2005;Liu et al.,2013)。北部淮阳构造单元主要由低级变质岩 组成,伴有少量角闪岩相岩石,被白垩纪岩体侵入(Okay et al.,1993)。核部杂岩体主 要由灰色片麻岩和次一级的混合岩、角闪岩、麻粒岩和大理岩组成(Wang et al.,2005) 。南部高压、超高压变质带主要由片麻岩及少量角闪岩、含石榴子石橄榄岩、硬玉石英岩和 大理岩组成(Liu et al.,2013)。江南造山带主要由新元古代冷家溪群和板溪群组成,两 者以角度不整合接触(Wang et al.,2007;2009)。冷家溪群主要由砂岩、板岩、细碧岩 和火山碎屑岩组成,板溪群主要由杂砂岩、板岩和绿片岩序列组成。这些基底序列被晋宁期 、加里东期、印支期和燕山期的花岗岩所侵入。黄陵隆起是一个北东东向的背斜,基底出露 背斜的核部,由新太古代—古元古代的崆岭群和黄陵花岗岩侵入体(740~850 Ma)组成( 马 国干等,1984;Li et al.,2003;Zheng et al.,2004;Zhang et al.,2006b),盖层由 震旦系—三叠系海相地层组成(沈传波等,2009)。崆岭群中最老的岩石年龄为3218~3300 M a(Jiao et al.,2009;Gao et al.,2011)。黄陵隆起前寒武纪基底序列产生的碎屑锆石 U_Pb年龄峰值为2870~3280 Ma、2500 Ma、1900~2050 Ma、1800 Ma和720~910 Ma(Qiu e t al.,2000;Zhang et al.,2006a;2006b;Liu et al.,2008)。
2样品采集及测试方法
        本次研究样品采自江汉盆地西南缘SKD1井古新统沙市组,岩性为粉砂岩(A21、A34和A61) ,深度分别为~1486.9 m、~2048.1 m和~2298.4 m(图2)。样品中锆石的分选采用 传统的 比重和磁性方法进行淘选,并在双目显微镜下对获取的重矿物进行人工挑纯。将挑选的锆石 颗粒用环氧树脂进行固定,对固结后的样品台进行表面抛光,并进行阴极发光照相,以观察 各锆石颗粒内部的核、边和包裹体结构以用于进行锆石原位U_Pb同位素分析时选择测 量点的依据。
图 1江汉盆地地质简图及周缘构造单元(据Liu et al.,2013)
     T3—下三叠统沉积物; J2—中侏罗统沉积物; K1—下白垩统沉积物; K2—上白 垩统沉积物; E—古近系沉积物; F1—信阳_舒城断裂
    (商单缝合带在大别造山带北缘的 延伸部分); F2—襄广断裂(勉略缝合带在大别山南缘的延伸部分); NDC—北大别山核 部变质杂岩体; 
    UHP—超高压变质带; HP—高压变质带
     Fig. 1Schematic map showing the Jianghan Basin and neighboring tectonic units (after Liu et al., 2013)
     T3—Lower Triassic sediments; J2—Middle Jurassic sediments; K1—Lower C retaceous sediments; K2—Upper Cretaceous sediments; E—Paleogene sediments ; F1—Xinyang_Shucheng fault; F2—Xiangfan_Guangji fault, which buried the M ianlue suture; NDC—North Dabie core complex 
    zone; UHP—Ultrahigh_pres sure metamorphic unit; HP—High_pressure metamorphic unit    
          锆石U_Pb同位素年龄采用激光剥蚀 等离子体质谱(LA_ICPMS)原位分析方法,在西北 大学大陆动力学国家重点实验室完成。激光剥蚀系统为GeoLas 200M,配置193 nm的 ArF准分子激光器, 测量系统为Agilent 7500a ICP_MS。测量时采用的激光斑束为30 μm, 测量过程 包括~30 s 的背景信号采集和~80 s的样品信号采集。原始数据应用软件GLITTER4.0处理, 详细的分析和数据处理流程见Yuan等(2004)。
 图 2江陵凹陷SKD1井沙市组简表及采样位置
     Fig. 2Stratigraphic section and sampling locations 
    in the SKD1 drill hole of Jiangling depression   
             协和图和年龄直方图绘制采用软件ISOPLOT ve r 4.15完成(Ludwig,2012)。通常中生代及更年轻的锆石中207Pb含量太少, 难 以准确测定,因此,年轻锆石选用206Pb/238U年龄为锆石形成年龄, 锆石年龄大于1000 Ma的选用206Pb/207Pb为锆石的形成年龄(Wang e t al.,2007)。
3碎屑锆石特征及U_Pb同位素结果
        本次U_Pb同位素年龄研究获得97颗协和度在90%~110%之间的碎屑锆石。锆石阴极发光图显 示样品锆石大小不 等,呈次棱柱状和浑圆状,反映它们经过一定距离的搬运与磨蚀。部分锆石具较自形的晶形 ,表明它们为近源搬运。锆石颗粒的长度变化于20~125 μm,平均60~70 μm。多数锆石 阴 极发光图亮度较弱,展示了2种主要的结构特征(图3):一种是暗色核部和亮色宽边组成, 反 映了后期构造热事件的影响;另一种显示了振荡环带,表明了典型的岩浆成因锆石。此 外,少量锆石具有很窄的亮边,表明了后期的生长(Zhang et al.,2006a)。w(Th )为3×10-6~534.61×10-6w(U)为33×10-6~1317. 15×10-6,Th/U比值多大于0.1,变化范围0.03~1.54(图4)。只有5个点的值 小于0.1,可能来源于变质岩。
对锆石进行年代学的分析,表1列出了样品中碎屑锆石Th、U元素含量和表面年龄的计算结果 ,获得表面年龄范围为126~2560 Ma(图5)。最年轻的2颗锆石年龄为(126±2) Ma和 (150±3) Ma,3个太古代年龄分别为(2560±51) Ma、(2503±51) Ma和(2543 ±52) Ma。在年龄谱图(图6)中,主要存在12个年龄峰值,分别为2500 Ma、1870 Ma、99 5 Ma、850 Ma、708~775 Ma、603~640 Ma、505~564 Ma、408~458 Ma、356 Ma 、300 Ma、235 Ma和172 Ma。各年龄峰值所占颗粒数及含量见表2。 
 图 3江汉盆地沙市组碎屑锆石典型CL图像特征
     Fig. 3Cathodoluminescence images of representative 
    detrial zircon grains of Shashi Formation in Jianghan Basin   

    

    

    

    

    
图 4江汉盆地沙市组砂岩样品的碎屑锆石Th/U比值
     Fig. 4Plots of Th/U ratios versus U_Pb ages of detrial 
    zircon grains in sand stones from the Shashi Formation of 
    Jianghan Basin    
表 2江汉盆地沙市组中不同年龄峰值的锆石数目
     Table 2Numbers of zircons of different age peaks in the 
    Shashi Formation of Jianghan Basin    
4碎屑锆石稀土元素地球化学特征
        江汉盆地古新统沙市组样品的稀土元素,采用Boynton(1984)推荐的球粒陨石标准值对其 进行标准化,各样品稀土元素化学参数及其配分模式图分别见表3和图7。江汉盆地古新统沉 积岩∑REE分布范围为(54.4713~2787.4700 μg/g),LREE、HREE元素含量的比值在一 定程 度上反映了样品LREE、HREE的分异状况,这一数值越大,表明LREE富集,HREE亏损。样品的 LREE/HREE为0.0071~0.3425,表明HREE相对富集。(La/Yb)N 是稀土元素球粒陨石标准化图解中分布曲线的斜 率,反映了曲线的倾斜程度。样品的(La/Yb)N为0.000 028~ 0.134 626,表明样品的轻、重稀土元素分异较大。样品Eu负异常变化大,δEu为0.05~ 0.99。δCe为1.09~262.80,铈正异常明显。
一般而言,典型的未蚀变岩浆锆石的稀土元素配分模式变现为亏损LREE,富集HREE,正Ce异 常,负Eu异常;典型的变质锆石稀土元素配分模式特征为正Ce异常,负Eu异常,HREE相对平 坦 ;典型热液锆石特征为LREE平坦,HREE富集,负Eu异常(Belousova et al.,2002;雷玮琰 等,2013)。由图7可以看出,轻稀土元素亏损、重稀土元素富集,呈现左倾模式。Eu处出 现适度的“谷"状负Eu异常,“峰"状正Ce异常。La至Eu段轻稀土元素配分曲线较为平坦、 斜 率较小,轻稀土元素之间的分馏程度较低;Gd至Lu段重稀土元素配分曲线斜率较大,说明重 稀土元素之间的分馏程度较高。总体符合岩浆锆石的稀土元素配分模式,个别锆石稀土元素 配分模式显示正Ce异常,负Eu异常,但HREE相对平坦,符合变质锆石的稀土元素配分模式( 图7)。
5碎屑锆石物源分析
        古新世时期,江汉盆地内断裂活动较弱,主要发育北北东向的张性正断层,盆底面积不断扩 大,并发展为一个相对统一的广盆,整个盆地的沉降中心在西南部的江陵凹陷。在盆地的北 _西北部发育冲积扇相及三角洲相沉积,东部发育三角洲平原和三角洲前缘沉积,而盆地西 南部仅发育少量的三角洲相沉积(李俊,2009)。可见该时期盆地总体呈现北东高、南西低 的构造格局,碎屑物源主要来自北部、东向。因此,江汉盆地古新世时期主要有西北和东北 2个源区,而盆地西南向的物源是次要的。
从样品中的锆石年龄分析可知,锆石的年龄峰值主要集中于3个年龄段,分别为古元古代的2 500 Ma和1870 Ma两个峰值年龄;新元古代,其年龄峰值为995 Ma、850 Ma、708~775 M a 和603~640 Ma;早古生代,其年龄峰值为505~553 Ma和408~458 Ma。并有一些晚古生代 和中 生代的年龄段,其中,印支期的年龄较明显。宽泛变化的碎屑锆石年龄以及不同的年龄峰值 表明了碎屑物源的多样性。同时,多样的锆石形貌特征也支持了这一结论(图2)。
2500 Ma和1870 Ma两个峰值年龄较明显,共占据了所有锆石的17.5%。这2个峰值年龄 在华 北板块和扬子板块均出现,Liu等(2008)分析了2个板 块的碎屑锆石特征, 认为峰值年龄2500 Ma在华北板块明显,而1870 Ma峰值年龄在扬子板块明显,表明了这些碎屑锆石可能来自 于扬子板块。
  图 5江汉盆地沙市组碎屑锆石样品锆石U_Pb年龄谐和图
  Fig. 5Concordia plots of detrital zircon U_Pb analytical results in the Shashi Formation of Jianghan Basin  
2550~2400 Ma和2050~1800 Ma锆石年龄组在黄陵隆起的莲沱组、孤城组和南 沱 组中获得(Liu et al.,2008),这些年龄组和崆岭地体中片麻岩和变质沉积岩的U_Pb年龄 (Qiu et al.,2000)、角闪岩和副片麻岩的全岩Sm_Nd等时线年龄(Ling et al.,2001) 以及混合岩的锆石年龄(Zhang et al.,2006b)相同。相似的碎屑锆石年龄也能从江南造 山带基底沉积序列中获得(Wang et al.,2007)。同时,年龄约为1850 Ma的圈椅花岗岩 (袁海华等,1991)侵入到崆岭地体之中,也可提供1800 Ma峰值年龄锆石的物源。因此,黄 陵隆起可能是古元古代碎屑锆石的主要源区,可能有少量来自江南造山带。
新元古代时期伴随罗迪亚超大陆的聚合和裂解,华南克拉通出现大量的岩浆活动(Zhou et al.,2002;Li et al.,2003;Zheng,2003;Zheng et al.,2007;Wu et al.,2006)。 研究区新元古代碎屑锆石占据了总数量的32%,可见该时期的碎屑锆石作为主要锆石来源。 黄陵花岗岩侵入崆岭地体位于莲沱组之下,锆石U_Pb年龄为740~850 Ma(Li et al.,2003 ;Zheng,2003;Zheng et al.,2004),且在晚白垩世时期遭受剥蚀(沈传波等,2009;S hen et al.,2012)。相似年龄组也可以在江南造山带和黄陵隆起获得(Wang et al.,200 7;Liu et al.,2008;Yao et al.,2013)。同时,在800~1000 Ma期间,沿着扬子克拉 通 的北缘出现钙碱性的侵入体(Shi et al.,1990;Gao et al.,1990)。可见,江南造山带 和黄陵隆起都可能是新元古代碎屑锆石的源区,可能有少量来自扬子板块北缘同期的火山岩 。
古新世时期江汉盆地主要有西北和东北2个源区,而黄陵隆起和大别造山带分别位于其西北 缘和东北缘,则古元古代和新元古代碎屑锆石应来自黄陵隆起。同时,印支期的锆石年龄峰 值(235 Ma)也是较明显的,该时期常常和大别山的高压和超高压变质岩有关(Ratschbacher et al.,2000;Grimmer et al.,2003;Wang et al.,2009)。
    

    

    
    
    
图 6江汉盆地沙市组碎屑锆石年龄谱图及直方图
    (n=97,为锆石颗粒数)
     Fig. 6Age spectrum and histogram of detrital zircons 
    in the Shashi Formation of Jianghan Basin (n=97, means 
    the number of particles of zircon)    
 图 7江汉盆地古新统沙市组锆石稀土元素配分模式图
     Fig. 7Rare element distribution of detrital zircons 
    of Paleocene Shashi Form ation in Jianghan Basin   
     然而,该时期锆石的Th /U比值为 0.21~0.98,表明了岩浆锆石成因,同时锆石形态特征也支持。所以,印支期的锆 石与大别山的高压和超高压变质岩无关。结合当时岩相古地理特征(李俊,2009),印支期 的锆石应来自盆地东北部扬子板块与大别造山带之间碰撞带附近的火山弧(Liu et al.,20 13)。
早古生代年龄的锆石占据了18.6%,这个年龄组与全球构造岩浆事件加里东运动(Ireland e t al.,1998)相当。而加里东花岗岩广泛分布于江南造山带,例如湖南省和江西省(湖南 省地质矿产局,1998;江西省地质矿产局,1984;Li et al.,2010;Wang et al.,2011) 。而中扬子地区和大别造山带不发育早古生代年龄的锆石,显然这些碎屑锆石应来自江南造 山带。356 Ma、300 Ma和172 Ma年龄含量较少,可能表明海西和燕山期花岗岩对研究区的物 源供应是不重要的。
因此,江汉盆地古新世时期盆地物源主要由黄陵隆起以及扬子板块与大别造山带之间碰撞带 提供,而盆地南缘的江南造山带物源则处于次要地位。当然,需要进一步研究去证实。
6盆地西南缘成钾初探
        江陵凹陷是江汉盆地的一个次级凹陷,位于盆地的西南缘。古新世时期该凹陷是江汉盆地的 沉降中心,凹陷内白垩系至古近系最大沉积厚度近万米, 蒸发岩主要发育于古新统沙市组和 始新统新沟嘴组。近几年来在江陵凹陷古新统沉积序列中发现了固体钾盐矿物及富钾卤水( 潘源敦等,2011;刘成林,2013;刘成林等,2013;王春连等,2015),然而盆地内钾的来 源仍然是不清楚的,即钾元素的富集机理缺乏研究。
从上述江汉盆地物源分析可知,古新世时期盆地物源主要来自黄陵隆起与大别造山带。据白 寿昌(1989)和Xiong等(2008)可知,黄陵花岗岩和圈椅花岗岩的w(K2O) 分别为2.10%~3.60%和5.25%~5.81%,K2O含量很高,这些花岗岩的剥蚀再沉积可以 为该凹陷成钾物质来源提供充足物源。
7结论
本次研究首次对江江汉盆地西南缘古新统沙市组进行了碎屑锆石LA_ICPMS测年,获得了 97颗协和年龄锆石,表现出12个年龄峰值。得出以下认识:
        (1) 根据碎屑锆石形貌特征、Th/U比值及稀土元素配分模式可知,碎屑锆石总体为岩浆锆 石,同时存在少量的变质锆石。
        (2) 沙市组碎屑锆石年龄主要集中于古元古代、新元古代和早古生代。其中,新元古代所 占比例最大,新元古代和古元古代的锆石来自盆地西北缘的黄陵隆起。
        (3) 早中生代碎屑锆石年龄较明显,表明了印支期花岗岩的对该区物源的贡献。该时期碎 屑锆石来自扬子板块与大别造山带之间碰撞带附近的火山弧。
        (4) 根据江陵凹陷西南缘古新统沙市组碎屑锆石的U_Pb年代学及古地理特征可知,该地层 主要物源来自黄陵隆起以及扬子板块与大别造山带之间碰撞带,而江南造山带的贡献是次要 的。黄陵隆起花岗岩含钾高,其风化带来了丰富的钾进入该盆地。
    志谢野外工作中得到了锦辉(荆州)精细化工有限公司陈成、章宽及中国地质 科学院矿产资源研究所赵艳军副研究员和博士研究生沈立建、中国地质 大学(北京)硕士研究生张林兵的大力支持和帮助,在此表示衷心的感谢。同时,感谢评审 专家提出富有建设性的宝贵意见。
参考文献
Bai S C. 1989. Geochemical characteristics of Huangling granite in “Thr ee Gorge Red", western Hubei[J]. China Non_metallic Mining Industry Herald, (1): 25_29( in Chinese).
     Belousova E, Griffin W L, O Reilly S Y and Fisher N L. 2002. Igneous zircon: Tra ce element composition as an indicator of source rock type[J]. Contributio ns to Mineralogy and Petrology, 143: 602_622.
     Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteorite studies [A]. In: Henderson P, ed. Rare earth elements geochemistry[C]. Amsterdam: El sevier. 63_114.
     Ershoval V B, Prokopiev A V, Khudoley A K, Sobolev N N and Petrov E O. 2015. Det rital zircon ages and provenance of the Upper Paleozoic seccessions of Kotel ny Island (New Siberian Islands archipelago)[J]. Lithos, 7: 40_45.
     Fedo C M and Erikseon K A. 1996. Stratigraphic framework of the 3.0 Ga Buhwa Gre enstone Belt: A unique stable_shelf succession in the Zimbabwe Archean Craton[J ]. Precambrian Research, 7(3): 161_178.
     Gao S, Zhang B R and Li Z J. 1990. Geochemical evidence for Proterozoic continen tal arc and continental_margin rift magmatism along the northern margin of the Y angtze Craton, South China[J]. Precambrian Research, 47: 205_221.
     Gao S, Yang J, Zhou L, Li M, Hu Z C, Guo J L, Yuan H L, Gong H J, Xiao G Q and W ei J Q. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of science, 311: 15 3_182.
     Grimmer J C, Ratschbacher L, Franz L, Gaizch I, Tichomirowa M, McWilliams M, Hac ker B R and Zhang Y. 2003. When did the ultrahigh_pressure rocks reach the surfa ce? A 207Pb/206Pb zircon,40Ar/39A r white mica, Si_in white mica, single_grain Provenance study of DabieShan syn orogenic foreland sediments[J]. Chemical Geology, 197: 87_110.
     Hunan Bureau of Geology and Mineral Resource. 1998. Regional geology survey in H unan Province[M]. Beijing: Geological Publishing House. 368_465 (in Chinese). 
     Ireland T R, Flottmann T and Fanning C M. 1998. Development of the Early Paleozo ic Pacific margin of Gondwana from detrital zircon ages across the Delamerian Or ogen[J]. Geology, 26: 243_246.
     Jiangxi Bureau of Geology and Mineral Resource. 1984. Regional geology survey in Jiangxi Province[M]. Beijing: Geological Publishing House. 358_558 (in Chine se).
     Jiao W F, Wu Y B, Yang S H, Peng M and Wang J. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U_Pb age and Hf isotope composition[J]. Science in China Series D: Earth Sciences,52(9):368_465.
     Lei W Y, Shi G H and Liu Y X. 2013. Research progress on trace element character istics of zircons of different origins[J]. Earth Science Frontiers, 20(4): 273 _284 (in Chinese with English abstract).
     Li J. 2009. Relationship between characteristics of paleocurrent and basin_filli ng evolution of Upper Jurassic_paleogene in Middle Yangzte area (Master Disserta tion)[D]. Supervisor: Yu B S. Beijing: China University of Geosciences. 63_66 (in Chinese with English abstract).
     Li R W, Wan Y S, Cheng Z Y, Zhou J X, Li S Y, Jin F Q, Meng Q R, Li Z and Jiang M S. 2005. Provenance of Jurassic sediments in the Hefei Basin, East_Central Chi na and the contribution of high_pressure and ultrahigh_pressure metamorphic rock s from the Dabie Shan[J]. Earth and Planetary Science Letters, 231: 279_294.
     Li X H, Li Z X, Ge W, Zhou H, Li W, Liu Y and Wingate M T D. 2003. Neoproterozoi c granitoids in South China: Crustal melting above a mantle plume at 825 Ma[J] ? Precambrian Research, 122: 45_83.
     Li Z X, Li X H, Wartho J A, Clark C, Li W X, Zhang C L and Bao C. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi_Yunkai orogeny, southeas tern South China: New age constraints and pressure_temperature conditions[J]. Geological Society of America Bulletin, 122: 772_793.
     Ling W L, Gao S, Zhang B R, Zhou L and Xu Q D. 2001. The recognizing of ca. 1.95 Ga tectono_thermal event in Kongling nucleus and its significance for the evolu tion of Yangtze Block, South China[J]. Chinese Science Bulletin, 46: 326_329. 
     Liu C L. 2013. Characteristics and formation of potash deposits in continental r ift basin: A review[J]. Acta Geoscientica Sinica, 34(5): 515_527 (in Chinese w ith English abstract).
     Liu C L, Wang C L, Xu H M, Liu B K, Shen L J, Wang L C and Zhao Y J. 2013. Resea rch progress on potash minerals in Paleogene evaporates in Jiangling Depress ion[J]. Mineral Deposits, 32(1): 221_222 (in Chinese).
     Liu L J, Xiao J X, Lin C S, Wang D F and Lu M G. 2003. Depositional system and s equence stratigraphy of the Shashi Formation in Jiangling Depression in Jianghan Basin, South China[J]. Petroleum Exploration and Development, 30(2): 27_29(in Chinese with English abstract).
     Liu S F and Zhang G W. 2013. Mesozoic basin development and its indication of co llisional orogeny in the Dabie Orogen[J]. Chinese Science Bulletin, 58: 827_85 2.
     Liu X M, Gao S, Diwu C R and Ling W L. 2008. Precambrian crustal growth of yangt ze craton as revealed by detrital zircon studies[J]. American Journal of Scien ce, 308: 421_468.
     Liu Z R and Wang X L. 2009. Features of subtle_trap formation and implication fo r hydrocarbon exploration in southwest of Jianghan Basin[J]. Journal of Oi l and Gas Technology (Journal of Jianghan Petroleum Institute), 31(4): 176_179(in Chin ese with English abstract).
     Lu S N, Chen Z H, Xiang Z Q, Li H K, Li H M and Song B. 2006. U_Pb ages of detri tal zircons from the para_metamorphic rocks of the Qingling Group and their geol ogical significance[J]. Earth Science Frontiers, 13(6): 303_310 (in Chinese wi th English abstract).
     Ludwig K R. 2012. User s Manual for Isoplot/Ex rev. 3.75: A geochronological to o lkit for Microsoft Excel[J]. Berkeley Geochronology Center, Special Publicatio n 5.
     Ma G G, Li H X and Zhang Z C. 1984. An investigation of the age limits of th e Si nian system in South China[J]. Bulletin of Yichang Institute of Geological Min er al Resources, Chinese Academy of geological sciences, (8): 1_29 (in Chinese with English abstract).
     Okay A I, Sengr A M C and Satir M. 1993. Tectonics of an ultrahigh_pressure me t amorphic terrain: The Dabie Shan/Tongbai Shan Orogen, China[J]. Tectonics, 12: 1320_1334.
     Pan Y D, Liu C L and Xu H M. 2011. Characteristics and formation of potassium_be aring brine in the deep strata in depression in Hubei Jiangling Province[J]. G eology of Chemical Minerals, 33(3): 65_71(in Chinese with English abstract).
     Qiu Y M, Gao S, McNaughton N J, Groves D I and Ling W L. 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implicat ions for Archean crustal evolution and Phanerozoic tectonics[J]. Geology, 28: 11_14.
     Ratschbacher L, Hacker B R, Webb L E, McWilliams M, Ireland T, Dong S, Calvert A , Chateigner D and Wenk H R. 2000. Exhumation of the ultrahigh_pressure continen tal crust in East Central China: Cretaceous and Cenozoic unroofing and the Tan_L u fault[J]. Journal of Geophysical Research, 105: 13303_13338.
     Roser B P and Korsch R J. 1986. Determination of tectonic setting of sandstone_m udstone suites using SiO2 content and K2O/Na2O ratio[J]. Journal of Geology, 94: 635_650.
     Shen C B, Mei L M, Liu Z Q and Xu S H. 2009. Apatite and zircon fission track da ta, evidences from the Mesozoic_Cenozoic uplift of Huangling Dome, central Chi na[J]. Journal of Mineralogy and Petrology, 29(2): 54_60 (in Chinese with En glis h abstract).
     Shen C B, Mei L F, Peng L, Chen Y Z, Yang Z and Hong G F. 2012. LA_ICPMS U_Pb zi rcon age constraints on the provenance of cretaceous sediments in Yichang area o f Jianghan Basin, central China[J]. Cretaceous Research, 34: 172_183.
     Shi Y S, Jia C Z,JiaD and Guo L Z. 1990. Plate tectonics of East Qinling Mountai ns, China[J]. Tectonophysics, 183: 25_30.
     Sircombe K N. 1999. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia[J]. Sedimentary Geology, 124: 4 7_67.
     Wang C L, Liu C L, Hu H B, Mao J S, Shen L J and Zhao H T. 2012. Sedimentary cha racteristics and its environmental significance of salt_bearing strata of the Me mber 4 of Paleocene Shashi Formation in southern margin of Jiangling Depression, Jianghan Basin[J]. Journal of Palaeogeography, 14(2): 165_175 (in Chinese wit h English abstract).
     Wang C L, Liu C L, Xu H M, Wang L C and Zhang L B. 2013a. Carbon and oxygen isot opes characteristics of Palaeocene saline lake facies carbonates in Jiangling De presssion and their environmental significance[J]. Acta Geoscientica Sinica, 3 4(5): 567_576 (in Chinese with English abstract).
     Wang C L, Liu C L, Xu H M, Wang L C and Zhang L B. 2013b. Homogenization tempera ture study of salt inclusions from the upper section of Shashi Formation in Jian gling Depression[J]. Acta Petrological et Mineralogical, 32(3): 383_392 (in Ch inese with English abstract) .
     Wang C L, Liu C L, Liu B K, Shen L J, Cai X L, Yu X C, Xie T X, Wang L C, Zhao Y J and Xuan Z Q. 2015. The discovery of carnallite in Paleocene Jiangling Depres sion and its potash searching significance[J]. Acta Geologica Sinica, 89(1): 1 29_136 (in Chinese with English abstract).
     Wang X L, Zhou J C, Griffin W L, Wang R C, Qiu J S, O Reilly S Y, Xu X S, Liu X M and Zhang G L. 2007. Detrital zircon geochronology of Precambrian basement seq uences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 159: 117_131.
     Wang Y J, Fan W M, Peng T P, Zhang H F and Guo F. 2005. Nature of the Mesozoic l ithospheric mantle and tectonic decoupling beneath the DabieOrogen, Central Chin a: Evidence from 40Ar/39Ar geochronology, elemental and Sr_Nd_Pb isotopic compos itions of Early Cretaceous mafic igneous rocks[J]. Chemical Geology, 220: 165_ 189.
     Wang Y J, Zhao G C, Xia X P, Zhang Y H, Fan W M, Li C, Bi X W and Li S Z. 2009. Early Mesozoic unroofing pattern of the Dabie Mountains (China): Constraints fro m the U_Pb detrital zircon geochronology and Si_in_white mica analysis ofsynorog enic sediments in the Jianghan Basin[J]. Chemical Geology, 266: 231_241.
     Wang Y, Zhang A, Fan W, Zhao G, Zhang G, Zhang Y, Li F and Li S. 2011. Kwangsian crustal anatexis within the eastern South China Block: Geochemical, zircon U_Pb geochronological and Hf isotopic fingerprints fromthe gneissoid granites of Wug ong and Wuyi_Yunkai domains[J]. Lithos, 127: 239_260.
     Weltje G J and Eynatten H. 2004. Quantitative provenance analysis of sediments: Review and outlook[J]. Sedimentary Geology, 171: 1_11.
     Wu F Y, Yang J H, Simon A W, Liu X M, Guo J H and Zhai M G. 2007. Detrital zirco n U_Pb and Hf isotopic constraints on the crustal evolution of North Korea[J]. Precambrian Research, 159: 155_177.
     Wu R X, Zheng Y F,Wu Y B, Zhao Z F, Zhang S B, Liu X M and Wu F Y. 2006. Reworki ng of juvenile crust: Element and isotope evidence from Neoproterozoic granodior ite in South China[J]. Precambrian Research, 146: 179_212.
     Xiong Q, Zheng J P, Yu C M, Su Y H and Zhang Z H. 2009. Zircon U_Pb age and Hf i sotope of Quanyishang a_type granite in Yichang: Signification for the Yangtze c ontinental cratonization in Paleoproterozoic[J]. Chinese Science Bulletin, 54( 3): 436_446.
     Xu Z Y, Lu W Z, Lin K, Liu C Y, Wang Y J and Guo F. 2005. Discrepant uplifting p rocesses of the Qingling_Dabie and Jiangnan Orogens: Evidence from Meso_Cenozoic sedimentary records in the Jianghan superimposed Basin[J]. Chinese Journal of Geology, 40: 179_197 (in Chinese with English abstract).
     Yan Y, Lin K, Wang Y J and Guo F. 2002. The indication of continental detrital s ediment to tectonic setting[J]. Advances in Earth Sciences, 17(1): 85_106 (in Chinese with English abstract).
     Yang Z Y and He B. 2012. Geochronology of detrital zircons from the Middle Trias sic sedimentary rocks in the Nanpanjiang Basin: Provenance and its geological si gnificance[J]. Geotectonica et Metallogenia, 36(4): 581_596(in Chinese wit h English abstract).
     Yao J L, Shu L S, Santosh M and Li J Y. 2013. Geochronology and Hf isotope of de trital zircons from Precambrian sequences in the eastern Jiangnan Orogen: Constr aining the assembly of Yangtze and Cathaysia Blocks in South China[J]. Journal of Asian Earth Sciences, 74: 225_243.
     You Y, Xia P and Yu L L. 2013. Sedimentary characteristics of evaporates of Shas hi Formation in Jiangling Depression[J]. Journal of Yangtze University (Natura l Science Edition), 10(2): 41_44 (in Chinese) .
     Yu X C, Wang C L, Liu C L, Zhang Z C, Xu H M and Xie T X. 2014. REE geochemical characteristics of sedimentary rocks in Jianghan Depression and their geological sinificance[J]. Mineral Deposits, 33(5): 1057_1068 (in Chinese with English a bstract).
     Yu X C, Wang C L, Liu C L, Zhang Z C, Xu H M, Huang H, Xie T X, Li H N and Liu J L. 2015. Sedimentary characteristics and depositional model of a Paleocene_Eoce ne salt lake in the Jiangling Depression, China[J]. Chinese Journal of Oceanol ogy and Limnology, 33(6): 1426_1435.
     Yuan H H, Zhang Z L, Liu W and Lu Q X. 1991. Direction dating method of zircon g rains by 207Pb/206Pb[J]. Journal of Mineralogy and Pet rology, (2): 72_79 (in Chinese with English abstract).
     Yuan H L, Gao S, Liu X M, Li H M, Günther D and Wu F Y. 2004. Accurate U_Pb age and trace element determinations of zircon by laser ablation inductively couple d plasma mass spectrometry[J]. Geostandards and Geoanalytical Research, 28: 35 3_370.
     Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S and Wu F Y. 2006a. Zircon U_Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Ar chean crust in South China[J]. Earth and Planetary Science Letters, 252: 56_71 .
     Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S and Wu F Y. 2006b. Zircon U_Pb age and Hf_O isotope evidence for Paleoproterozoic metamorphic event in South China [J]. Precambrian Research, 151: 265_288.
     Zheng Y F. 2003. Neoproterozoic magmatism and global changes[J]. Chinese Scien ce Bulletin, 48: 1639_1656.
     Zheng Y F, Wu Y B, Chen F K, Gong B, Li L and Zhao Z F. 2004. Zircon U_Pb and ox ygen isotope evidence for a large_scale 18O depletion event in ign eous rocks d uring the Neoproterozoic[J]. Geochimica et Cosmochimica Acta, 68: 4145_4165.
     Zheng Y F and Zhang S B. 2007. Formation and evolution of Precambrian continenta l crustal in South China[J]. Chinese Science Bulletin, 52: 1_12.
     Zhou M F, Kennedy A K, Sun M, Malpas J and Lesher C M. 2002. Neoproterozoic arc_ related mafic intrusions along the northern margin of South China: Implications for the accretion of Rodinia[J]. Journal of Geology, 110: 611_618.
    
     附中文参考文献
    
     白寿昌. 1989. 鄂西“三峡红"——黄陵花岗岩的岩石化学特征[J]. 中国非金属 矿工业导刊, (1): 25_29.
     湖南省地质矿产局. 1998. 湖南省区域地质[M]. 北京: 地质出版社. 368_465.
     江西省地质矿产局. 1984. 江西省区域地质[M]. 北京: 地质出版社. 358_558.
     雷玮琰,施光海,刘迎新. 2013. 不同成因锆石的微量元素特征研究进展[J]. 地学前缘, 20(4): 273_284.
     李俊. 2009. 中扬子上侏罗统—古近系古水流特征及其与盆地充填演化的关系(硕士论文) [D]. 导师: 于炳松. 北京: 中国地质大学. 63_66.
     刘成林. 2013. 大陆裂谷盆地钾盐矿床特征与成矿作用[J]. 地球学报, 34(5): 515_527. 
     刘成林,王春连,徐海明,刘宝坤,沈立建,王立成,赵艳军. 2013. 江陵凹陷古近系蒸发 岩中钾盐矿物研究进展[J]. 矿床地质,32(1): 221_222.
     刘丽军,肖建新,林畅松,王典敷,卢明国. 2003. 江汉盆地江陵凹陷沙市组层序地层与沉 积体系分析[J]. 石油勘探与开发, 30(2): 27_29.
     刘中戎,王雪玲. 2009. 江汉盆地西南缘隐蔽圈闭形成特征及油气勘探意义[J]. 石油天 然气学报(江汉石油学院学报), 31(4): 176_179.
     陆松年,陈志宏,相振群,李怀坤,李惠民,宋彪. 2006. 秦岭岩群副变质岩碎屑锆石年龄 谱及其地质意义探讨[J]. 地学前缘, 13(6): 303_310.
     马国干,李华芹,张自超. 1984. 华南地区震旦纪时限范围的研究[J]. 中国地质科 学院宜昌地质矿产研究所所刊, (8): 1_29.
     潘源敦,刘成林,徐海明. 2011. 湖北江陵凹陷深层高温富钾卤水特征及其成因探讨[J]. 化工矿产地质, 33(3): 65_71.
     沈传波,梅廉夫,刘昭茜,徐思煌. 2009. 黄陵隆起中_新生代隆升作用的裂变径迹证据[J ]. 矿物岩石, 29(2): 54_60.
     王春连,刘成林,胡海兵,毛劲松,沈立建,赵海彤. 2012. 江汉盆地江陵凹陷南缘古新统 沙市组四段含盐岩系沉积特征及其沉积环境意义[J]. 古地理学报, 14(2): 165_175.
     王春连,刘成林,徐海明,王立成,张林兵. 2013a. 江陵凹陷古新世盐湖沉积碳酸盐碳氧 同位素组成及其环境意义[J]. 地球学报,34(5): 567_576.
     王春连,刘成林,徐海明,王立成,张林兵. 2013b. 江陵凹陷沙市组上段石盐包裹体测温 学研究[J]. 岩石矿物学杂志,32(3): 383_392.
     王春连,刘成林,刘宝坤,沈立建,蔡晓琳,余小灿,谢腾骁,王立成,赵艳军,宣之强. 2015. 江陵凹陷古新统光卤石的发现及其钾盐找矿意义[J]. 地质学报, 89(1): 129_136. 
     徐政语,卢文忠,林舸,刘池阳,王岳军,郭峰. 2005. 秦岭_大别造山带与江南造山带差 异隆升过程:来自江汉盆地中_新生代沉积记录的证据[J]. 地质科学, 40(2): 179_197. 
     闫义,林舸,王岳军,郭锋. 2002. 盆地陆源碎屑沉积物对源区构造背景的指示意义[J]. 地球科学进展,17(1): 85_106.
     杨宗永,何斌. 2012. 南盘江盆地中三叠统碎屑锆石地质年代学: 物源及其地质意义[J]. 大地构造与成矿学, 36(4): 581_596.
     尤英,夏平,余丽玲. 2013. 江陵凹陷沙市组蒸发岩沉积特征研究[J]. 长江大学学 报(自然科学版), 10(2): 41_44.
     余小灿, 王春连, 刘成林, 张招崇, 徐海明, 谢腾骁. 2014. 江陵凹陷古新统沉积岩稀土元 素地球化学特征及其地质意义[J]. 矿床地质, 33(5): 1057_1068.
     袁海华,张志兰,刘炜,卢秋霞. 1991. 直接测定颗粒锆石207Pb/20 6Pb年龄的方法[J]. 矿物岩石, (2): 72_79.