DOi: 10.16111/j.0258_7106.2017.02.003
 海南省新村钼矿床LA_ICP_MS锆石U_Pb和辉钼矿Re_Os年龄及其地质意义 
    胡军1,徐德明1,张鲲1,王磊1,陈沐龙2,云平2

(1 中国地质调查局武汉地质调查中心, 湖北 武汉430205; 2 海南省地质调查院, 海南 海口570206)

收稿日期2016_09_29;

本文得到中国地质调查局地质矿产调查项目(编号: 12120113067200、DD20160035)资 助

摘要:新村钼矿床是海南省近年来发现的具中型规模的钼矿床。文章对赋矿 二长花岗岩进行 LA_ICP_MS锆石U_Pb同位素测年,获得206Pb/238U年龄加权平均值为 (102.0±1.5) Ma(MSWD=2.3);对辉钼矿进行Re_Os同位素定年,获得5件样品的模式 年龄范围为(97.29±1.43) Ma~(98.52±1.55) Ma,加权平均年龄为(97.84±0 .64) Ma,等时线年龄为(98.90±3.40) Ma,成岩年龄与成矿年龄在误差范围内一致 。辉钼矿的Re含量和锆石Hf同位素特征指示新 村钼矿的成岩成矿物质来自于壳幔混源。新村钼矿床的成岩成矿年龄与海南岛最重要的钼成 矿期 (95~105 Ma)一致,属中国东部早白垩世晚期—晚白垩世早期钼成矿事件的一部分,与该 时期岩石圈大规模拉伸减薄、软流圈上涌及强烈壳_幔作用密切相关。
关键词: 地球化学;LA_ICP_MS锆石U_Pb年龄;辉钼矿Re_Os年龄;Hf同位素; 成矿背景;新村钼矿床;海南省
文章编号: 0258_7106 (2017) 02_0303_14 中图分类号: P618.65 文献标志码:A
LA_ICP_MS zircon U_Pb and molybdenite Re_Os dating of Xincun Mo ore deposit 
    in Hainan Province and its geological significance 
HU Jun1, XU DeMing1, ZHANG Kun1, WANG Lei1, CHEN MuLong2 and YUN Ping 2

(1 Wuhan Center of China Geological Survey, Wuhan 430205, Hubei, China; 2 Hainan Provincial Institute of Geological Survey, Haikou 570206, Hainan, China)

2016_09_29

Abstract:The Xincun Mo ore deposit is a newly discovered medium_size deposit in Hainan Pr ovince. The LA_ICP_MS zircon U_Pb analysis of monzonite yielded a weighted206Pb /238U mean age of (102.0±1.5) Ma (MSWD=2.3). Re_Os dating of five molybdenite s amples separated from the Xincun Mo ore deposit yielded model ages from (97.29 ± 1.43) Ma to (98.52±1.55) Ma, a weighted average age of (97.84±0.64) Ma an d an isochron age of (98.90±3.40) Ma. These ages suggest that the mineralization i n the Xincun Mo ore deposit was genetically associated with the monzonite,and the rock_ and ore_forming process was continuous. The Re content of molybdenite and Hf isotopic compositions of zircon imply that the rock_ and ore_forming materia ls were derived from the mixture of the mantle and the crust. These data indicat e that the ages of the intrusion and orebody from the Xincun Mo ore deposit are identical with those (95~105 Ma) of most Mo deposits in Hainan Province, being p art of the molybdenum mineralization event in the period of the late stage of ea rly Cretaceous and the early stage of late Cretaceous in eastern China. Accordin gly, the metallogenic geodynamical setting of the Xincun Mo ore deposit might ha ve been related to a pull_apart and stretching environment accompanied by asthen osphere upwelling and strong crust_ mantle interaction.
Key words:  geochemistry,LA_ICP_MS zircon U_Pb age, molybdenite Re_Os ag e, Hf is otopic compositions, metallogenic setting, Xincun Mo ore deposit, Hainan Provinc e
        ·近年来,在海南岛相继发现了一批重要的钼矿床(点)(图1),显示了较大的找矿潜力, 然而针对海南岛钼矿成矿作用的相关科研工作起步较晚,研究程度不高(付王伟等,2013) ,成矿年代学的研究一直是矿床学研究的重要和热点问题之一,随着锆石U_Pb同位素和辉钼 矿Re_Os同位素高精度定年技术的成熟,学者们陆续获得了部分矿床(罗葵洞钼矿床、石门 山钼铅锌多金属矿床及高通岭钼矿床等)精确的成岩成矿年龄,为区域成岩成矿特征和成矿 动力学背景认识提供了基础(廖香俊等,2008;贾小辉等,2010;付王伟等,2013;2014; 李孙雄等,2014;Xu et al., 2016)。
        新村钼矿床是海南岛新发现的中型规模的热液型钼矿床,前人仅对其矿床地质特征、成岩成 矿 年龄及成因认识进行了初步报道(汪啸风等,1991;王龙等,2012;付王伟,2013)。王龙 等(2012)通过开展辉钼矿Re_Os测年,认为新村钼矿床存在(97.2 ± 0.5) Ma和(112 .3 ±4.2) Ma两期矿化事件,而后者仅是单点(1件辉钼矿样品)模式年龄,是否能代表 早白 垩 世晚期的钼矿化事件还有待进一步考证;汪啸风等(1991)报道了与新村钼矿成矿密切相关 的保城岩体侵位时代为96 Ma(全岩Rb_Sr),略晚于辉钼矿Re_Os同位素的年龄,不 符合一 般岩浆矿床的成矿规律,且岩体的Rb_Sr等时线年龄受流体活动影响也会存在很大误差。因 此,新村钼矿床的成岩成矿年龄仍有待精确厘定,且该矿床成岩成矿物质来源及成矿动力学 背景的研究和探讨也相对薄弱。本文在前人研究基础上,选择赋矿花岗质侵入体(二长花岗 岩)和辉钼矿矿石样品开展锆石U_Pb和辉钼矿Re_Os定年,对新村钼矿床的成岩、成矿进行 更加系统的年代学研究,结合锆石Hf同位素组成特征,追溯成矿物质来源,探讨矿床形成的 动力学背景,利用成岩成矿连续性的时间制约来解决岩浆活动与成矿的关系,为矿床成因和 区域成矿规律研究提供科学依据。
1区域及矿区地质
        海南岛地处欧亚板块、印度板块和太平洋板块的交接部位,具有极其复杂的大地构造特征和 地质构造演化历史,曾经历中岳期、晋宁期、加里东期、海西期—印支期、燕山期和喜马拉 雅期等构造运动,地壳的多次开合运动形成了一系列不同类型的沉积建造、岩浆建造和变质 建造(Xu et al., 2013;付王伟等,2014),发育了NNE向和近EW向为主的构造体系,NNE 向构造带以白沙断裂和戈枕断裂为主, 而近EW向构造带自北至南主要有4条断裂:王五_文教 断裂、昌江_琼海断裂、尖峰_吊罗断裂和九所_陵水断裂,将海南岛划分为3个大地构造单元 :雷琼新生代断陷带、五指山加里东褶皱带和三亚地块(图1)(杨树峰等,1989;汪啸风 等,1991;Xu et al., 2016)。
        新村钼矿床位于三亚市以北33 km的保亭县境内,罗葵洞大型钼矿床NNW向约6 km处,截止20 13年,探明钼金属资源量为4037.91 t,平均品位约为0.09%(王龙等,2012;付王伟,20 1 3),大地构造位置处于九所_陵水深大断裂中段南侧,三亚地块北端,早白垩世同安岭陆相 火山岩盆地南缘,东与保成岩体相接(图1,图2)。区内出露早白垩世岭壳村组,该组位于 同安岭火山岩盆顶部,岩性以流纹质火山熔岩及火山碎屑岩为主,夹数层英安质火山岩,底 部以流纹质含砾凝灰岩为主;岭壳村组东部发育酸性侵入岩,其中浅成_超浅成侵入岩(酸 性斑状岩性组合)主要由潜流纹斑岩_花岗斑岩_斑状黑云母二长花岗岩组成,该套岩石组合 呈现出明显的似层状展布特征,其岩性、结构构造可与岭壳村组火山岩相对比;中深成侵入 岩为灰白色二长花岗岩,属于保城复式岩体的一部分;区域上与矿区成矿作用相关的主要构 造为九所_陵水断裂,该断裂间接控制着矿区及其外围的Mo_Cu_Au矿化,受同安岭火山穹窿 和火山机构的影响,区内发育NE向、近SN向、NW向、EW向4组断裂带,在这些断裂中均可见 到不同程度发育的辉钼矿和黄铁矿化,其中,NW向断裂最发育,主要发育在矿区西北角,同 时也是最重要的控矿构造(图2)。
2矿床地质
        ·矿区内圈出有工业价值的钼矿脉达39条,矿体 呈近平行脉状、透镜状分布,与主构造线方向一致,
图 1海南岛区域地质及钼矿床分布图(据Xu et al., 2016修改)
     1—中新生代盖层; 2—新生代玄武岩; 3—白垩系砾岩; 4—白垩系火山岩; 5—古生代火山 -碎屑-碳酸盐岩; 6—中_新元古代变质碎屑-碳酸盐岩; 7—古_中元古代片麻岩、片岩 ; 8—新太古宙杂岩; 9—燕山晚期 (90~130 Ma) 花岗岩; 10—燕山早期—印支期 (190~270 Ma) 花岗
    岩; 11—时代未明的变质基性岩和相关的沉积岩; 12—地质界 线; 13—断裂; 14—推测断裂; 15—大型钼矿床; 16—中型钼矿床; 17—小
    型钼矿床
    Ⅰ—雷琼新生代断陷带; Ⅱ—五指山加里东褶皱带; Ⅲ—三亚地块; A—王五-文教断裂; B—昌江_琼海断裂; C—尖峰_吊罗断裂; D—九
    所_陵水断裂; E—白沙断裂; F—戈 枕断裂; ① —梅岭钼矿; ②—高通岭钼矿; ③—红门岭钼钨矿; ④—红岭钼矿; ⑤—报告村钼矿; 
    ⑥—文且钼矿; ⑦—石门山钼铅锌矿; ⑧—新村钼矿; ⑨—罗葵洞钼矿; ⑩—龙门岭钼 矿
    Fig. 1Geological sketch map of molybdenum (Mo)_related ore deposits in Hainan Island (modified after Xu et al., 2016)
     1—Mesozoic to Cenozoic cover bed; 2—Cenozoic basalts; 3—Cretaceous conglomera te; 4—Cretaceous volcanic rocks; 5—Paleozoic volcanic_siliciclastic_carbonate rocks; 6—Meso_ to Neoproterozoic metamorphosed siliciclastic and carbonate rock s; 7—Paleo_ to Mesoproterozoic gneiss and schist; 8—Neoarchean complex (?); 9 —Late Yanshanian (90~130 Ma) granites; 10—Early Yanshanian_Indosinian (190~270 Ma) granites; 
    11—Metabasites and associated sedimentary rocks of unknown age; 12—Geological boundary; 13—Fault; 14—Inferred fault; 15—Large-sized 
    Mo deposit; 16—Medium-sized Mo deposit; 17—Small_sized Mo deposit
     Ⅰ—Cenozoic Leizhou_Qionghai faulted belt; Ⅱ—Caledonian Wuzhishan folded belt ; Ⅲ—Sanya terrane; A—Wangwu_Wenjiao fault; B—Changjiang_Qionghai fault; C—J ianfeng_Diaoluo fault; D—Jiusuo_Lingshui fault; E—Baisha fault; F—Gezhen faul t; ①—Meiling Mo deposit; ②—Gaotongling Mo deposit; ③—Hongmenling Mo_W depo sit; ④—Hongling Mo deposit; ⑤—Baogaocun Mo deposit; ⑥—Wenqie Mo deposit; 
    ⑦—Shimenshan Mo_Pb_Zn deposit; ⑧—Xincun Mo deposit; ⑨—Luokuidong M o deposit; ⑩—Longmenling Mo deposit     
     走向NW,矿体长度为200~700 m,最长可达1100 m,厚度一般1~3 m,最厚22.87 m ( 图2),Mo品位一般为 0.03%~0.10%,最高为0.89%。钼矿化主要发育在断裂构造及附近 的围 岩中,赋存于早白垩世二长花岗岩、花岗斑岩、潜流纹斑岩及细粒斑状黑云母二长花岗岩中 ,矿化的强弱主要是取决于含矿 石英细脉及裂隙节理的密集程度,两者呈正相关。矿石类型 主要为 石英脉型,次为细脉浸染型,其中石英脉型矿石中辉钼矿呈自形_半自形粒状、叶片 状、团块状分布在石英脉、硅化脉内及其脉壁中;细脉浸染型矿石中辉钼矿呈 细脉浸染状充填在岩石微细裂隙中或者呈稀散的浸染状分布在矿物颗粒间。矿石矿物主要包 括辉钼矿、黄铁矿、黄铜矿和闪锌矿等;脉石矿物以石英和斜长石居多,其次是钾长石、黑 云母、绿泥石和绢云母。矿石具有自形_半自形结构,薄膜状、细脉状、角砾岩状和浸染状 构造。矿区围岩蚀变较为发育,主要类型有硅化、黄铁矿化、钾化、绿泥石化和绿帘石化, 其次是绢云母化、高岭土化和碳酸盐化,钼矿(化)体主要发育在硅化、钾化较强 地带,尤其是彼此叠加地段,并受控于NW向、近SN向断裂。
3样品特征及测试方法
3.1样品采集和特征
        本次研究选取了赋矿二长花岗岩(样品编号:XC1_1,采样位置见图2)进行LA_ICP_MS锆石U _Pb年龄测试。样品呈中细粒花岗结构,块状构造,主要矿物组分为石英、斜长石、钾长石 ,次要矿物黑云母,副矿物为榍石。其中,石英含量约35%,他形粒状,常可见较多气液包 裹 体而略显浑浊,充填于其他矿物的空隙中,可能受到后期构造应力的作用,消光不均匀,多 数颗粒具有不一致消光或波状消光,部分破碎形成小的碎片;斜长石含量约为35%,半 自形_自形晶,聚片双晶发育,矿物蚀变较强,主要为强烈的绢云母化及高岭土化;钾长石 含量约25%,多为他形粒状,自形程度明显比斜长石低,发育有简单双晶或者格子双晶;黑 云母含量约5%,片状晶体,矿物蚀变较强,多为绿泥石化(图3a)。
        用于Re_Os同位素定年的5件辉钼矿(样品编号:XC1_2_1、XC1_2_2、XC1_2_3、XC1_2_4、XC 1_2_5,采样位置见图2)为石英脉型矿石,所有样品都是新鲜的。样品主要矿石矿物为辉钼 矿(5%)、黄铁矿(2%)、闪锌矿(2%)、黄铜矿(1%),脉石矿物主要为石英(90%)。 其中,辉钼矿呈片状_自形片状,分布在脉石矿物(石英)间隙中,局部见有应力作用呈弯 曲 状;黄铁矿呈半自形或他形粒状,被脉石矿物和闪锌矿、黄铜矿交代或充填;闪锌矿呈他形 粒状集合体,颗粒细小,交代黄铁矿,但有的被脉石矿物交代;黄铜矿呈他形粒状,常交代 黄铁矿(图3b)。
3.2测试方法   
3.2.1LA_ICP_MS锆石U_Pb定年
        锆石单矿物挑选工作在河北省廊坊市诚信地质服务公司完成,样品经碎样、磁选及重液分选 等处理之后,双目镜下手工挑选出锆石颗粒,用环氧树脂制靶,并抛光至锆石内部结构充分 暴露,在中国地质大学地质过程与矿产资源国家重点实验室(GPMR)利用JEOL JXA_8100型 电子探针完成阴极发光(CL)照相,单颗粒锆石LA_ICP_MS U_Pb年龄测定在GPMR完成。实验 室采用的LA_ICP_MS是由准分子激光剥蚀系统(GeoLas2005)与电感耦合等离子体质谱仪(A gilent 7500a)的联用,波长193 nm,激光剥蚀半径为32 μm,分析过程中,每测定5个样 品 点,测定一个锆石91500和一个NIST610,91500国际标准锆石为外标标定同位素分馏,NIST SRM610玻璃为外标标定待测样品的REE、U和Th等元素含量。样品同位素比值、表面年龄及元 素含量采用ICPMSDataCal程序(Liu et al., 2008)计算获得,U_Pb加权平均年龄计算及谐 和图绘制则由ISOPLOT3.0 (Ludwig, 2001)完成。  
3.2.2锆石Hf同位素
        原位锆石Hf同位素分析在西北大学大陆动力国家重点实验室完成,采用Nu Plasma HR多接受 质谱和GeoLas 2005激光剥蚀系统联机,激光束斑直径为40 μm,剥蚀频率为10 Hz,测定时 采用锆石国际标样91500作外标,以GJ_1的实时分析对仪器状态进行监控,以He气作为剥蚀 物质载体。所测定样品176Lu/177Hf和176Hf/177 Hf比值以176Lu/175Lu=0.0265和176Yb/172 Yb=0.5886为标准进行校正计算,εHf(t)计算采用的176Lu衰变 常数为1.867×10-11 a-1,球粒陨石现今的176Hf/177 Hf= 0.282 772和176Lu/177Hf=0.0332 (Blichert_Toft et al., 1 997),Hf亏 损地幔模式年龄TDM1的计算采用现今亏损地幔的176Hf/177 Hf=0.283 25和176Lu/177Hf=0.0384,Hf同位素两阶段地壳 模式年 龄TDM2计算时假设大陆平均的176Lu/177Hf=0.015(Griff in et al., 2004)。
   3.2.3辉钼矿Re_Os 定年
        将辉钼矿样品首先粉碎过筛,用重力分离、电磁分离等方法以及在实体显微镜下挑选获得辉 钼矿,辉钼矿质纯,无氧化、无污染,纯度在98%以上,最后用玛瑙钵研磨至200目待测。
图 2新村钼矿床地质简图(据付王伟,2013修改)
     1—早白垩世岭壳村组火山岩; 2—细粒斑状黑云母二长花岗岩; 3—花岗斑岩; 4—潜流 纹斑岩; 5—二长花岗岩; 6—辉钼矿体; 7—断裂; 
    8—地质界线; 9—采样位置 
     Fig. 2Geological sketch map of the Xincun Mo ore deposit (modified after Fu, 2 013)
     1—Volcanic rocks of Early Cretaceous Lingqiaocun Formation; 2—Fine-grained p orphyritic biotite-quartz monzonite; 3—Granite porphyry;
     4—Sub_rhyolite p or phyry; 5—Monzonite; 6—Mo orebody; 7—Fault; 8—Geological boundary; 9 —Sampling location    
图 3新村钼矿床二长花岗岩(a)和矿石(b)显微照片
     Qtz—石英; Pl—斜长石; Kf—钾长石; Bt—黑云母; Mot—辉钼矿; Ccp—黄铜矿; P y—黄铁矿; Sp_闪锌矿
     Fig. 3Microscopic photographs of monzonite (a) and Mo ores (b) from the Xincun Mo ore deposit
     Qtz—Quartz; Pl—Plagioclase; Kf—K_feldspar; Bt_Biotite; Mot_Molybdenite; Ccp—Chlcopyrite; Py—Pyrite; Sp—Sphalerite    
        辉钼矿Re_Os测年分析在国家地质实验测试中心铼_锇同位素年代学实验室完成,测试仪器为 电感耦合等离子体质谱仪TJA X_series ICP_MS,实验过程主要包括分解样品、蒸馏分离Os 、萃取分离Re和质谱测定等4个步骤,具体参见文献(屈文俊等,2003;Du et al., 2004; 李超等,2009)。本次实验的全流程空白为: Re=0.0043 ng,普Os=0.000 09 ng,187Os=0.000 42 ng,实验流程由JDC监控,测定的模式年龄为(141. 0±1.9) Ma,校正后的值为(139.6±3.8) Ma,最后所获Re_Os同位素分析数据采用Ludwi g (2001)计算机软件进行处理,并获得同位素等时线年龄,模式年龄计算所采用的衰变常数 为λ(187Re)=1.66×10-11/a(Smoliar et al., 1996)。
4测试结果
4.1LA_MC_ICP_MS锆石 U_Pb年龄
        本次研究对花岗岩样品19粒锆石进行了20个分析点的测定,校正后锆石数据有效点为18个( 谐和度大于90%),测试结果见表1和表2。锆石均呈无色_淡黄色,长柱状、短柱状、粒状, 长度在80~260 μm之间,长宽比1∶1 ~ 3∶1之间,晶体自形程度好,多数锆石内部结构 清 晰,具有典型的震荡环带结构(图4a),锆石Th/U比值0.38~0.65,平均值0.50(表1) ,且 锆石稀土元素配分模式(图4c)显示HREE强烈富集(LREE/HREE=0.02~0.04)(表2)、 明显 的Ce正异常、Pr负异常和Eu负异常,上述特征均指示所测锆石属于典型的岩浆锆石(Hoskin et al., 2000; Belousova et al., 2002; Yao et al., 2011)。
        18个有效测点的206Pb/238U表面年龄介于95~110 Ma(表1),且均 投影在谐和线附近,谐和 度在95%以上,表明这些锆石未遭受明显后期热事件影响,U_Pb同位素体系封闭性较好,因 此,其加权平均年龄(102.0±1.5)Ma(MSWD=2.3)(图4b)代表岩体的结晶年龄。
4.2锆石Hf同位素
        锆石Hf同位素分析测试和U_Pb 同位素年龄测定所选用的锆石颗粒和测定位置一致,测试结 果见表3。176Hf有2个同质异位素176Lu和176Yb,在进行 176Hf/177Hf比值校正时,必须对这 2个同质异位素进行精确的扣除(吴福元等,2007),由于本文样品的176Lu/ 177Hf比值为0.000 831~0.001 923,均小于0.002,因此,锆石的 176Hf/177Hf比值的干扰主要来自于176Yb,本文样品的176Yb/177Hf比值为0.022 319~ 
表 1新村钼矿床二长花岗岩LA_ICP_MS锆石U_Pb定年结果
     Table 1LA_ICP_MS zircon U_Pb dating results of monzonite in the Xincun Mo ore deposit    
表 2新村钼矿床二长花岗岩锆石稀土元素组成
     Table 2 REE concentrations of zircons from monzonite in the Xincun Mo ore deposi t    
 图 4新村钼矿床二长花岗岩锆石阴极发光图像(a)、U_Pb年龄谐和图(b)及稀土元素配 分模式图(c)
     Fig. 4CL images (a), U_Pb concordia diagram (b) and chondrite_normalized REE p atterns (c) of zircons from monzonite
     in the Xincun Mo ore deposit   
表 3新村钼矿床二长花岗岩锆石Hf同位素分析结果
     Table 3Hf isotopic data of zircons from monzonite in the Xincun Mo ore deposit      
        16个有效测点的176Hf/177Hf比值为0.282 693~0.282 914 ,平均值为0.282 822,对应的εHf(t)值,除测点XC1_1_17为负值 外,其余均 为正值,分布在-0.60~+7.13之间,平均值为3.76,亏损地幔模式年龄TDM1 范围为490~789 Ma,平均地壳模式年龄TDM2范围为707~1199 Ma。
4.3辉钼矿Re_Os同位素年龄
        新村钼矿床5件辉钼矿样品的Re_Os同位素测试结果见表4,可以看出w(Re)介于69. 82 ×10-6~121.30×10-6w(187Re)介于43.88×10- 6~76.25×10-6w(187Os)介于71.72×10-9~124. 70×10-9w(187Re)与w(187Os)成正 相关,这就验证了辉钼矿中的187Os基本上都是由187Re经β 衰变而来,说明用辉钼矿Re_Os定年是可行的,且其w(普Os)为0.0319×10-9 ~0.5166×10-9,远远小于所测样品中的Re、Os含量,因此不会影响实验中Re、O s含量的准确测定。模式年龄计算所用公式为: t=1/λ[ln(1+187Os/187Re)],其中衰变常数 λ=1.666×10-11 a-1。5件样品的模 式年龄介于(97.29±1.43) Ma~(98.52±1.55) Ma,加权平均年龄(97.84±0.6 4) Ma(MSWD=0.46)(图5b),利用Isoplot软件对5组数据进行187Re_ 187Os等时线拟合,线性关系很好,获得等时线年龄为(98.90±3.40) Ma(M SWD=0.73)(图5a)。
5讨论
5.1成岩成矿时代
        由于锆石U_Pb和辉钼矿Re_Os均具有高的封闭温度,因此不易受到后期成岩、热液、变质和 构造事件的影响,即使经历了长时间的地质历史演化,两 者的结合仍能较精确的指示成岩成矿年龄(Stein et al., 2001; Fedo et al., 2003)。 
表 4新村钼矿床辉钼矿Re_Os同位素分析结果
     Table 4Re_Os isotopic analyses of molybdenite from the Xincun Mo ore deposit    
 图 5新村钼矿床辉钼矿 Re_Os 等时线年龄(a)和加权平均年龄(b)
     Fig. 5Molybdenite Re_Os isochron ages (a) and mean ages (b) of the Xincun Mo o re deposit        
        近年来,一些学者对海南岛内典型岩体及其相关的代表性钼矿床开展了研究,积累了一批较 为可靠的年龄数据(廖香俊等, 2008;贾小辉等,2010;付王伟,2013;付王伟等,2013; 李孙雄等,2014;陈沐龙等,2015;Xu et al., 2016)。从表5可以看出,海南岛钼成矿事 件和岩浆活动关系密切,成岩年龄普遍遭早于成矿年龄,显示出多阶段成矿作用的特点,主 要成矿阶段为早白垩世晚期—晚白垩世早期(95~105 Ma),其次为晚白垩世(71~88 Ma )。 新村钼矿床的成矿元素以钼为主,没有明显的金属分带现象,辉钼矿和黄铜矿、黄 铁矿、闪 锌矿等金属矿物都形成于主要成矿阶段,因此辉钼矿的形成年龄可以代表新村钼矿床的真实 成矿年龄。本次工作获得新村钼矿 床5件辉钼矿样品Re_Os同位素等时线年龄为(98.90± 
表 5海南岛典型钼矿床成岩成矿同位素年龄数据
     Table 5Rock_ and ore_forming age data from typical Mo deposits in Hainan Islan d
        前人研究表明中国东部早白垩世晚期—晚白垩世早期存在一期重要的钼成矿事件(付王伟等 ,2013;2014)。新村钼矿的成矿年龄略晚于东秦岭_大别山中生代早白垩世晚期(105~11 6 Ma)钼成矿作用(黄凡等,2011),与东南沿海(福建东部)钼矿床成矿年龄(92~113 M a)(赵芝等,2012;付王伟等,2013)一致,是海南岛重要钼成矿阶段(95~105 Ma)的 产物。
5.2成矿物质来源
        Re_Os同位素体系中Re含量是矿床成矿物质来源的重要示踪剂,同时也是矿床形成过程中地 壳物质混入程度的高灵敏指示剂,从地幔来源到壳幔混源再到地壳来源,矿石中Re的含量呈 数量级递减,从幔源、壳幔混合到地壳来源,w(Re)一般从n×10-4~ n×10-5n×10-6变化(Mao et al., 1999; Stein et al., 2001 ), 即当辉钼矿中w(Re)在100×10-6~1000×10-6时,其成矿物质来源为 幔源;w(Re)为10×10-6~100×10-6时,其钼矿的成矿物质来源为壳 幔混合;当辉钼矿中w(Re)为1×10-6n×10-6或者更低时,其 成矿物质来自于壳源(卢志强等,2016)。本文所测辉钼矿Re_Os同位素w(Re)分布 在69.82×10-6~121.30×10-6,平均值86.41×10-6,与壳幔混源 岩浆热液矿床中Re含量接近,表明新村钼矿的成矿物质来源属于壳幔混源型,辉钼矿的高Re 含量暗示部分地幔物质参与了成矿作用。
        锆石Hf同位素是反演岩浆源区特征的有效手段之一(Griffin et al., 2004; Condie et a l., 2009)。本次研究获得的锆石εHf(t)值多数为正值,分布在-0.60~+7. 13之间,εHf(t)值变化范围在6个εHf单位以上,远大于仪器测试误 差,Hf同位素组成的不均一指示应有多种组分参与成岩过程。在tHf(t )关系图(图6)中,样品点基本均位于球粒陨石均一储库(CHUR)与亏损地幔(DM)演化 线之 间,且明显低于地幔演化线,Hf亏损地幔模式年龄TDM1范围为490~789 Ma, 明 显大于其结晶年龄532 Ma,上述锆石Hf同位素组成特征说明新村钼矿 区岩体成岩过程中有明显的壳幔混合作用。
图 6新村钼矿床二长花岗岩锆石Hf同位素组成特征
     Fig. 6Hf isotopic characteristics of zircons from 
    monzonite in the Xincun Mo ore deposit    
        王龙等(2012)通过新村钼矿床辉钼矿和黄铁矿S同位素研究表明其硫源为岩浆硫;付王伟 (2013)和Xu等(2016)通过辉钼矿Re_Os同位素体系中Re含量和成矿阶段金属硫化物的S同位 素研究表明海南岛钼矿床成矿物质以壳幔混源为主;大量的前人研究成果也表明,与海南岛 钼 成矿作用密切相关的早白垩世晚期—晚白垩世酸性侵入岩以壳幔混源I型花岗岩为主(云平 等 ,2003;2005;付王伟,2013),中国东南部晚中生代岩浆作用过程中的壳幔岩浆混合现象 也有大量文献记述(王德滋等,2008;刘亮等,2011)。
        因此,新村钼矿床辉钼矿Re含量和锆石Hf同位素特征表明了成岩成矿成因关系密切,成矿物 质来源为壳幔混合。
5.3成矿动力学背景探讨
        大量高精度成岩成矿年龄数据的积累,对重大成岩成矿事件的认识非常重要。新村钼矿床在 时间、空间以及成因上均与矿区酸性侵入岩密切相关,而不同来源和性质的岩浆岩是该地区 岩石圈演化过程中不同时期、不同构造动力学背景的产物,其成岩成矿应形成于相同的构造 背景之下(华仁民等,2003)。
        早三叠世海南岛已经是华南板块的一部分,其与华南地区经历了相似的构造演化(李献华等 ,2000)。毛景文等(2004)将华南地区中生代大规模成矿作用划分为170~150 Ma、140~ 1 25 Ma和110~80 Ma三个时间段,认为其成矿动力学背景为华南和华北板块后碰撞及太平洋 板 块俯冲引起的弧后多阶段岩石圈伸展有关。诸多学者也认为135 Ma之后,太平洋板块由原先 向西斜向俯冲改为几乎平行大陆边缘运动(可能由太平洋板块后撤)引起,使得原先中国东 部 地壳以挤压为主的应力环境发生改变,变为拉张伸展环境,特别是晚白垩世从拉张进入裂谷 或裂解阶段,该构造环境是整个华南地区白垩纪成矿的地球动力学背景,有利于岩体的侵位 和矿床的形成(Li, 2000; 毛景文等, 2004;2007;2011; 周涛发等,2008;Mao et al., 2008a;2008b;2013; 赵海杰等,2012;郑伟等,2015)。
        葛小月(2003)研究发现,海南岛白垩纪基性岩脉的形成时代主要分为3期(135 Ma、117~ 105 Ma 和96~81 Ma),与海南岛主要钼矿床成岩成矿时代(95~105 Ma)一致,含钼花岗岩与基 性岩墙之间的密切关系也被认为是白垩纪岩石圈伸展的有力证据之一。
        Li(2000)和曹建劲等(2009)通过对比研究海南岛、粤北、福建沿海和广东南部基性岩脉 ,认为白垩纪(146~54 Ma)广东及海南岛岩石圈处于因软流圈入侵熔蚀岩石圈地幔引起 的大规模拉张减薄的环境中,基性岩脉形成的主要时代为138~132 Ma、112~105 Ma、99~ 82 Ma和75~54 Ma,与海南岛重要钼成矿期相对应。
        唐立梅(2010)对海南岛文市、叉河和三亚地区基性岩墙群开展年代学和地球化学系统研究 ,同时与福建、广东地区进行对比,认为海南岛存在早白垩世晚期(101 Ma)和晚白垩世早 期(93 Ma)2次构造伸展事件,后者也是中国东南部区域强烈拉张作用的时代。
        李孙雄等(2014)对海南岛罗葵洞、文且和石门山钼矿床开展了辉钼矿Re_Os定年,同时通 过区域钼矿成矿特征和岩浆事件对比,认为海南岛钼矿具有多阶段或多次成矿作用的特点, 主成矿期在100 Ma左右,其次为80~88 Ma,其地球动力学背景是大陆边缘岩石圈拉张减薄 、软流圈地幔上涌的伸展构造体制。
        上述观点普遍认同早白垩世晚期—晚白垩世海南岛处于岩石圈大规模伸展减薄的构造环境中 ,与该地区钼矿床的主要成矿年龄(71~105 Ma)相对应,因此,海南岛钼矿床可能形成于 岩石圈大规模拉伸减薄,软流圈上涌加热下地壳,强烈壳_幔相互作用,形成富含金属成矿 元素的花岗质岩浆沿构造薄弱部位侵位的动力学背景下(贾小辉等,2010; Wang et al., 2 012; 付王伟等,2013)。
6结论
        (1) 通过对新村钼矿床赋矿二长花岗岩开展LA_ICP_MS锆石U_Pb测年,获得206 Pb/238U年龄 加权平均值为(102.0±1.5) Ma(MSWD=2.3),5件辉钼矿的Re_Os加权平均年龄为(97 .84 ±0.64) Ma(MSWD=0. 46),等时线年龄为(98.90±3.40) Ma(MSWD=0.73),成 岩成矿时代在误差范围内基本一致,表明钼矿形成于晚白垩世早期。
        (2) 新村钼矿床辉钼矿的w(Re)为69.82×10-6~121.30×10-6, 平均值86.41×10-6,二长花岗岩锆石的εHf(t)值为-0.60~+7.1 3,多数为正值,平均值3.76,反映成岩成矿物质 来源于壳幔混合。
        (3) 新村钼矿床岩体和矿体空间上紧密共生,时间上高度统一,成岩、成矿具有同源性。 
        (4) 海南岛最重要钼成矿期介于95~105 Ma之间,是中国东部早白垩世晚期—晚白垩世早 期 钼成矿事件的一部分,与该时期岩石圈大规模拉伸减薄,软流圈上涌及强烈壳_幔作用密切 相关,新村钼矿床为该动力学背景下的产物。
志谢野外地质工作期间,得到了海南省地质调查院的大力支持和帮助;实验阶 段得到了 国家地质实验测试中心屈文俊、李超等人的帮助;审稿专家对本文的修改提出了宝 贵意见,在此一并谨表谢忱。    
     References    
     Belousova E A, Griffin W L, OReilly S Y and Fisher N I. 2002. Igneous z ircon: T race element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 143: 602_622.
     Blichert_Toft J and Albarde F. 1997. The Lu_Hf isotope geochemistry of chondrite s and the evolution of the mantle_crust system[J]. Earth and Planetary Science Letters, 148(1_2): 243_258.
     Cao J J, Hu R Z, Xie G Q and Liu S. 2009. Geochemistry and genesis of mafic dike s from the coastal areas of Guangdong Province, China[J]. Acta Petrologica Sinica, 25(3): 984_1000 (in Chinese with English abstract).
     Chen M L, Lü Z Y, Ma C Q and Yun P. 2015. Re_Os isotopic dating and geological implications of Shimenshan Mo polymetallic deposit in Hainan Island [J]. Miner al Resources and Geology, 29(4): 546_551(in Chinese with English abstract).
     Condie K C, Belousova E, Griffin W L and Sircombe K N. 2009. Granitoid event s in space and time: Constraints from igneous and detrital zircon age spectra[J]. Gondwana Research, 15: 228_242.
     Du A D,Wu S Q,Sun D Z,Wang S X,Qu W J,Stein R M H,Morgan J and Malinovskiy D.2004.Preparation and certification of Re_Os dating reference materials: Mol ybdenite HLP and JDC[J]. Geostandard and Geoanalytical Research, 28(1): 41_52 .
     Fedo C M,Sircombe K N and Rainbird R H. 2003. Detrital zircon analysis of the s edimentary record[J]. Reviews in Mineralogy and Geochemistry, 53: 277_303.
     Fu W W, Xu D R, Fu R Y, Wu C J, Yang C S, Zhou Y C and Wang Z L. 2013. Molybdeni te Re_Os isotopic dating of Hongmenling Mo_W deposit in Hainan Province and its geological implications[J]. Journal of East China Institute of Technology, 36( 2): 135_142 (in Chinese with English abstract).
     Fu W W, Xu D R, Wu C J, Fu R Y, Zhou Y C, Zhou Y Q, Wang Z L and Lin G. 2014. LA _ICP_MS zircon U_Pb dating of syenogranites hosting Gaotongling Mo deposit in Ha inan Province: Implications for metallogenesis[J]. Mineral Deposits, 33(2): 41 9_427 (in Chinese with English abstract).
     Fu W W. 2013. An Research on ore deposit_types and geodynamic background of the Mo ore deposits in Hainan Province, South China (dissertation for Master degree) [D]. Supervisor: Xu D R. Guangzhou: Guangzhou Institute of Geochemistry, Chine se Academy of Sciences. 1_172 (in Chinese with English abstract).
     Ge X Y. 2003. Mesozoic magmatism in Hainan Island (SE China) and its tectonic si gnificance: Geochronology, geochemistry and Sr_Nd isotope evidences[D]. Superv is or: Li X H and Zhou H W. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences 1_87 (in Chinese with English abstract).
     Griffin W, Belousova E and Shee S. 2004. Archean crustal evolution in the northe n Yilgam Craton: U_Pb and Hf_isotope evidence from detrital zircons[J]. Preeam brian Researeh, 131: 231_282.
     Grlffin W L, Wang X and Jaekson S E. 2002. Zircon chemistry and magma mixing, SE China: In_situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J ]. Lithos, 61: 237_69.
     Hoskin P W O and Ireland T R. 2000. Rare earth element chemistry of zircon and i ts use as a provenance indicator[J]. Geology, 7: 627_630.
     Hua R M, Chen P R, Zhang W L, Liu X D, Lu J J,Lin J F, Yao J M, Qi H W,Zhang Z S and Gu C Y. 2003. Metallogenic systems related to Cenozoic and Mesozoic grani toids in South China[J]. Science in China (Series D), 33(4): 335_ 343 (in Chin ese).
     Huang F, Wang D H, Lu S M, Chen Y C, Wang B H and Li C. 2011. Molybdenite Re_Os isotopic age of Shapinggou Mo deposit in Anhui Province and Mesozoic Mo ore_form ing stages in East Qinling_Dabie Mountain region[J]. Mineral Deposits, 30 (6): 1039_1057 (in Chinese with English abstract). 
     Jia X H, Wang Q, Tang G J, Jiang Z Q, Zhao Z H, Yang Y H, Wang X D and Zhao W Q. 2010. Zircon U_Pb geochronology, geochemistry and petrogenesis of the Late_ Earl y Cretaceous adakitic intrusive rocks in the Tunchang area, Hainan Province[J] . Geochemical, 39(6): 497_519 (in Chinese with English abstract).
    Li C, Du A D and Qu W J. 2009. Decoupling of Re and Os and migration model of 187Os in coarse_grained molybdenite[J]. Mineral Deposits, 28(5): 707_7 12 (in Chi nese with English abstract).
     Li S X, Chen M L, Yang D S and Wang Y H. 2014. The molybdenite Re_Os age and ana lysis of geodynamic background in Hainan island[J]. Geology and Mineral Re sources of South China, 30 (3): 272_279 (in Chinese with English abstract).
     Li X H. 2000. Cretaceous magmatism and lithospheric extension in southeast China [J]. Journal of Asian Earth Sciences, 18:293_305.
     Li X H, Zhou H W, Ding S J, Lee C Y, Zhang R J, Zhang Y M and Ge W C. 2000. Sm_N d isotopic constraints on the age of the Bangxi_Chenxing ophiolite in Hainan isl and: Implications for the tectonic evolution of eastern Paleo_Tethys[J]. Acta Petrologica Sinica, 16 (3): 425_432 (in Chinese with English abstract).
     Liao X J, Wang P A, Qin H C, Lu X K, Dong F X, Liu X C and Shu B. 2008. Geology, geochemistry and ore_forming age of the Gaotongling molybdenum deposit, Tunchan g area, Hainan, China[J]. Geological Bulletin of China, 27(4):560_570 (in Chin ese with English abstract).
     Liu L, Qiu J S and Li Z. 2011. Zircon U_Pb age and Hf isotopic compositions of q uartz monzonite and enclosed mafic enclaves in Muchen pluton, Zhejiang Province: Tracing magma mixing in their petrogenesis[J]. Geological Review, 57(3): 327_336 (in Chinese with English abstract).
     Liu Y S,Hu Z C,Gao S,Gunther D,Xu J,Gao C G and Chen H H. 2008. In situ ana lysis of major and trace elements of anhydrous minerals by LA_ICP_MS without applying an internal standard [J]. Chemical Geology, 257:34_ 43.
     Lu Z Q, Li X J, Qiu C and Liang B S. 2016. Geology, geochemistry and geochronolo gy of ore_bearing intrusions in Jidetun molybdenum deposit in mid_east Jilin Pro vince[J]. Mineral Deposits, 35 (2): 349 _364 (in Chinese with English abstract ). 
     Ludwig K R. 2001. ISOPLOT/Ex (rev.2.49): A geochronological toolkit for microsof t excel[M]. Berkeley Geochronology Centre Special Publication. 1a: 1_56. 
     Mao J W, Zhang Z C, Zhang Z H and Du A D. 1999. Re_Os isotopic dating of molybde nites in the Xiaoliugou W(Mo) deposit in the northern Qilian Mountains and its g eological significance [J]. Geochimica et Cosmochimica Acta, 63(11_12): 1815_1 818.
     Mao J W, Xie G Q, Li X F, Zhang C Q and Mei Y X.2004.Mesozoic large scale mine ralization and multiple lithospheric extension in South China [J].Earth Scien ce Frontiers,11(1): 45_ 55 (in Chinese with English abstract).
     Mao J W,Xie G Q,Guo C L and Chen Y C.2007. Large_scale tungstentin mineraliza tion in the Nanling region, South China: Metallogenic ages and corresponding geo dynamic processes [J]. Acta Petrologica Sinica, 23 (10): 2329_2338 (in Chines e with English abstract).
     Mao J W, Xie G Q, Bierlein F, Ye H S, Qu W J, Du A D, Pirajno F and Li H M. 2008 a. Tectonic implications from Re_Os dating of Mesozoic molybdenum deposits in th e East Qinling_Dabie Orogenic Belt [J]. Geochimica et Cosmochimica Acta, 72: 4 607_4626.
     Mao J W, Wang Y T, Li H M, Pirajno F, Zhang C Q and Wang R T. 2008b. The relatio nship of mantle_derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D_O_C_S isotope systematic [J]. Ore Geology Reviews, 33: 361_38 1.
     Mao J W,Chen M H,Yuan S D and Guo C L.2011. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial_temporal dist ribution regularity of mineral deposits[J].Acta Geologica Sinica,85(5): 636_ 658 (in Chinese with English abstract).
     Mao J W, Cheng Y B,Chen M H and Pirajno F.2013.Major types and time_space dis tribution of Mesozoic ore deposits in South China and their geodynamic settings [J]. Mineralium Deposita, 48: 267_294.
     Ohmoto H and Rye R O. 1979. Isotopes of sulfur and carbon[A]. In: Barnes R, e d. Geochemistry of hydrothermal ore deposits[M]. 2nd Edi_tion, New York: John Wi ley and Sons. 509_ 567.
     Qu W J and Du A D. 2003. Highly precise Re_Os dating of molybdenite by ICP_MS wi th carius tube sample digestion[J].Rock and Mineral Analysis, 22(4): 254_258 (in Chinese with English abstract).
     Smoliar M I,Walker R J and Morgan J W.1996.Re_Os ages of groupⅡA,ⅢA,ⅣA a nd Biron meteorites[J]. Science, 271: 1099_1102.
     Stein H J,Markey R J,Morgan J W,Hannah J L and Scherstén A.2001. The remark able Re_Os chronometer in molybdenite: How and why it works[J]. Terra Nova, 13 : 479_486.
     Tang L M, Chen H L, Dong C W, Shen Z Y, Cheng X G and Fu L L. 2010. Late Mesozoi c tectonic extension in SE China: Evidence from the basic dike swarms in Hainan island, China[J]. Acta Petrologica Sinica, 26(4): 1204_1216 (in Chinese with E nglish abstract).
     Wang D Z and Xie L. 2008. Magma mixing:Evidence from enclaves[J]. Geological Jo urnal of China Universities, 14 (1): 16_21 (in Chinese with English abstract).
     Wang L and Liao X J. 2012. Geological characteristics and genesis of Xincun moly bdenum deposit in Baoting County, Hainan Province[J]. Geology and Mineral Resources of South China, 28 (3): 203_212 (in Chinese with English abstract).
     Wang Q, Li X H, Jia X H, Wyman D, Tang G J, Li Z X, Ma L, Yang Y H, Jiang Z Q an d Gou G N. 2012.Late Early Cretaceous adakitic granitoids and associated magnes ian and potassium_rich mafic enclaves and dikes in the Tunchang_Fengmu area, Hai nan Province (South China): Partial melting of lower crust and mantle,and magma hybridization[J]. Chemical Geology, 328: 222_ 243.
     Wang X F, Ma D Q and Jiang D H. 1991. Geology of Hainan Island (2): Igneous rock s[M]. Beijing: Geological Publishing House. 1_160 (in Chinese).
     Wu F Y, Li X H, Zheng Y F and Gao S. 2007. Lu_Hf isotopic systematics and th eir application[J]. Acta Petrologica Sinica, 23 (2): 185_220 ( in Chinese with Eng lish abstract).
     Xu D R, Wu C J, Hu G C, Chen M L, Fu Y R, Wang Z L, Chen H Y and Hollings P. 201 6. Late Mesozoic molybdenum mineralization on Hainan island, South China: Geoche mistry, geochronology and geodynamic setting[J]. Ore Geology Reviews, 72: 402_ 433.
     Xu D R,Wang Z L,Cai J X,Wu C J,Bakun_Czubarow N,Wang L,Chen H Y,Baker M J and Kusiak M A.2013.Geological characteristics and metallogenesis of the shil u Fe ore deposit in Hainan Province, South China[J]. Ore Geology Reviews, 53: 318_342.
     Yang S F, Yu Z Y, Guo L Z and Shi Y S. 1989. The division of terranes, paleomagn etic reseach and tectonic implication in Hainan Province[J]. J. Nanjing Univ. (Earth Ser.), 1(1/2): 38_46 (in Chinese with English abstract).
     Yao J L, Shu L S and Santosh M. 2011. Detrital zircon U_Pb geochronology, Hf_iso topes and geochemistry_new clues for the Precambrian crustal evolution of Cathay sia Block, South China[J]. Gondwana Research, 20: 553_567.
     Yun P, Fan Y, Mo W R and Zhou J B. 2003. Mixing of Late Mesozoic crust_mantle_de rived magma in Hainan Island: Evidence from quenched dioritic enclaves[J]. Geo lo gy and Mineral Resources of South China, 2: 30_35 (in Chinese with English abstr act).
     Yun P, Lei Y H and Lü C Y. 2005. Sr and Nd Isotopic constraints on the source r egions of the Triassic granitiods in central_northern Hainan Island and their si gnificance[J]. Geotectonic et Metallogenia, 29(2): 234_241 (in Chinese with En glish abstract).
     Zhao H J,Zheng W,Yu C F,Hu Y G and Tian Y.2012.Re_Os dating of molybdenite from the Shilu Cu (Mo) deposit in western Guangdong Province and its geological implications[J]. Geology in China, 39 (6): 1604_ 1613 (in Chinese with English abstract).
     Zhao Z, Chen Z H, Wang C H and Yang W P. 2012. Molybdenite Re_Os age of the Dawa n Mo_Be deposit, East Fujian_a discussion on the tempo_spatial distribution and tectonic setting of the molybdenite deposit in Fujian Province[J]. Geotectonic et Metallogenia,36(3):399_405 (in Chinese with English abstract).
     Zheng W, Mao J W, Zhao H J, Zhao C S, Lin W P, Ouyang Z, Wu X D and Tian Y. 2015 . A preliminary study of minerogenetic series and geodynamic background of polym etallic deposits in Yangchun basin of western Guangdong Province[J]. Mineral D eposits, 34 (3): 465_487 (in Chinese with English abstract).
     Zhou T F,Fan Y and Yuan F. 2008. Advances on petrogensis and metallogeny st udy of the Mineralizatlon belt of the Middle and Lower Reaches of the Yangtze Ri ver area[J]. Acta Petrologica Sinica, 24 (8): 1665_ 1678 (in Chinese with English abstract).    
     附中文参考文献    
     曹建劲, 胡瑞忠,谢桂青,刘桑. 2009. 广东沿海地区基性岩脉地球化学及成因[ J]. 岩石学报,25(3): 984_1000.
     陈沐龙,吕昭英,马昌前,云平. 2015. 海南岛石门山钼多金属矿床的Re_Os同位素定年及 地质意义[J]. 矿产与地质,29(4): 546_551.
     付王伟.2013.海南岛钼矿床成因类型及成矿动力学背景研究 (博士论文)[D]. 导师: 许德如. 广州: 中国科学院广州地球化学研究所. 1_172 .
     付王伟,许德如,傅杨荣,吴传军,杨昌松,周迎春,王智琳. 2013. 海南省红门岭钼钨矿 床辉钼矿Re_Os同位素定年及地质意义[J].东华理工大学学报,36(2): 135_142.
     付王伟,许德如,吴传军,傅杨荣,周迎春,周岳强,王智琳,林舸. 2014. 海南省高通岭 钼矿床赋矿岩体LA_ICP_MS锆石U_Pb定年及成矿意义[J]. 矿床地质, 33(2): 419_427.
     葛小月. 2003. 海南岛中生代岩浆作用及其构造意义——年代学、地球化学及Sr_Nd同位素 证据[D]. 导师:李献华,周汉文. 广州: 中国科学院广州地球化学研究所. 1_87. 
     华仁民, 陈培荣, 张文兰, 刘晓东, 陆建军, 林锦富, 姚军明, 戚华文, 张展适, 顾晟彦. 2003. 华南中、新生代与花岗岩类有关的成矿系统[J]. 中国科学(D辑), 33(4): 335_343 .
     黄凡,王登红,陆三明,陈毓川,王波华,李超.2011. 安徽省金寨县沙坪沟钼矿辉钼矿Re _Os年龄——兼论东秦岭_大别山中生代钼成矿作用期次划分[J].矿床地质,30(6):1039_ 1057. 
     贾小辉,王强,唐功建,姜子琦,赵振华,杨岳衡,王晓地,赵武强. 2010. 海南屯昌早白 垩世晚期埃达克质侵入岩的锆石U_Pb年代学、地球化学与岩石成因[J].地球化学,39(6) : 497_519.
     李超,屈文俊,杜安道. 2009. 大颗粒辉钼矿Re_Os同位素失耦现象及187Os 迁移模式研究[J]. 矿床地质,28(5): 707_712.
     李孙雄,陈沐龙,杨东生,汪焰华. 2014. 海南岛钼矿床Re_Os年龄及其成矿地球动力学背 景探讨[J]. 华南地质与矿产,30(3): 272_279.
     李献华, 周汉文, 丁式江, 李寄●, 张仁杰, 张业明, 葛文春. 2000. 海南岛“邦溪_晨 星蛇绿岩片"的时代及其构造意义——Sm_Nd同位素制约[J]. 岩石学报, 16(3): 425_432. 
     廖香俊,王平安,覃海灿,路西坤,董法先,刘晓春,舒斌.2008.海南屯昌地区高通岭钼 矿床的地质、地球化学特征及成矿时代[J].地质通报,27(4): 560_570.
     刘亮,邱检生,李真. 2011. 浙江沐尘石英二长岩及其镁铁质包体的锆石U_Pb年龄和Hf同位 素组成[J]. 地质论评, 57(3): 327_336.
     卢志强,李绪俊,秋晨,梁本胜. 2016. 吉林中东部季德屯钼矿床含矿岩体地质、地球化学 及年代学研究[J]. 矿床地质,35 (2): 349_364.
     毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄. 2004. 华南地区中生代大规模成矿作用与岩石 圈多阶段伸展[J]. 地学前缘, 11 (1): 45_55.
     毛景文,谢桂青,郭春丽,陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用:成矿时限 及地球动力学背景[J]. 岩石学报,23(10): 2329_2338.
     毛景文,陈懋弘,袁顺达,郭春丽.2011. 华南地区钦杭成矿带地质特征和矿床时空分布规 律[J].地质学报,85(5): 636_658.
     屈文俊,杜安道. 2003. 高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼_锇地质年 龄[J]. 岩矿测试,22(4) : 254_262.
     唐立梅, 陈汉林, 董传万, 沈忠悦, 程晓敢, 付璐露. 2010. 中国东南部晚中生代构造伸展 作用_来自海南岛基性岩墙群的证据[J]. 岩石学报, 26 (4): 1204_1216.
     王德滋,谢磊. 2008. 岩浆混合作用:来自岩石包体的证据[J]. 高校地质学报,14(1): 16_21.
     王龙,廖香俊. 2012. 海南省保亭县新村钼矿地质特征及成因探讨[J]. 华南地质与 矿产, 28(3): 203_210.
     汪啸风, 马大铨, 蒋大海. 1991. 海南岛地质(二): 火成岩[M]. 北京: 地质出版社. 1_ 160.
     吴福元, 李献华, 郑永飞, 高山. 2007. Lu_Hf同位素体系及其岩石学应用[J]. 岩石学报 , 23(2): 185_220.
     杨树峰,虞子治,郭令智,施央申. 1989.海南岛的地体划分、古地磁研究及其板块构造意 义[J]. 南京大学学报(地球科学),1(1_2): 38_46.
     云平, 范渊, 莫位任, 周进波. 2003. 海南岛晚中生代壳幔岩浆混合作用——来自闪长质淬 冷包体的证据[J]. 华南地质与矿产, 2: 30_35.
     云平, 雷裕红, 吕嫦艳. 2005. 海南岛中北部三叠纪花岗岩源区的锶、钕同位素制约及其意 义[J]. 大地构造与成矿学, 29(2): 234_241.
     赵海杰,郑伟,余长发,胡耀国,田云.2012. 粤西石碌铜钼矿床Re_Os同位素年龄及其 地质意义[J].中国地质,39(6): 1604_1613.
     赵芝,陈郑辉,王成辉,杨武平.2012.闽东大湾钼铍矿的辉钼矿Re_Os同位素年龄_兼论福 建省钼矿时空分布及构造背景[J]. 大地构造与成矿学,36(3): 399_405.
     郑伟,毛景文,赵海杰,赵财胜,林玮鹏,欧阳志侠,吴晓东,田云. 2015. 粤西阳春盆地 多金属矿床成矿系列及动力学背景[J]. 矿床地质, 34(3): 465_487.
     周涛发,范裕,袁峰.2008.长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学 报,24(8): 1665_1678. 
参考文献
References
     Belousova E A, Griffin W L, OReilly S Y and Fisher N I. 2002. Igneous z ircon: T race element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 143: 602_622.
     Blichert_Toft J and Albarde F. 1997. The Lu_Hf isotope geochemistry of chondrite s and the evolution of the mantle_crust system[J]. Earth and Planetary Science Letters, 148(1_2): 243_258.
     Cao J J, Hu R Z, Xie G Q and Liu S. 2009. Geochemistry and genesis of mafic dike s from the coastal areas of Guangdong Province, China[J]. Acta Petrologica Sinica, 25(3): 984_1000 (in Chinese with English abstract).
     Chen M L, Lü Z Y, Ma C Q and Yun P. 2015. Re_Os isotopic dating and geological implications of Shimenshan Mo polymetallic deposit in Hainan Island [J]. Miner al Resources and Geology, 29(4): 546_551(in Chinese with English abstract).
     Condie K C, Belousova E, Griffin W L and Sircombe K N. 2009. Granitoid event s in space and time: Constraints from igneous and detrital zircon age spectra[J]. Gondwana Research, 15: 228_242.
     Du A D,Wu S Q,Sun D Z,Wang S X,Qu W J,Stein R M H,Morgan J and Malinovskiy D.2004.Preparation and certification of Re_Os dating reference materials: Mol ybdenite HLP and JDC[J]. Geostandard and Geoanalytical Research, 28(1): 41_52 .
     Fedo C M,Sircombe K N and Rainbird R H. 2003. Detrital zircon analysis of the s edimentary record[J]. Reviews in Mineralogy and Geochemistry, 53: 277_303.
     Fu W W, Xu D R, Fu R Y, Wu C J, Yang C S, Zhou Y C and Wang Z L. 2013. Molybdeni te Re_Os isotopic dating of Hongmenling Mo_W deposit in Hainan Province and its geological implications[J]. Journal of East China Institute of Technology, 36( 2): 135_142 (in Chinese with English abstract).
     Fu W W, Xu D R, Wu C J, Fu R Y, Zhou Y C, Zhou Y Q, Wang Z L and Lin G. 2014. LA _ICP_MS zircon U_Pb dating of syenogranites hosting Gaotongling Mo deposit in Ha inan Province: Implications for metallogenesis[J]. Mineral Deposits, 33(2): 41 9_427 (in Chinese with English abstract).
     Fu W W. 2013. An Research on ore deposit_types and geodynamic background of the Mo ore deposits in Hainan Province, South China (dissertation for Master degree) [D]. Supervisor: Xu D R. Guangzhou: Guangzhou Institute of Geochemistry, Chine se Academy of Sciences. 1_172 (in Chinese with English abstract).
     Ge X Y. 2003. Mesozoic magmatism in Hainan Island (SE China) and its tectonic si gnificance: Geochronology, geochemistry and Sr_Nd isotope evidences[D]. Superv is or: Li X H and Zhou H W. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences 1_87 (in Chinese with English abstract).
     Griffin W, Belousova E and Shee S. 2004. Archean crustal evolution in the northe n Yilgam Craton: U_Pb and Hf_isotope evidence from detrital zircons[J]. Preeam brian Researeh, 131: 231_282.
     Grlffin W L, Wang X and Jaekson S E. 2002. Zircon chemistry and magma mixing, SE China: In_situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J ]. Lithos, 61: 237_69.
     Hoskin P W O and Ireland T R. 2000. Rare earth element chemistry of zircon and i ts use as a provenance indicator[J]. Geology, 7: 627_630.
     Hua R M, Chen P R, Zhang W L, Liu X D, Lu J J,Lin J F, Yao J M, Qi H W,Zhang Z S and Gu C Y. 2003. Metallogenic systems related to Cenozoic and Mesozoic grani toids in South China[J]. Science in China (Series D), 33(4): 335_ 343 (in Chin ese).
     Huang F, Wang D H, Lu S M, Chen Y C, Wang B H and Li C. 2011. Molybdenite Re_Os isotopic age of Shapinggou Mo deposit in Anhui Province and Mesozoic Mo ore_form ing stages in East Qinling_Dabie Mountain region[J]. Mineral Deposits, 30 (6): 1039_1057 (in Chinese with English abstract). 
     Jia X H, Wang Q, Tang G J, Jiang Z Q, Zhao Z H, Yang Y H, Wang X D and Zhao W Q. 2010. Zircon U_Pb geochronology, geochemistry and petrogenesis of the Late_ Earl y Cretaceous adakitic intrusive rocks in the Tunchang area, Hainan Province[J] . Geochemical, 39(6): 497_519 (in Chinese with English abstract).
    Li C, Du A D and Qu W J. 2009. Decoupling of Re and Os and migration model of 187Os in coarse_grained molybdenite[J]. Mineral Deposits, 28(5): 707_7 12 (in Chi nese with English abstract).
     Li S X, Chen M L, Yang D S and Wang Y H. 2014. The molybdenite Re_Os age and ana lysis of geodynamic background in Hainan island[J]. Geology and Mineral Re sources of South China, 30 (3): 272_279 (in Chinese with English abstract).
     Li X H. 2000. Cretaceous magmatism and lithospheric extension in southeast China [J]. Journal of Asian Earth Sciences, 18:293_305.
     Li X H, Zhou H W, Ding S J, Lee C Y, Zhang R J, Zhang Y M and Ge W C. 2000. Sm_N d isotopic constraints on the age of the Bangxi_Chenxing ophiolite in Hainan isl and: Implications for the tectonic evolution of eastern Paleo_Tethys[J]. Acta Petrologica Sinica, 16 (3): 425_432 (in Chinese with English abstract).
     Liao X J, Wang P A, Qin H C, Lu X K, Dong F X, Liu X C and Shu B. 2008. Geology, geochemistry and ore_forming age of the Gaotongling molybdenum deposit, Tunchan g area, Hainan, China[J]. Geological Bulletin of China, 27(4):560_570 (in Chin ese with English abstract).
     Liu L, Qiu J S and Li Z. 2011. Zircon U_Pb age and Hf isotopic compositions of q uartz monzonite and enclosed mafic enclaves in Muchen pluton, Zhejiang Province: Tracing magma mixing in their petrogenesis[J]. Geological Review, 57(3): 327_336 (in Chinese with English abstract).
     Liu Y S,Hu Z C,Gao S,Gunther D,Xu J,Gao C G and Chen H H. 2008. In situ ana lysis of major and trace elements of anhydrous minerals by LA_ICP_MS without applying an internal standard [J]. Chemical Geology, 257:34_ 43.
     Lu Z Q, Li X J, Qiu C and Liang B S. 2016. Geology, geochemistry and geochronolo gy of ore_bearing intrusions in Jidetun molybdenum deposit in mid_east Jilin Pro vince[J]. Mineral Deposits, 35 (2): 349 _364 (in Chinese with English abstract ). 
     Ludwig K R. 2001. ISOPLOT/Ex (rev.2.49): A geochronological toolkit for microsof t excel[M]. Berkeley Geochronology Centre Special Publication. 1a: 1_56. 
     Mao J W, Zhang Z C, Zhang Z H and Du A D. 1999. Re_Os isotopic dating of molybde nites in the Xiaoliugou W(Mo) deposit in the northern Qilian Mountains and its g eological significance [J]. Geochimica et Cosmochimica Acta, 63(11_12): 1815_1 818.
     Mao J W, Xie G Q, Li X F, Zhang C Q and Mei Y X.2004.Mesozoic large scale mine ralization and multiple lithospheric extension in South China [J].Earth Scien ce Frontiers,11(1): 45_ 55 (in Chinese with English abstract).
     Mao J W,Xie G Q,Guo C L and Chen Y C.2007. Large_scale tungstentin mineraliza tion in the Nanling region, South China: Metallogenic ages and corresponding geo dynamic processes [J]. Acta Petrologica Sinica, 23 (10): 2329_2338 (in Chines e with English abstract).
     Mao J W, Xie G Q, Bierlein F, Ye H S, Qu W J, Du A D, Pirajno F and Li H M. 2008 a. Tectonic implications from Re_Os dating of Mesozoic molybdenum deposits in th e East Qinling_Dabie Orogenic Belt [J]. Geochimica et Cosmochimica Acta, 72: 4 607_4626.
     Mao J W, Wang Y T, Li H M, Pirajno F, Zhang C Q and Wang R T. 2008b. The relatio nship of mantle_derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D_O_C_S isotope systematic [J]. Ore Geology Reviews, 33: 361_38 1.
     Mao J W,Chen M H,Yuan S D and Guo C L.2011. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial_temporal dist ribution regularity of mineral deposits[J].Acta Geologica Sinica,85(5): 636_ 658 (in Chinese with English abstract).
     Mao J W, Cheng Y B,Chen M H and Pirajno F.2013.Major types and time_space dis tribution of Mesozoic ore deposits in South China and their geodynamic settings [J]. Mineralium Deposita, 48: 267_294.
     Ohmoto H and Rye R O. 1979. Isotopes of sulfur and carbon[A]. In: Barnes R, e d. Geochemistry of hydrothermal ore deposits[M]. 2nd Edi_tion, New York: John Wi ley and Sons. 509_ 567.
     Qu W J and Du A D. 2003. Highly precise Re_Os dating of molybdenite by ICP_MS wi th carius tube sample digestion[J].Rock and Mineral Analysis, 22(4): 254_258 (in Chinese with English abstract).
     Smoliar M I,Walker R J and Morgan J W.1996.Re_Os ages of groupⅡA,ⅢA,ⅣA a nd Biron meteorites[J]. Science, 271: 1099_1102.
     Stein H J,Markey R J,Morgan J W,Hannah J L and Scherstén A.2001. The remark able Re_Os chronometer in molybdenite: How and why it works[J]. Terra Nova, 13 : 479_486.
     Tang L M, Chen H L, Dong C W, Shen Z Y, Cheng X G and Fu L L. 2010. Late Mesozoi c tectonic extension in SE China: Evidence from the basic dike swarms in Hainan island, China[J]. Acta Petrologica Sinica, 26(4): 1204_1216 (in Chinese with E nglish abstract).
     Wang D Z and Xie L. 2008. Magma mixing:Evidence from enclaves[J]. Geological Jo urnal of China Universities, 14 (1): 16_21 (in Chinese with English abstract).
     Wang L and Liao X J. 2012. Geological characteristics and genesis of Xincun moly bdenum deposit in Baoting County, Hainan Province[J]. Geology and Mineral Resources of South China, 28 (3): 203_212 (in Chinese with English abstract).
     Wang Q, Li X H, Jia X H, Wyman D, Tang G J, Li Z X, Ma L, Yang Y H, Jiang Z Q an d Gou G N. 2012.Late Early Cretaceous adakitic granitoids and associated magnes ian and potassium_rich mafic enclaves and dikes in the Tunchang_Fengmu area, Hai nan Province (South China): Partial melting of lower crust and mantle,and magma hybridization[J]. Chemical Geology, 328: 222_ 243.
     Wang X F, Ma D Q and Jiang D H. 1991. Geology of Hainan Island (2): Igneous rock s[M]. Beijing: Geological Publishing House. 1_160 (in Chinese).
     Wu F Y, Li X H, Zheng Y F and Gao S. 2007. Lu_Hf isotopic systematics and th eir application[J]. Acta Petrologica Sinica, 23 (2): 185_220 ( in Chinese with Eng lish abstract).
     Xu D R, Wu C J, Hu G C, Chen M L, Fu Y R, Wang Z L, Chen H Y and Hollings P. 201 6. Late Mesozoic molybdenum mineralization on Hainan island, South China: Geoche mistry, geochronology and geodynamic setting[J]. Ore Geology Reviews, 72: 402_ 433.
     Xu D R,Wang Z L,Cai J X,Wu C J,Bakun_Czubarow N,Wang L,Chen H Y,Baker M J and Kusiak M A.2013.Geological characteristics and metallogenesis of the shil u Fe ore deposit in Hainan Province, South China[J]. Ore Geology Reviews, 53: 318_342.
     Yang S F, Yu Z Y, Guo L Z and Shi Y S. 1989. The division of terranes, paleomagn etic reseach and tectonic implication in Hainan Province[J]. J. Nanjing Univ. (Earth Ser.), 1(1/2): 38_46 (in Chinese with English abstract).
     Yao J L, Shu L S and Santosh M. 2011. Detrital zircon U_Pb geochronology, Hf_iso topes and geochemistry_new clues for the Precambrian crustal evolution of Cathay sia Block, South China[J]. Gondwana Research, 20: 553_567.
     Yun P, Fan Y, Mo W R and Zhou J B. 2003. Mixing of Late Mesozoic crust_mantle_de rived magma in Hainan Island: Evidence from quenched dioritic enclaves[J]. Geo lo gy and Mineral Resources of South China, 2: 30_35 (in Chinese with English abstr act).
     Yun P, Lei Y H and Lü C Y. 2005. Sr and Nd Isotopic constraints on the source r egions of the Triassic granitiods in central_northern Hainan Island and their si gnificance[J]. Geotectonic et Metallogenia, 29(2): 234_241 (in Chinese with En glish abstract).
     Zhao H J,Zheng W,Yu C F,Hu Y G and Tian Y.2012.Re_Os dating of molybdenite from the Shilu Cu (Mo) deposit in western Guangdong Province and its geological implications[J]. Geology in China, 39 (6): 1604_ 1613 (in Chinese with English abstract).
     Zhao Z, Chen Z H, Wang C H and Yang W P. 2012. Molybdenite Re_Os age of the Dawa n Mo_Be deposit, East Fujian_a discussion on the tempo_spatial distribution and tectonic setting of the molybdenite deposit in Fujian Province[J]. Geotectonic et Metallogenia,36(3):399_405 (in Chinese with English abstract).
     Zheng W, Mao J W, Zhao H J, Zhao C S, Lin W P, Ouyang Z, Wu X D and Tian Y. 2015 . A preliminary study of minerogenetic series and geodynamic background of polym etallic deposits in Yangchun basin of western Guangdong Province[J]. Mineral D eposits, 34 (3): 465_487 (in Chinese with English abstract).
     Zhou T F,Fan Y and Yuan F. 2008. Advances on petrogensis and metallogeny st udy of the Mineralizatlon belt of the Middle and Lower Reaches of the Yangtze Ri ver area[J]. Acta Petrologica Sinica, 24 (8): 1665_ 1678 (in Chinese with English abstract).   
     附中文参考文献    
     曹建劲, 胡瑞忠,谢桂青,刘桑. 2009. 广东沿海地区基性岩脉地球化学及成因[ J]. 岩石学报,25(3): 984_1000.
     陈沐龙,吕昭英,马昌前,云平. 2015. 海南岛石门山钼多金属矿床的Re_Os同位素定年及 地质意义[J]. 矿产与地质,29(4): 546_551.
     付王伟.2013.海南岛钼矿床成因类型及成矿动力学背景研究 (博士论文)[D]. 导师: 许德如. 广州: 中国科学院广州地球化学研究所. 1_172 .
     付王伟,许德如,傅杨荣,吴传军,杨昌松,周迎春,王智琳. 2013. 海南省红门岭钼钨矿 床辉钼矿Re_Os同位素定年及地质意义[J].东华理工大学学报,36(2): 135_142.
     付王伟,许德如,吴传军,傅杨荣,周迎春,周岳强,王智琳,林舸. 2014. 海南省高通岭 钼矿床赋矿岩体LA_ICP_MS锆石U_Pb定年及成矿意义[J]. 矿床地质, 33(2): 419_427.
     葛小月. 2003. 海南岛中生代岩浆作用及其构造意义——年代学、地球化学及Sr_Nd同位素 证据[D]. 导师:李献华,周汉文. 广州: 中国科学院广州地球化学研究所. 1_87. 
     华仁民, 陈培荣, 张文兰, 刘晓东, 陆建军, 林锦富, 姚军明, 戚华文, 张展适, 顾晟彦. 2003. 华南中、新生代与花岗岩类有关的成矿系统[J]. 中国科学(D辑), 33(4): 335_343 .
     黄凡,王登红,陆三明,陈毓川,王波华,李超.2011. 安徽省金寨县沙坪沟钼矿辉钼矿Re _Os年龄——兼论东秦岭_大别山中生代钼成矿作用期次划分[J].矿床地质,30(6):1039_ 1057. 
     贾小辉,王强,唐功建,姜子琦,赵振华,杨岳衡,王晓地,赵武强. 2010. 海南屯昌早白 垩世晚期埃达克质侵入岩的锆石U_Pb年代学、地球化学与岩石成因[J].地球化学,39(6) : 497_519.
     李超,屈文俊,杜安道. 2009. 大颗粒辉钼矿Re_Os同位素失耦现象及187Os 迁移模式研究[J]. 矿床地质,28(5): 707_712.
     李孙雄,陈沐龙,杨东生,汪焰华. 2014. 海南岛钼矿床Re_Os年龄及其成矿地球动力学背 景探讨[J]. 华南地质与矿产,30(3): 272_279.
     李献华, 周汉文, 丁式江, 李寄●, 张仁杰, 张业明, 葛文春. 2000. 海南岛“邦溪_晨 星蛇绿岩片"的时代及其构造意义——Sm_Nd同位素制约[J]. 岩石学报, 16(3): 425_432. 
     廖香俊,王平安,覃海灿,路西坤,董法先,刘晓春,舒斌.2008.海南屯昌地区高通岭钼 矿床的地质、地球化学特征及成矿时代[J].地质通报,27(4): 560_570.
     刘亮,邱检生,李真. 2011. 浙江沐尘石英二长岩及其镁铁质包体的锆石U_Pb年龄和Hf同位 素组成[J]. 地质论评, 57(3): 327_336.
     卢志强,李绪俊,秋晨,梁本胜. 2016. 吉林中东部季德屯钼矿床含矿岩体地质、地球化学 及年代学研究[J]. 矿床地质,35 (2): 349_364.
     毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄. 2004. 华南地区中生代大规模成矿作用与岩石 圈多阶段伸展[J]. 地学前缘, 11 (1): 45_55.
     毛景文,谢桂青,郭春丽,陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用:成矿时限 及地球动力学背景[J]. 岩石学报,23(10): 2329_2338.
     毛景文,陈懋弘,袁顺达,郭春丽.2011. 华南地区钦杭成矿带地质特征和矿床时空分布规 律[J].地质学报,85(5): 636_658.
     屈文俊,杜安道. 2003. 高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼_锇地质年 龄[J]. 岩矿测试,22(4) : 254_262.
     唐立梅, 陈汉林, 董传万, 沈忠悦, 程晓敢, 付璐露. 2010. 中国东南部晚中生代构造伸展 作用_来自海南岛基性岩墙群的证据[J]. 岩石学报, 26 (4): 1204_1216.
     王德滋,谢磊. 2008. 岩浆混合作用:来自岩石包体的证据[J]. 高校地质学报,14(1): 16_21.
     王龙,廖香俊. 2012. 海南省保亭县新村钼矿地质特征及成因探讨[J]. 华南地质与 矿产, 28(3): 203_210.
     汪啸风, 马大铨, 蒋大海. 1991. 海南岛地质(二): 火成岩[M]. 北京: 地质出版社. 1_ 160.
     吴福元, 李献华, 郑永飞, 高山. 2007. Lu_Hf同位素体系及其岩石学应用[J]. 岩石学报 , 23(2): 185_220.
     杨树峰,虞子治,郭令智,施央申. 1989.海南岛的地体划分、古地磁研究及其板块构造意 义[J]. 南京大学学报(地球科学),1(1_2): 38_46.
     云平, 范渊, 莫位任, 周进波. 2003. 海南岛晚中生代壳幔岩浆混合作用——来自闪长质淬 冷包体的证据[J]. 华南地质与矿产, 2: 30_35.
     云平, 雷裕红, 吕嫦艳. 2005. 海南岛中北部三叠纪花岗岩源区的锶、钕同位素制约及其意 义[J]. 大地构造与成矿学, 29(2): 234_241.
     赵海杰,郑伟,余长发,胡耀国,田云.2012. 粤西石碌铜钼矿床Re_Os同位素年龄及其 地质意义[J].中国地质,39(6): 1604_1613.
     赵芝,陈郑辉,王成辉,杨武平.2012.闽东大湾钼铍矿的辉钼矿Re_Os同位素年龄_兼论福 建省钼矿时空分布及构造背景[J]. 大地构造与成矿学,36(3): 399_405.
     郑伟,毛景文,赵海杰,赵财胜,林玮鹏,欧阳志侠,吴晓东,田云. 2015. 粤西阳春盆地 多金属矿床成矿系列及动力学背景[J]. 矿床地质, 34(3): 465_487.
     周涛发,范裕,袁峰.2008.长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学 报,24(8): 1665_1678.