DOi:10.16111/j.0258_7106.2017.02.011
新疆觉罗塔格地区东戈壁钼矿床花岗斑岩的成因研究 
叶龙翔1,张达玉1,2**,周涛发1,袁峰1,2,张永3,邓宇峰1, 徐利强1
    路魏魏4

(1 合肥工业大学资源与环境工程学院, 安徽 合肥230009; 2 中国科学院新疆生态与地 理研究所新疆矿产资源研究 中心, 新疆 乌鲁木齐830011; 3 中国地质调查局天津地 质调查中心, 天津300170; 4 新疆地质矿产勘查开发局 第六地质大队, 新疆 哈密 839000)

第一作者简介叶龙翔, 男, 1990年生, 硕士研究生, 矿物学岩石学矿床学专业。 Ema il: yelongxiang2015@sina.com **通讯作者张达玉, 男, 1985年生, 博士, 副教授,矿物学岩石学矿床学专业。Emai l: dayuzhang@hfut.edu.cn

2016_10_23

本文得到国家自然科学基金项目(编号: 41302050)、“十二五”国家科技支撑计划项目 (编号: 2011BAB06B01)、博士后科学基金第56批面上项目(编号: 2014M562488)、 中国地质调查局地质调查项目(编号: DD20160039)、中 央高校基本科研业务费专项(编号: JZ2016HGTB0730)、中国科学院“西部之光”人才培 养引进计划项目和新世纪优秀人才支持计划项目(编号: NCET_100324)联合资助

摘要:东戈壁钼矿床处于东天山觉罗塔格成矿带的中部,是该地区三叠纪钼 成矿带的代表性矿床之一。东戈壁矿床赋存于石炭系干墩组一套浅变质碎屑岩中,隐伏 于矿体下部的 花岗斑岩为其成矿岩体。文章对东戈壁钼矿床成矿岩体进行了地质特征、岩相学、电子探针 和地球化学分析,结果显示东戈壁花岗闪长斑岩的斜长石为中长石_更长石_钠长石系列,钾 长石为正长石,黑云母为铁质黑云母。全岩地球化学分析显示东戈壁花岗斑岩为高硅 (w(SiO2) 73.36%~74.34%)、高钾(w(K2O) 4.49%~5.61%)、弱过铝 质(A/CNK: 1.03~1.14)的特点。成因研究显示东戈壁花岗斑岩为I型花岗岩,形成于 挤压环境 的地壳源区,在上升过程中经历了显著分离结晶形成的高分异岩浆岩。通过对同一时空背景 下的 东戈壁和白山2个钼成矿岩浆岩开展的矿物学和地球化学等方面的对比研究,表明东戈壁钼 矿 床花岗斑岩与白山花岗斑岩分别具有地壳源区和地幔源区的特点,是不同岩浆_热事件的产 物。
关键词: 地质学;I型花岗岩;地球化学特征;岩石成因;东戈壁钼矿床;觉 罗塔格
文章编号:0258_7106 (2017) 02_0429_20 中图分类号: P618.65 文献标志码:A
Petrogenesis of mineralized granite porphyry in Dongebi Mo deposit,
    Jueluotage area, Xinjiang
 YE LongXiang1, ZHANG DaYu1,2, ZHOU TaoFa1, YUAN Feng1,2, ZHANG Y ong3, DENG YuFeng1
    XU LiQiang1 and LU WeiWei4

(1 School of Resources and Environmental Engineering, Hefei University of Techno logy, Hefei 230009, Anhui, China; 2 Xinjiang Research Center for Mineral Resourc es, Xinjiang; Institute of Ecology and Geography, Chinese Academy of Sciences, U rumqi 830011, Xinjiang, China; 3 Tianjin Geological Surrey, Tianjin 300170, Chin a; 4 No. 6 Geological Party, Xinjiang Bureau of Geolo_ gy and Mineral Exp loration, Hami 839000, Xinjiang, China)

2016_10_23

Abstract:Located in the central part of the Jueluotage metallogenic belt, the Donggeb i Mo deposit is one the largest Middle Triassic Mo deposits in northern Xinjiang . The Donggebi Mo deposit occurs in the late Carboniferous Gandun Formation, and is genetically related to the mineralized granite porphyry beneath the orebodie s. This study focused on the geology, petrography, rock_forming minerals EPMA an d geochemistry of the Donggebi mineralized granite porphyry, and the results sho w that the feldspars and biotites in the Gonggebi mineralized granite porphyry a re mainly acidic plagioclase and K_feldspar, and Fe_rich biotite. The whole_rock geochemistry shows that the mineralized granite porphyry is Si_high (w(SiO 2) 73.36%~74.34%), K_high (w(K2O) 4.49%~5.61%), and weakly peralu minous (A/CNK: 1.03~1.14) I_type granite. The primary magma was formed in th e dee p crust source in a convergence environment, and experienced significant fractio nal crystallization during its emplacement. The Donggebi Mo deposit shared the s ame temporal and spatial background with the Baishan Mo deposit in Jueluotage ar ea. Based on a comparison of petrogenetic characteristics between the mineralize d granite porphyry in the Donggebi Mo deposit and that in the Baishan Mo deposit , the authors have found that the two mineralized granite porphyry intrusions be neath Donggebi and Baishan Mo deposits were derived from crust and mantle source s respectively, being different magma_thermal products.
Key words: geology, I_type granite, geochemistry, petrogenesis, Dongg ebi Mo deposit, Jueluotage 
        新疆东天山觉罗塔格地区是中国极其重要的铁、铜有色多金属矿产集中区之一(陈毓川等 ,2009;周涛发等,2010),发育了著名的早石炭世土屋_延东Cu_多金属成矿带(申萍 等, 2012)、阿奇山_雅满苏Fe成矿带(Zhao et al., 2016)、早二叠世黄山_镜儿泉Cu_Ni成矿 带(秦克章等,2002;Song et al., 2015)和康古尔Au成矿带(张达玉,2012)。近年来 ,随着该区找矿勘探的深入,逐渐形成了以白山和东戈壁2个大型钼矿床为代表的三叠纪钼 成 矿带(Zhang D Y et al., 2015; Wu et al., 2016)。其中,东戈壁钼矿床是觉罗塔格地 区继 白山钼矿床后,近年来发现的又一大型钼矿床(河南省第二区调大队,2010;邓刚等,2004 ) 。前人对东戈壁钼矿床的地质特征(付治国,2012)、成岩成矿年代(Wu et al., 2016) 、地球化学特征(杨志强等,2011)等研究显示,该矿床与其下部的花岗斑岩体密 切相关(吴艳爽等,2013),矿床形成于中三叠世,与白山钼矿床的成岩成矿年代一致 (Zhang D Y et al., 2015; Wang et al., 2016)。然而,关于东戈壁钼矿床与成矿花岗 斑岩体的成因及与同一时空背景下的白山钼矿床的成矿岩体有何异同还不清楚。
        本次工作在地质特征、岩相学研究的基础上,对东戈壁钼矿床含矿岩体开展了矿物电子探针 和全岩地球化学分析,探讨东戈壁钼成矿花岗斑岩的成因,并进一步与白山钼矿床的成矿花 岗斑 岩的地质、地球化学特征(Zhang D Y et al., 2015)进行对比,分析总结觉罗塔 格地区三叠纪2个钼成矿岩浆岩的异同。本次工作成果不仅为东戈壁钼矿床的花岗斑岩成因 提供证据,同时将深化对东天山觉罗塔格地区三叠纪钼成岩成矿作用的认识。
1区域地质背景
        东天山觉罗塔格地区位于塔里木板块北缘,吐哈盆地和中天山地块之间(图1a),是中亚造 山带的重要组成部分。构造上受4条近东西方向区域性的深断裂控制,自南向北分别为:阿 其克库都克断裂、雅满苏断裂、康古尔塔格断裂、大草滩断裂(图1b),以上深大断裂带将 该区自南向北划分为阿奇山_雅满苏岛弧带、康古尔韧性剪切岩带、小热泉子_大南湖岛弧带 3个次级单元。觉罗塔格地区出露的地层是以石炭系火山_沉积地层为主,二叠纪陆相沉积岩 地层零星分布于康古尔韧性剪切带内。晚古生代岩浆作用在觉罗塔格地区强烈,基性—中酸 性岩浆岩均有出露,其中石炭纪—二叠纪岩浆作用最为强烈。该区是中国重要的Cu、Mo、Au 、Fe等多金属成矿带,成矿与晚古生代十分发育岩浆作用相关,空间上矿床的成矿元素组合 具有北带 Cu、南带 Fe、中带 Au_Ni_Cu_Mo 的分布特征(张达玉,2012)。
2矿床地质特征
        东戈壁钼矿床位于觉罗塔格地区中部,地处库姆塔格沙陇东侧,南面紧邻雅满苏深大断裂( 图1c)。
        矿区内主要出露石炭系下统干墩组(C1gd1),另外还有少量的石炭系下统 雅满苏组(C1y),南部零星分布石炭系上统坎底尔组(C2dk),第四系覆盖在中 南部。下石炭统干墩组是一套陆源碎屑_火山沉积岩建造,岩性为褐黄色、灰 黑色 变质含砾砂岩_砂岩_ 泥质砂岩_砂质泥岩_泥岩_凝灰岩_安山岩。东戈壁    
图 1研究区地质图
    a. 北疆地区构造简图; b. 觉罗塔格区域地质构造图(Zhang D Y et al., 2015); c. 东戈壁矿区地质图(黄超勇等,2011); d. 东戈壁钼矿矿体H08勘探线剖面图(杨志强等,2011)
     ①—大草滩断裂; ②—康古尔塔格断裂; ③—雅满苏断裂; ④—阿奇克库都克断裂; 1 —第四系更新统; 2—石炭系上统坎底尔组凝灰岩; 3—
    石炭系下统雅满苏组凝灰 质砂岩; 4—石炭系下统干墩组变质砂岩; 5—花岗岩; 6—辉绿岩脉; 7—勘探线及编号; 8—断 层; 9—工业矿体; 
    10—矿化蚀变带(钻孔控制); 11—钻孔编号; 12—取样 位置
    Fig. 1Geological map of the study area
    a. Structural map of northern Xinjiang area; b. Regional geological map of Juelu otage area (after Zhang D Y et al, 2015); c. Geological map of the 
    Dong gebi Mo depos it (after Huang et al.,2011); d. Geological section along H08 exploration line o f the Donggebi Mo deposit(after Yang et al., 
    2011)
     ①—Dacaotan fault;②—Kangguertage fault; ③—Yamansu fault; ④—Aqikekuduke fa ult; 1—Quaternary sediments; 2—Upper Carboniferous Kandier tuff Formation (C 2d); 3—Lower Carboniferous Yamansu tuff sandstone Formation (C1y) ; 4—Lower Carboniferous Gandun metasandstone 
    Formation (C1g); 5 —Granit es; 6—Diabase vein; 7—Exploration line and its serial number; 8—Fault; 9—In dustrial orebody; 10—Mineralized 
    alteration zone (controlled by drill ing data); 11—Serial number of drill hole; 12—Sampling location         
         矿区的南部被雅满苏深大断裂控制,发育近东西向和北东向的次级断裂。该区岩浆岩大量发 育,西北侧可看到陇东岩体呈岩基状出露;东部石炭系干墩组被华力西中期 辉绿岩脉侵入,呈长条带状岩株产出。勘探工作显示,东戈壁钼矿 床深部侵位有隐伏的花岗斑岩体,该花岗斑岩体呈岩株状,似圆状侵入于石炭系干墩组地层 中,最浅处为135.15 m(黄超勇等,2011)。
        东戈壁钼矿床在石炭系干墩组浅变质碎屑岩与隐伏斑状花岗岩东西两侧外接触带上,为隐伏 矿体,可分东、西2个矿段(图1c),以东矿段为主矿体。东矿段的勘探成果显示矿化带分 布受到花岗斑岩体的控制,矿化蚀变具有由岩体中心向四周减弱(图1d)。根据矿化品位圈 出的矿体呈近似层状、透镜状,围绕花岗斑岩体产出。
        东戈壁钼矿床的矿石矿物以辉钼矿为主,黄铜矿、闪锌矿等次之,脉石矿物以石英、黑云母 、钾长石、斜长石为主,少量角闪石等。矿石中的有用组分为辉钼矿,辉钼矿主要赋存于石 英 _(钾长石脉)中,多自形叶片状结构,部分呈细粒集合体状分布,少量呈星点状赋存于围岩 中;矿石的构造以细脉浸染状、细脉状、颗粒_斑块状、脉状为主,部分为薄膜状、角砾状 构造。矿区蚀变发育,矿化有关的蚀变以硅化、绢云母化、钾长石化、黑云母化为主,由 花岗斑岩中心向围岩,蚀变可分为钾硅酸盐化带→绢英岩化带→青磐岩化带,其中矿体主要 赋存在绢英岩化带中,在地表氧化带有褐铁矿、钼华、孔雀石等氧化物。
3采样与分析测试
3.1采样与岩相学特征
        在对东戈壁钼矿床的地质特征研究基础上,本次工作对勘探线ZK0202和ZK0404等钻孔深部的 花岗斑 岩进行了采样与岩相学观察。东戈壁钼矿床花岗斑岩体呈岩株状侵入于干墩组变质砂岩 地层中。岩体分带性明显,冷凝边构造常在花岗斑岩与围岩的接触位置。花岗斑岩呈浅肉红 色,斑状结构,块状构造,斑晶主要为斜长石、钾长石,石英(图2a、c)。斜长石为 半自形_他形,粒径在0.1~8 mm之间,含量约20%;钾长石约占15%; 石 英呈他形,充填于斜长石和钾长石颗粒之间,含量约12%,值得注意的是,在斜长石和钾长 石颗粒中具有出熔微晶石英;另有少量黑云母、角闪石星点状分布,约3%。基质主要为长石 和石英的微晶,含量约50%,岩石有较弱的绢云母化蚀变 (图2b、d)。
3.2测试方法
3.2.1矿物电子探针分析
        在合肥工业大学电子探针实验室进行矿物探针分析测试,电子探针主要是使用电子束轰击所 测物质表面时产生的特征X射线波普对矿物成分分析,并通过扫描电镜显微成像。测试条件 为:加速的电压采用15 kV,束斑尺寸3 μm,探针电流大小20 nA,实验方法详见Shi (2016 )。  
3.2.2全岩主量、微量、稀土元素分析
        东戈壁钼矿床花岗斑岩样品在实验在澳实矿物实验室(广州)完成主量元素和微量、稀土元素 分析。 
主量元素的分析测试方法为:先将岩 石样品制成粒度不大于200目的粉末,后用烘箱(约100 ℃)干燥,最后在高温炉(>1000℃)中持续灼烧2小时,最后测得其烧失量(LOI);取4 g Li2B4O7溶液和上述步骤后所得的0.5 g粉末样品一起混匀放置于塑料瓶中,在XRF专 门的铂金坩埚中先加入0.4 g的1% LiBr和0.5%助熔剂NH4I,后加入混合样品,在1250℃ 熔融,制备成XRF测定用的玻璃饼。
微量、 稀土元素的分析测试方法为: ① 先将岩 石样品磨制成200目的粉末, 在已有2 ml 8 mol HNO3
图 2东戈壁钼矿床花岗斑岩的岩相学特征
     a. 花岗斑岩; b. 斜长石环带,发生了绢云母化; c. 花岗斑岩,发生了黄铁矿化; d. 斜长石聚片双晶
     Ms—白云母; Pl—斜长石; Qtz—石英; Ser—绢云母化; Kfs—钾长石
     Fig. 2Petrographic characteristics of the granite porphyry in the Donggebi mol ybdenum deposit
     a. Granite porphyry; b. Plagioclase zoning; c. Pyritization; d. Plagioclase poly synthetic twins
     Ms—Muscovite; Pl—Plagioclase; Qtz—Quartz; Ser—Sericitization; Kfs—felds par    
     和0.5 ml 8 mol HF熔样罐中加入粉 末,用电热板(约100℃)加热直 至让样品充分溶解; ② 在通风橱中开启熔样罐蒸干样品,并且在蒸干后再次倒入2 ml 8 m ol HNO3同时加热,方法和前面一致; ③ 利用去离子水,稀释8 mol HNO3溶解的样 品溶液 至250 ml,然后在溶样瓶中摇均匀后将10 ml溶液放入细小塑料管,备ICP-MS测试,样品测 试采用内标法。详细流程参见靳新娣等(2000)。
4测试结果
4.1矿物电子探针
        本次工作对东戈壁钼矿中花岗斑岩开展了长石、黑云母、白云母和角闪石等主要造岩矿物的 电子探针分析(表1、2),结果如下:
      (1) 长石东戈壁成矿花岗斑岩的长石分为斜长石和碱性长石2类,以斜长石为主。E PMA分析显示(表1),斜长石w(SiO2)在56.92%~68.85%之间,w(CaO) 为0.01 %~9.07%,w(Al2O3)在18.42%~22.65%之间,w(Na2O)在9.39% ~12.37%之间;其An值在0.03~32.59之间,Ab值为65.72~99.76,在长石的Or_Ab_ An图上显示为中长石_更长石_钠长石系列(图3a)。钾长石w(SiO2)为64.11%~ 65.19%,w(Al2O3)为17.49%~18.00%,w(Na2O)为0.46%~1. 66%,w(K2O)为14.45%~16.33%;计算得到Or值在85.42~95.92之间,Ab值 在4.08~14.67之间,在Or_Ab_An图(图3a)中集中落于正长石区域。
      (2) 黑云母花岗斑岩黑云母的电子探针分析测试结果列于表2。黑云母w(SiO 2)和w(TFeO)分别在38.02%~38.22% 和18.25%~18.48%之间,其中对黑 云母EPMA数据按林文蔚等(1994)计算方法获得MF、Fe3+、Fe2+、Mg数据,同时 计算黑云母的阳离子数及其他参数(以22个氧 原子为单位),AlⅥ+Fe3++Ti之和为0.70~0.72, Fe2++Mn为0.83~0.97,显示东戈壁花岗斑岩黑云母为铁质黑云母系列(图3b)。
表 1东戈壁花岗斑岩长石电子探针测试数据表
     Table 1The EPMA data of feldspar from the Donggebi granite porphyry
续表 1
    Continued Table 1    
表 2东戈壁花岗斑岩黑云母电子探针测试数据表
     Table 2The EPMA data of biotite from the Donggebi granite porphyry
图 3东戈壁花岗斑岩的长石Or_Ab_An(a)及黑云母分类三角判别图(b)
     Fig. 3Triangular diagram showing discrimation of feldspar (Or_Ab_An, a), bioti te, amphibole and magmatic biotite (b) of 
    the granite porphyry from the Dongge bi Mo deposit   
4.2全岩地球化学
        (1) 主量元素
        东戈壁钼矿床花岗斑岩样品的地球化学测试数据如表3所示。花岗斑岩w(SiO2)介于7 3.36%~74.34%之间,均值为73.78%;w(K2O)介于4.49%~ 5.61%之间,均值为4.90%;w(Na2O)介于2.92%~ 3.39%之间,均值为3.18%;w(Al2O3)介于12.72%~13.64%之间,均值 为13.17%;w(TFe2O3)介于0.98%~1.61%之间,均值为1.32%;岩石碱铝 比A/NK(摩尔比,A/NK=n(Al2O3)/n(K2O+Na2O)在0.78~0. 84之间,铝过饱和度A/CNK值(A/CNK=n(Al2O3)/n(CaO+K2O+Na2O),摩 尔比)在1.03~1.14之间。 
表 3东戈壁钼矿床花岗斑岩体主量元素、微量元素和稀土元素分析结果
     Table 3The major elements and trace elements of the granite porphyry samples i n Donggebi molybdenum deposit    
        在TAS分类图解上,东戈壁花岗斑岩体主要落在花岗岩区域(图4a);在K2O_SiO2图解(图 4b)中,东戈壁地区酸性侵入岩具有高K含量,样品主要落在高钾钙碱性_钾玄岩系列区域, 属于碱性系列(图4c)。在A/CNK_A/NK图解(图4d)中,东戈壁地区 所有岩体样品的A/NK值在0.78~0.84之间,铝过饱和度A/CNK值在1.03~1.14之间 ,具有过铝质花岗岩性质。东戈壁 钼矿花岗斑岩的哈克图解(图5)显示,岩体的 Al2O3、MgO、CaO、TiO2、TFeO 质量 分数与SiO2质量分数呈现明显负相关,K2O、P2O5质量分数与SiO2质量分数变化 关系不显著。
图 4东戈壁和白山钼矿床花岗斑岩体的岩性地球化学判别图解
     a. 侵入岩TAS图解(底图据Middlemost,1994); 1—橄榄辉长岩; 2a—碱性辉长岩; 2b—亚 碱性辉长岩; 3—辉长闪长岩; 4—闪长岩; 5—花岗闪长岩; 6—花岗岩; 7—硅英岩; 8 —二 长辉长岩; 9—二长闪长岩; 10—二长岩; 11—石英二长岩; 12—正长岩; 13—副长石辉长 岩; 14—副长石二长闪长岩; 15—副长石二长正长岩; 16—副长正长岩; 17—副长深成岩; 18—霓方钠岩_磷霞岩_白榴岩; Ir—Irvine分界线,上方为碱性,下方为亚碱性; b. K2O _SiO2图解(底图据Ewart, 1982); c. AR—SiO2图解(底图据Wright,1969); d. A/NK_ A/CNK图解
    (底图据Maniar et al., 1989); A/CNK=n(Al2O3)/n(Ca O+K2O+Na2O), A/NK=n(Al2O3)/n(K2O+Na2O),摩尔比
    Fig. 4The whole_rock geochemical discriminative diagrams of the granite porphy ry samples from Donggebi and Baishan 
    molybdenum deposits
     a. TAS plot for plutonic rocks (after Middlmost, 1994); 1—Olivine gabbro; 2a—A lkali_gabbro; 2b—Sub_alkali_gabbro; 3—Gabbro-diorite; 4—Diorite; 5—Granodio r ite; 6—Granite; 7—Quartzolite; 8—Monzogabbro; 9—Monzodiorite; 10—Monzonite; 11—Quartz monzonite; 12—Sye_nite; 13—Feldspathoid gabbro; 14—Feldsp athoid monzonite diorite; 15—Feldspathoid syenite monzonite; 16—Feldspathoid syenite ; 17— Feldspathoid plutonic; 18—Tawite/urtite/leucitite; Ir—Irvine dividing line,above is alkaline,below the sub_alkaline. b. K2O versus SiO2 plot(af ter 
    Ewart, 1982); c. AR versus SiO2 plot (after Wright, 1969); d. A/NK versus A /CNK plot (after Maniar and Piccoli,1989); A/CNK= 
    n(Al2O3)/n(CaO+K2O+Na2O),A/NK=n(Al2O3)/ n(K2O+Na2O), both are molar ratio 
        (2) 稀土和微量元素 
 图 5东戈壁钼矿床和白山花岗斑岩体Harker 图解
     Fig. 5The Harker diagrams of the granite porphyry samples from Donggebi and Ba ishan molybdenum deposit图 6东戈壁和白山花岗岩球粒陨石标准化稀土元素配分曲线图(a, 球粒陨石标准值据Tay lor et al., 1985)和原始地幔
    标准化微量元素蛛网图(b, 原始地幔标准值据Sun et al ., 1989)
     Fig. 6Chondrite_normalized REE patterns(a, after Taylor et al., 1985) and primitive mantle_normalized trace 
    elements spider diagrams (b, after Sun e t al., 1989) of the granite porphyry samples from Donggebi and Baishan 
     molybdenum deposits
     东戈壁钼矿床花岗斑岩的稀土元素质量分数(∑REE)在109.29×10-6~143.8 9×10 -6之间,均值123.89×10-6;δEu范围0.33~0.44,均值0.38;LREE/HREE 比值在6.22~8.07之间,均值为6.83;均有较强烈的Eu负异常。稀土元素球粒陨石 标准化蛛网图解(图6a)显示,东戈壁花岗斑岩具有 轻稀土元素富集、重稀土元素亏损的右倾特征。 微量元素原始地幔标准化蛛网图(图6b)显示, 东戈壁花岗斑岩大离子亲石元素Rb、K、Th、U富集,Ba、Sr亏损;高场强元素Zr、 Hf、Y富集,P、Ti亏损的特征,总体表现为大离子亲石元素(LILE)含量高于高场强元素(H FSE)。 
5讨论
5.1东戈壁花岗斑岩的成因
        前人研究显示,岩浆岩中黑云母AlⅥ含量及Mg#值可以用来判别花岗岩类型(Whale n,198 8; 刘春花等,2013)。I型花岗岩中,黑云母一般具有较低的AlⅥ值(一般在<0.2 2)和较高Mg#值(>0.38)。东戈壁花岗斑岩中黑云母AlⅥ含量在0.11~0.16之 间(表2),Mg#值在0.72~0.88之间,显示东戈壁花岗斑岩为I型花岗岩。在东戈壁花 岗斑岩中黑云母的岩石类型判别图解(图7a)中,黑云母的数据全部落在造山带钙碱性杂岩 (多为I型花岗岩)区域在中;且在Si_Mg/(Mg+Fe3++Fe2++Mn)图解(图7b)内 ,样品投点于具有I型花岗岩特征的华南同熔型花岗岩区域(赵连泽等,1983)。
        地球化学特征分析显示,东戈壁花岗斑岩具有高硅、高钾钙碱性、过铝质(A/CNK 1.03~1 . 14)的花岗岩特点。在花岗岩类的SiO2 _Ce判别图解(图8a)中,东戈壁花岗斑岩样品均 投 点在I型花岗岩区域,属I型花岗岩,这一认识也得到了 SiO2_Zr图( 图8b)、SiO2_Y图(图8c)和Zr+Ce+Nb+Y_(K2O+Na2O)/CaO 图(图8d)等的支持。 另一方面,东戈壁花岗斑岩具有较低的10 000 Ga/Al(平均2.90)和FeO T/MgO(平均4.44)比值;与A型花岗岩高硅贫铝,高10 000 Ga/Al和TFeO/MgO值不 同(陈王 景元等,2015);东戈壁花岗斑 岩 样品的w(P2O5)低(0.06%~0.07%),且不随分异程度增高的变化(图5h), 与S型花岗岩富P,w(P2O5)随分异程度的增加而增大的特征(King et al.,19 97)明显不同。综上分析,东戈壁花岗斑岩为I型花岗岩。
图 7东戈壁岩浆成因黑云母的岩石类型判别图
     a. 岩浆成因黑云母的岩石类型判别图 (底图据Rahman, 1994); b. Si_Mg/(Mg+Fe3++ Fe2++Mn)图(底图据赵连泽等,1983)
     Fig. 7 Rock type discriminative diagrams of biotite for magmatic origin in the Donggebi molybdenum deposit
     a. The rock type discriminative diagrams of biotite for magmatic origin (after R ahman, 1994); b. Si_Mg/(Mg+Fe3++Fe2++Mn)
     discriminative diagram (a fter Zhao et al., 1983)    
         岩相学特征显示,东戈壁花岗斑岩的斜长石和 钾长石颗粒中有出熔微晶石英,显示其 具有较高的结晶分异程度。Harker图解(图5)显示,东戈壁花岗斑岩样品随着w(SiO2 )增高,w(MgO)、 w(TFeO)、w(CaO)、w(TiO2)等降低,也指示该岩浆岩经历了分离结 晶作用。前人研究显 示,δEu值和岩浆分异指数DI值(DI=Q(石英)+Or(正长石)+Ab(钠长石)+Ne (霞石) +Lc(白榴石)+Kp(六方钾霞石),邱家骧,1985)、Y含量(Said et al.,2009)可以作为 估量岩浆分异程度的指标,δEu值越小、DI值越大,Y含量越高,指示岩浆的结晶分异 程度 就越高(Cheng et al.,2010;Zhang D Y et al., 2015)。东戈壁花岗斑岩具有显著的 δE u负异常,较高的DI值(图9a)和Y含量(图9b),且随δEu值减小而上升,指示了东戈 壁花岗斑岩在演化过程中经历了显著的结晶分异作用。
电子探针实验分析显示,东戈壁花岗斑岩斜长石集中落在中长石_更长石_钠长石区域(图3a ),暗示了结晶斜长石岩浆为发生了高度演化的酸性岩浆(张术根等,2010)。对具有环 带结构的斜长石(图10a),从核部→边部进行电子探针分析,总体表现为An值 逐渐降低,具有震荡的韵律环带特点,其An值 变化范围在0.98~1.86之间。吴平霄等(1997)研究认为斜长石震荡环带中An值变化>10% 时,指示发生了新的岩浆加入,而An值变化<10%是岩 浆自身静态变化的产物,与周围环境无关。东戈壁花岗斑岩的斜长石An值均小于 5%,结合从核部→边部逐渐降低的An值的变化规律,指示东戈壁花岗斑岩岩浆中发生了斜 长石的静态分离结晶作用。
        东戈壁花岗斑岩样品具有较高的w(Th)(22.3×10-6~26.3×10-6)和 高的Th/Ce比值(>0.35),与上地壳的Th/Ce比值一致(Kerrich et al., 1999),且岩 石具有壳源特征的Nb、Ta亏损特征,指示东戈壁花岗斑岩为壳源岩浆岩(Saunders et al .,1996;Sylvester et al.,1997; Konishi et al.,2009)。岩浆岩的(Gd/Yb)N受岩 浆 源区深度的控制,当(Gd/Yb)N值较大(>1.20)时,指示岩浆源于较深的石榴子岩相源 区,反之,岩浆源区源于较浅的尖晶石相源区(Henderson et al.,1984;McKe nzie et al.,1991; Said et al.,2009)。东戈壁地区中酸性侵入岩样品的球粒陨石标准化(Gd/Yb)N比 值在0.94~1.12,平均值为1.00(图10),反映东戈壁花岗斑岩源区较浅。此外,中 酸性岩浆岩中黑云母的TFeO/(MgO+FeO)比值可用来判定岩浆岩的源区,幔源岩浆往往具有比 壳源岩浆更高的MgO含量和较低的TFeO/(MgO+TFeO)比值(张玉学,1982),本次工作测得东 戈壁花岗斑岩黑云母具有较低的w(MgO)值 (9.54%~9.70%)和TFeO/(MgO+TFeO)比值(0.34~ 0.35),也指示其为壳源岩浆。以上均说明东戈 壁花岗斑岩为壳源岩浆岩。进一步分析显示,东戈壁花岗斑岩在在lgTh_lgYb图解中 与部分熔融形成的岩浆岩成分曲线一致,明显不同于分离结晶 成因岩浆岩(图11c),指示东戈壁花岗斑岩是壳源部分熔融岩浆冷凝结晶的产物。
 图 8东戈壁和白山钼矿床花岗斑岩体岩石成因类型判别图
     a. Ce与SiO2花岗岩判别图解 (Collins et al., 1982); b. TFeO/MgO与Zr+Nb+Ce+Y 花 岗岩判别图解(Whalen,1987); 
    c. Y与 SiO2花岗岩判别图解(Collins et al., 1982); d. (Na2O+K2O)/CaO与Zr+Nb+Ce+Y花岗岩判别图解(Whalen,1987) 
     FG—分异的酸性花岗岩; OGT—未分异的M型、I型和S型花岗岩
     Fig. 8The classification of the granite porphyry from Donggebi and Baishan mol ybdenum deposits
     a. Ce versus SiO2 discriminative diagram of the granite porphyry (after Colli ns et al., 1982); b. TFeO/MgO versus Zr+Nb+Ce+Y discriminative diagram of the g ranite porphyry (after Whalen,1987); c. Y versus SiO2 discriminative diagram of the granite porphyry (after Collins et al., 
    1982); d. (Na2O+K2O)/ CaO vers us Zr+Nb+Ce+Y discriminative diagram of the granite porphyry (after Whalen, 198 7)
    FG—Fractionated felsic granites; OGT—Unfractionated M_, I_ and S_type granite s      
图 9东戈壁和白山钼矿床花岗斑岩的岩浆分异程度判别图解 
     a. δEu_DI分异判别图(据Cheng et al.,2010); b. δEu_Y分异判别图(据Said et al., 2009)
     Fig. 9The discriminative diagrams of the granite porphyry differentiation degr ee from Donggebi and Baishan Mo deposit
     a. δEu_DI discriminative diagram of differentiation(after Cheng et al., 201 0); b. δEu_Y discriminative diagram of differentiation
    (after Said et al., 2009)    
图 10东戈壁花岗斑岩斜长石(Pl)韵律环带(a)与电子探针分析结果(b)
     Fig. 10The oscillatory zoning (a) and its EPMA analyzed data (b) of plagioclas e (Pl) from the granite porphyry 
    in the Donggebi Mo deposit    
图 11东戈壁和白山钼矿床花岗斑岩岩浆源区判别图解 
    a. Nd_(Gd/Yb)N图( 据Said et al.,2009); b. δEu_(La/Yb)N(据任志等,2014); c . lgTh_lgYb图解(据汪云亮等,1994)
     Fig. 11The magmatic source discrimination diagrams of the granite porphyry fro m Donggebi and Baishan molybdenum deposits
     a. Nd_(Gd/Yb)N discriminative diagram(after Said et al.,2009); b. δEu_(L a/Yb)N discriminative diagram
    (after Ren et al.,2014); c. lgTh_lgYb dis criminative diagram(after Wang et al.,1994)          
        觉罗塔格地区东戈壁花岗斑岩形成于中三叠世(黄超勇等,2011;Wu et al., 2016; Wang et al., 2015)。觉罗塔格地区在三叠纪已进入板内构造背景已有共识(Xiao et al., 20 13; Qin et al., 2009; 周涛发等,2010),且在三叠纪受到特提斯体系远程挤压影响,具 有地壳缩短增厚特点(肖序常等,1992)。对于觉罗塔格地区三叠纪发育的与钼成矿作用有 关的中酸性岩浆岩,前人也进行了研究,朱江(2013)对东天山_北山地区三叠 纪 中期(232~220 Ma)钼成矿岩浆岩研究后认为,钼成矿岩浆岩可能是由于这一地区在早二 叠 世洋盆闭合,随后进入陆内演化阶段发展的过渡背景中形成的。 Wu等(2016)认为东戈壁 钼 矿床形成于后碰撞环境;Zhang D Y 等(2015)对白山钼矿床成矿花岗石长斑岩研究显示 其形成于挤压背景;Wang 等(2016)认为白山钼成矿斑岩体形成于陆内环境。结合前人研 究,将本次数据在Pearce等 (1984)花岗岩的Rb与Yb+Nb、Rb与Yb+Ta的地球化学构造判别图 解(图12)投点,东戈壁花岗斑岩落在同碰撞花岗岩(Syn_COLG)区域,指示其形成于挤 压背景。值得注意的是,白山钼成矿花岗斑岩具有相对低的Rb含量和Yb、Nb、Ta含量,投点 于岛弧花岗岩(VAG)和同碰撞花岗岩(Syn_COLG)的过渡区域(图12),也指示其形成于 挤 压背景。Pearce等 (1984;1987) 指出岛弧岩浆岩和同碰撞花岗岩分别起源于壳幔物质混合 的交代岩石圈地幔和地壳源区,东天山觉罗塔格地壳中三叠世同一时空背景下的东戈壁和白 山2个钼成矿斑岩体在构造判别图解上的差异性,可能是由于二者分别源于地壳源区和 俯冲交代的岩石圈地幔所导致。     
5.2东戈壁钼矿床与白山钼矿床的成矿斑岩体对比研究
        在觉罗塔格地区,除了近年来勘探发现的东戈壁大型钼矿床外,在该区东部还发现了白山大 型钼矿床(邓刚等,2004)。前人研究显示,东戈壁和白山钼矿床均形成于中三叠世的斑岩 型钼_多金属矿床(张达玉等,2009;Wu et al., 2016;Zhang D Y et al., 2015)。本 次工 作在结合东戈壁钼矿床花岗斑岩体的地质和地球化学特征研究基础上,开展东戈壁钼矿床与 白山钼矿床成矿岩浆岩系统对比分析工作,如表4所示。
        (1) 地质特征显示,东戈壁和白山钼矿床成矿斑岩体均侵位于康古尔韧性剪切带内的下石 炭统干墩组(C1g)地层中,均受到东西向雅满苏深大断裂和次级断裂的控制(黄超 勇 等,2011;Zhang D Y et al., 2015; 杨志强等,2011;Wu et al.,2016)。东戈壁钼矿 床和白山钼矿床的成矿岩浆岩均为花岗岩类,具有斑状结构,主要矿物均为斜长石、钾长石 和石英等。东戈壁成矿岩浆岩中石英含量较高,为花岗斑岩;而白山成矿斑岩体为中酸 性花岗闪长斑岩。
        (2) 成矿元素组合显示,东戈壁斑岩体相关的成矿物质组合为单元素Mo,储量为50 .8万t,平均品位0.14%(马雁飞等,2012);而白山岩体相关的成矿元素组合为Mo_Cu, 其M o的储量为54万t,平均品位0.06%(邓刚等,2004;路魏魏等, 2013)。辉钼矿中Re的含量显示,东戈壁矿床辉钼矿中w(Re) 为25.41×10-6~384.77×10-6(均值105.08× 10-6)(吴艳爽等, 2013);白山辉钼矿的w(Re)为84.04×10 -6~303.3×10-6(均值158.27×10-6)(卢鸿飞等,2015;张达玉等,2 009),在长石的电子探针分析中(图3a),显示东戈壁花岗 斑岩的长石较白山的长石酸性程度更高。以上分析显示,与东戈壁花岗斑岩相比,白 山花岗闪长斑岩具有更高的演化程度、总体具有富Mo贫Re的特点。 
 图 12东戈壁和白山钼矿床花岗斑岩构造环境判别图解(据Pearce et al.,1984) 
     WPG—板内花岗岩; VAG—火山弧花岗岩; Syn_COLG—同碰撞花岗岩; ORG—洋脊花岗岩 
     Fig. 12The tectonic discriminative diagrams of the granite porphyry from Dongg ebi and Baishan molybdenum deposits 
    (after Pearce et al.,1984) 
     WPG—Within plate granite; VAG—Volcanic arc granite; Syn_COLG—Syn_collision gr anite; OGR—Oceanic ridge granite    
        (3) 全岩元素地球化学特征显示,东戈壁花岗斑岩相比白山花岗闪长斑岩,具有较 高的w(SiO2)(均值分别为73.78%和71.03%),较低w(Al2O3)(均 值分别为13.17%和14.37%)、w(MgO) (均值分别为0.31%和0.56%)、w(Ca O)(均值分别为1.01%和1.37%)、Na2O/K2O (均值分别为0.65 和1.16)。稀土 元素总量(ΣREE) 均值分别为123.89×10-6和88.44×10-6,较低的轻重稀土元素比值(LRE E/HREE,均值分别为6.84和18.62)、(Gd/Yb)N(均值分别为1.00和2.94)、(La/Yb) N(均值分别为5.85和28.62)、δEu(均值0.38和0.82)。相比白山钼矿床成矿岩浆 岩,东戈壁钼矿床花岗斑岩体具有高硅、高钾、富铝、低钙,低镁、 高ΣREE、较低的δEu等地球化学特征。Sr_Nd_O_Hf同位素研究显示(Zhang F F et al., 2 015; Wang et al., 2016),东戈壁和白山中酸性岩体均具有正的εHft)和 εNdt)值,且白山花岗闪长斑岩具有更高的εHft)和εNdt)值(表4),指示了白山花岗闪长斑岩的源区比东戈壁花岗斑岩的源 区更深。
        (4) 成岩温度: 通过全岩地球化学的CIPW算得到东戈壁花岗斑岩的液相线温度在733~77 3℃之间(表4);白山花岗斑岩的液相线温度在784~825℃。此外,岩浆Zr含量可以作为温 度计(Waston et al., 2005)计算得到东戈壁钼矿中花岗斑岩中锆石结晶温度介于8 17.26~830.31℃之间,平均822.30℃;白山花岗斑岩中锆石结晶温度介于828.93~907 .88℃,平均873.47℃,白山花岗闪长斑岩具有更高的成岩温度。 
  表 4东戈壁和白山钼矿床成矿岩浆岩的地质、地球化学和成因对比表
     Table 4The geological, geochemical and petrogenetic comparison of the Mo miner alized granite porphyries between the 
    Donggebi and Baishan molybdenum deposits  
        (5) 岩石成因对比分析显示, 东戈壁、白山花岗斑岩体均具有高硅、高钾钙碱性、过 铝质、I型花岗岩的特点。东戈壁钼矿床花岗斑岩比白山花岗斑岩具有更高的岩浆 演化 程度(图9),岩浆源区分析显示二者分别具有地壳和壳幔源区岩浆岩的特征(图11)。成 岩背景分析表明东戈壁和白山花岗斑岩都形成于挤压背景。
综合以上分析,觉罗塔格地区白山和东戈壁钼矿床形成于同一时空背景 的成岩成矿作用,但2个钼矿床的成矿岩浆岩的地质、地球化学特征有明显差异,且成矿岩 浆岩的源区、演化均显著不同。东戈壁钼矿床的成矿花岗斑岩是高钾钙碱性、富铝的 I型,是经历了显著长石结晶分异的高分异I型,岩浆源区为壳源,成岩背景为陆内挤压环境 ; 白山钼成矿花岗斑岩为高钾钙碱性、准过铝的I型,岩浆源区为壳幔混源,成岩背景为陆内 挤压环境。觉罗塔格地区三叠纪东戈壁钼矿床和白山钼矿床很可能为不同构造_岩浆热事件 的产物。
6结论
        (1)东戈壁与Mo成矿相关的隐伏花岗斑岩的斜长石为中长石_更长石_钠长石系列,钾长石 为正长石,黑云母为铁质黑云母,岩石具有高硅、高钾钙碱性、富铝的I型花岗岩的特点, 为下地壳部分熔融产生的岩浆发生结晶分异的产物。
        (2) 东戈壁和白山钼矿床的成矿岩浆岩源区、演化及其形成背景存在显著差异。东戈壁花 岗斑岩源区较浅,显示为壳源,岩浆分异演化程度高,形成于陆内挤压环境。白山花岗斑岩 源区较深,显示为幔源,岩浆分异演化程度低,形成于陆内挤压环境。二者可能分属于不同 构造_岩浆热事件。
    
        志谢研究工作得到了新疆“305"项目办公室、新疆地矿局第六地质大队 的支持, 得到了肖文交研究员、周可法研究员、邓刚总工程师王金林博士、张志欣博士、吴艳爽博士 等专家的指导,野外工作得到了哈 密第六地质大队田吉山工程师的协助,室内研究得到了合肥工业大学陈彤老师、汪方跃老师 的帮助,文章修改过程中得到了审稿人的悉心指导,在此一并表示诚挚的谢意   
    
参考文献
  References    
     Abdel_Rahman A F M. 1994. Nature of biotites from alkaline, calc_alkalin e, and peraluminous magmas[J]. Journal of Petrology, 35(2): 525_541.
     Ban Y H, Ma X H, Wu F, Huang P M, Liu J J, Chang X M and Fu Z G. 2012. Ore_formi ng hydrothermal solution alteration analysis for Donggebi oversize molybdenum or e deposit of Xinjiang Hami[J]. China Molybdenum Industry, 36(2): 10_20(in Chin ese with English abstract).
     Chen J Y and Yang J H. 2015. Petrogenesis of the Fogang highly fractionated I_ty pe granitoids: Constraints from Nb,Ta,Zr and Hf [J]. Acta Petrologica Sinica ,31(3): 846_854(in Chinese with English abstract).
     Chen Y C,Liu D Q,Ying L J,Wang D H and Tang Y L. 2009. A comparative study of Jueluotage met_allogenic belt and South Altay metallogenic belt in Xinjiang [J]. Mineral Deposits,28(1): 1_14(in Chinese with English abstract).
     Cheng Y B and Mao J W. 2010. Age and geochemistry of granites in Gejiu area, Yun nan Province, SW China: Constraints on their petrogenesis and tectonic setti ng[J]. Lithos, 120: 258_276. 
     Collins W J, Beams S D, White A J R and Chappell B W. 1982. Nature and origin o f A_type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189_200. 
     Deng G,Wu H and Lu Q M. 2004. Geological characteristics and prospecting mark o f the Baishan porphyry Mo deposit,East Tianshan[J]. Geological Bulletin of Ch ina,23(11): 1132_1138(in Chinese with English abstract).
     Ewart A. 1982. The mineralogy and petrology of Tertiary_Recent orogenic volcanic rocks: with special reference to the andesitic_basaltic compositional range[A ]. In: Thorpe R S, ed. Andesites: Orogenic andesites and related rocks[M]. 7: 25_9 8.
     Fu Z G. 2012. Geological characteristics and genesis of super_large size Dong Go bi molybdenum deposit in Eastern Tianshan,Xinjiang[J]. Mineral Exploration,3 (6): 745_754(in Chinese with English abstract).
     Henderson P and Wood R J. 1984. Reaction relationship of chrome_spinel in igneou s rocks_further evidence from the layered intrusions of Rhum and Mull, Inner Heb rides, Scotland [J]. Contributions to Mineralogy and Petrology, 78: 225_229. 
     Huang C Y,Wu B Y,Weng J C, Li Z M,Li W Z,Xi G Z,Yuan D F and Zhao X B. 2011 . Discovery of the Eastern Gobi Hugesize molybdenum ore deposit and its prospect ing singnificance in Easte_rn Tianshan[J]. Geological Survey and Research, 34 (4): 280_289(in Chinese with English abstract).
     Jin X D and Zhu H P. 2000 .Determination of 43 trace elements in rock samples by double focusing high resolution inductively coupled plasma_mass spectrometry[J ] . Chinese Journal of Analytical Chemistry, 28(5): 563_567(in Chinese with En glish abstract).
     Kerrich R,Polat A, Wyman D and Hollings P. 1999. Trace element systematics of M g_ to Fe_tholeiitic basalt suites of the superior province: Implications for Arc hean mantle reservoirs and greenstone belt genesis[J]. Lithos, 46(1): 163_187. 
     King P L, White A J R, Chappell B W and Allen C M. 1997. Characterization and or igin of aluminous A type granites from the Lachlan fold belt, Southeastern Austr alia[J]. Journal of Petrology, 38: 371_391. 
     Konishi K, Kawai K, Geller R J and Fuji N. 2009. MORB in the lowermost mantle be neath the western Pacific: Evidence from waveform inversion[J]. Earth and Plan etary Science Letters, 278: 219_225. 
     Lin W W and Peng L J. 1994 .The estimation of Fe3+ and Fe2+ contents in amphibole and biotite from EMPA data[J]. Journal of Changchun University o f Earth Sciences, 24(2): 155_162 (in Chinese with English abstract) .
     Liu C H, Wu C L, Lei M, Qin H P, Li M Z. 2013. Petrology and mineralogy of t he I_type granites an_d temperature_pressure conditions for magma formation in t he Shahewan rock mass of the Qinling[J]. Geology and Exploration, 46(4): 5 95_608(i n Chinese with English abstract).
     Lu H F, Lu W W, Wang H, Yang Y Q, An J G and Wen P. 2015. Geological characteris tics and geophysic_al response of the Baishan molybdenum deposit in Hami,Xinjia ng[J]. Xinjiang Nonferrous Metals,2: 53_61(in Chinese with English abstract). 
     Lu W W,Tan K B,Zhao XJ,Shi X J,Wu F and Tan Z X. 2013. Geological charac teri stics and prospecting of the Baishan molybdenum deposit in Hami,Xinjiang[J]. Geotectonica et Metallogenia,31(1): 42_48(in Chinese with English abstract). 
     Ma Y F,Tu L Q,Shi S R and Yin J F. 2012. Characteristics and origin of the Don ggebi molybdenum deposit porphyry in Xinjiang[J]. Geological Survey And Resear ch, 35(1): 29_33(in Chinese with English abstract).
     Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101: 615_643. 
     Mckenzie D A N and ONions R K. 1991. Partial melt distributions from inversion of rare earth element concentrations[J]. Journal of Petrology, 32(5): 1021_109 1. 
     Middlemost E A K. 1994. Naming materials in the magma igneous rock system[J]. Earth_Science Reviews, 37(3): 215_224.
     Pearce J A, Harris N B W and Tindle A G. 1984. Trace element discrimination diag rams for the tectonic interpretation of granitic rocks[J]. Journal of Petr ology, 25(4): 956_983. 
     Pearce J A. 1987 . An expert system for the tectonic characterization of ancient volcanic rocks[J]. Journal of Volcanology and Geothermal Research, 32(1): 51 _65.
     Qin K Z, Fang T H, Wang S L, Zhu B Q,Feng Y M, Yu H F and Xiu Q Y. 2002. Plate tectonics division,evolution and metallogenic settings in Eastern Tianshan Moun tains, NW_China[J]. Xinjiang Geology, 20(4): 302_308(in Chinese with Engl ish abstract).
     Qin K Z, Sun H, Xu X W, Tang D M, Ding K S, Xiao Q H and Su B X. 2009. Tectonic setting, features and evaluation of ore_bearing property for magmatic Cu_Ni deposits in eastern Tianshan[J]. Northwestern Geology, 42: 95_99.
     Qiu J X. 1985. Magmatite and petrology [M]. Beijing: Geological Publishing Hou se. 1_340(in Chinese with English abstract).
     Ren Z, Zhou T F, Yuan F, Zhang D Y, Fan Y and Fan Y. 2014. The stages of magmati c system in Shapinggou molybdenum deposit district,Anhui Province: Evidence fro m geochronology and geochemistry[J]. Acta Petrologica Sinica, 30(4): 1097_ 1116(in Chinese with English abstract).
     Said N and Kerrich R. 2009. Geochemistry of coexisting depleted and enriched Par inga Basalts in the 2.7 Ga Kalgoorlie Terrane, Yilgarn Craton, Western Australia : Evidence for a heterogeneous mantle plume event[J]. Precambrian Research, 17 4(3_4): 287_309. 
     Saunders A D, Tarney J, Kerr A C and and Kent R W. 1996. The formation and fate of Large Igneous Provinces[J]. Lithos, 37: 81_95. 
     Second Geological Prospecting Institute of Henan Province. 2010. Investigation r eport of the Dong Gebi molybdenum ore deposit in Hami,Xinjiang[R]. Geological S urvey and Development Bureau of Henan Province,Second Geological Prospecting In stitute (internal data). (in Chinese with English abstract).
     Shen P,Pan H d,Dong L H, Yang J T,Shen Y C,Dai H W,Guan W N and Zhao Y J. 2 012. Caldera complex,hosted rocks and alteration of the Yandong porphyry copp er deposit in Eastern Tianshan,Xinjiang[J]. Acta Petrologica Sinica,28 (7): 1966_1980(in Chinese with English abstract).
     Shi Y H. 2016. Petrology and zircon U_Pb geochronology of metamorphic massifs ar ound the middle segment of the TanLu fault to define the boundary between the No rth and South China blocks[J]. Elsevier, http://dx.doi.or_g/10.1016 /j.jseaes. 2016.07.001 
     Song X, Chen L, Deng Y and Xie W. 2015. Generation of Permian Ni_Cu sulfide depo sits in the East Tianshan (NW China) by Syn_collisional mantle derived magmatism [J]. Acta Geologica Sinica (English Edition), 89(S2): 87_88. 
     Sun S S and McDonough W F. 1989. Chemical and isotopic systematic of oceanic bas alts: Implications for mantle composition and processes[A]. In: Saunders A D and Norry M J, eds. Magmatism in the Ocean Basins[C]. Geological Society Sp ecial Publication. 313_345. 
     Sylvester P J, Campbell I H and Bowyer D A . 1997. Niobium uranium evidence for early formation of the continental crust[J]. Science, 275(5299): 521_523. 
     Taylor S R and McLennan S M. 1985. The continental crust: Its composition and ev olution. An examination of the geochemical record preserved in sedimentary rocks [J]. Journal of Geology, 94(4).
     Wang Y H, Xue C J, Liu J J and Zhang F F. 2016. Geological, geochronological, geochemical, and Sr_Nd_O_Hf isotopic constraints on origins of intrusions asso ciated with the Baishan porphyry Mo deposit in eastern Tianshan, NW China[J]. Mineralium Deposita, 51(7): 953_969.
     Wang Y H, Zhang F F, Liu J J, Xue C J, Wang J P, Liu B and Lu W W. 2015. Petroge nesis of granites in Baishan molybdenum deposit, Eastern Tianshan, Xinjiang: Zir con U_Pb geochronology, geochemistry, and Hf isotope constraints[J]. Acta Petrologica Sinica, 31(7): 1962_1976 (in Chinese with English abstract).
     Wang Y L and Zhang C J. 1994. petrogenetic criteria for distinguishing equilibri um partial belting of mantle from magmatic fractional crystallization[J]. Act a Mineralogica Sinica, 14(2): 123_133(in Chine_se with English abstract).
     Waston E B and Harrison T M. 2005. Zircon thermometer reveals minimum melting co nditions on earliest Earth[J]. Science, 308: 841_844.
     Whalen J B, Currie K L and Chappell B W. 1987. A_type granites: Geochemical char acteristics, discriminatuon and petrogenesis[J]. Contributions to Mineralogy a nd Petrology, 95: 407_419. 
     Whalen J B and Chappell B W. 1988. Opaque mineralogy and mafic mineral chemistry of I and S_type granites of the Lachlan fold belt, southeast Australia[J]. Am erican Mineralogist, 73(3_4): 281_296.
     Wright J B. 1969. A simple alkalinity ratio and its application to questions of nonorogenic granite genesis[J]. Geological Magazine, 106(4):370_384. 
     Wu P X, Wu J P, Xiao W D and Li C W. 1997. Genetic mechanism of plagioclase zoni ng[J]. Geology_Geochemistry, 4: 40_49(in Chinese with English abstract).
     Wu Y S,Xiang N,Tang H S,Zhou K F and Yang Y F. 2013. Molybdenite Re_Os isotop e age of the Donggebi Mo deposit and the Indosinian metallogenic event in easte rn Tianshan[J]. Acta Petrologica Sinica,29(1): 121_130(in Chinese with Englis h abstract).
     Wu Y S, Zhou K F, Li N and Chen Y J. 2016. Zircon U_Pb dating and Sr_Nd_Pb_Hf is otopes of the ore_associated porphyry at the giant Donggebi Mo deposit, Eastern Tianshan, NW China[J]. Ore Geology Reviews, 1_14. 
     Xiao W, Windley B F, Allen M B and Han C. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwan a Research, 23(4): 1316_1341.
     Xiao X C, Tang Y Q and Feng Y M. 1992. Tectonics of the northern Xinjiang and it s adjacent areas[M]. Beijing: Geological Publishing House. 1_169(in Chinese wi th English abstract).
     Yang Z Q,Wu B Y,Zheng S S,An J B and Chang Y Q. 2011. Geological and geochemi cal characteristics of ore_forming granite porphyry in East Gobi porphyry molybd enum deposit in Xinjiang[J]. Geology and Mineral Resources of South China,27( 3): 208_214(in Chinese with English abstract).
     Zhang D Y,Zhou T F,Yuan F,Fan Y,Liu S and Qu W J. 2009. A genetic analysis o f Baishan molybdenum deposit in East Tianshan area,Xinjiang[J]. Mineral Depos its, 28(5): 663_672(in Chinese with English abstract).
     Zhang D Y. 2012. Petrogenesis,mineralization and geodynamic evolution in Jueluo tage area,Eastern Tianshan,Northwest China[D]. Supervisor:Zhou T F. Doctoral t hesis of HeFei University of Technology. 1_217(in Chinese with English abstract) .
     Zhang D Y, Zhou T F, Yuan F, Xiao W J, Noel C. White, Deng Y F, Lu W W and Deng G. 2015. Petrogenesis and mineralization potential of a granite porphyry intrus ion beneath the Baishan Mo deposit, Eastern Tianshan, NW China[J]. Journal of Asian Earth Sciences, 113: 254_265.
     Zhang F F, Wang Y H, Liu J J and Wang J P. 2015. Zircon U_Pb and molybdenite Re _Os geochronology, Hf isotope analyses, and whole_rock geochemistry of the Dongg ebi Mo deposit, Eastern Tianshan,Northwest China,and their geological signific ance[J]. International Geology Review,57(4): 446_462.
     Zhang S G, Xu Y and Yu X H. 2010. Research on the mineralogy of plagioclase from the magmatic complex in the middle segment of Nanjing_Zhenjiang mesozoic magmat ic belt[J]. Journal of Mineralogy and Petrology,30(3): 15_22(in Chinese with English abstract).
     Zhang Y X. 1982. Geological characteristics and origin of Yangchuling porphyry W _Mo deposit[J]. Geochimica, 2: 122_132(in Chinese with English abstract).
     Zhao L D, Chen H Y, Zhang L, Li D F, Zhang W F,Wang C M, Yang J T and Yan X L. 2 016. Magnetite geochemistry of the Heijianshan Fe_Cu(_Au) deposit in Eastern Tia nshan: Metallogenic implications for submarine volcanic_hosted Fe_Cu deposits in NW China[J]. Ore Geology Reviews,(http://dx.doi.org/10.1016/j.oregeorev.2016 .07.022).
     Zhao L Z, Liu C S and Sun N. 1983. The petrological characteristics of the Taipi ng_Huangshan polygenetic composite batholith in southern AnHui [J]. Journal of N anjing University(Natural Sciences), 2: 329_339(in Chinese with English abstract ).
     Zhou T F, Yuan F, Zhang D Y, Fan Y, Liu S, Peng M X and Zhang J D. 2010. Geochro nology, tectonic setting and mineralization of granitoids in Jueluotage area, Xi njiang[J]. Acta Pertrologica Sinica, 26(2): 478_502(in Chinese with English abstract).
     Zhu H G, Yang Z Q, Liu X and Zhu Z C. 2012. Study on relationship between porphy ry bodies and veins of porphyry_type molybdenum deposit in East Gobi of Xinjiang [J]. Mineral Resources and Geology, 26(4):299_304(in Chinese with English abs tract).
     Zhu J. 2013. Tectono_magmatic formation and gold_polymetallic mineralization in South Beishan area, NW China[D]. Supervisor:Lv X B. Doctoral thesis of China University of Geosciences(Wuhan): 1_198(in Chinese with English abstract).
     Zhu Z M,Xiong X L,Chu F Y and Wu Y H. 2013. Geochemistry and petrogenesis of c ore samples from Baishan molybdenum deposit, East Tianshan Mountains, Xinjian[J ]. Acta Petrologica Sinica, 29(1): 167_177(in Chinese with English abstract).    
     附中文参考文    
     班宜红,马晓辉,吴飞,黄培明,刘建军,常新明,付治国. 2012. 新疆哈密东戈 壁超大型钼矿床成矿热液蚀变作用分析[J]. 中国钼业,36(2):10_20.
     陈王 景元,杨进辉. 2015. 佛冈高分异I 型花岗岩的成因:来自Nb_Ta_Zr_Hf等元素的制约[J] . 岩石学报,31(3):846_854. 
     陈毓川,刘德权,应立娟,王登红,唐延龄. 2009. 新疆觉罗塔格成矿带与南阿尔泰成矿带 的对比研究[J]. 矿床地质,289(1): 1_14.  
     邓刚,吴华,卢全敏. 2004. 东天山白山斑岩型钼矿床的地质特征及找矿标志[J]. 地质 通报,23(11):1132_1138. 
     付治国. 2012. 东天山东戈壁超大型钼矿床地质地球化学特征与成因分析[J]. 矿产勘查 ,3(6): 745_754. 
     河南省第二地质勘查院. 2010. 新疆哈密市东戈壁矿区钼矿详查报告[R]. 许昌:河南省 地质矿产勘查开发局第二地质勘查院(内部资料) . 
     黄超勇,吴邦友,瓮纪昌,李战明,李文智,郗国增,袁东锋,赵晓斌. 2011. 东天山东戈 壁特大型钼矿床的发现及意义[J]. 地质调查与研究,34(4):280_289. 
     靳新娣, 朱和平. 2000 . 岩石样品中43种元素的高分辨等离子质谱测定[J]. 分析化学 ,28(5): 563_567.
     林文蔚,彭丽君. 1994. 由电子探针分析数据估算角闪石、黑云母中的Fe3+,Fe 2+[J]. 长春地质学院学报, 24(2):155_162.
     刘春花,吴才来,雷敏, 秦海鹏,李名则. 2013 .秦岭沙河湾I型花岗岩岩石学、矿物学特 征及岩浆形成的温压条件[J]. 地质与勘探, 49(4): 595_608.
     卢鸿飞,路魏魏,王恒,杨永强,安敬国,文鹏. 2015. 哈密白山钼矿地质特征及地球物理 响应[J]. 新疆有色金属,2:53_61. 
     路魏魏,谭克彬,赵献军,师宵杰,吴飞,谭治雄. 2013. 新疆哈密市白山斑岩型钼矿床地 质特征及找矿方向[J]. 大地构造与成矿学,31(1) :42_48. 
     马雁飞,涂良权,师书冉,殷建锋. 2012. 新疆东戈壁钼矿床斑岩体特征及成因分析[J]. 地质调查与研究,35(1):29_33. 
     秦克章,方同辉,王书来,朱宝清,冯益民,于海峰,修群业. 2002. 东天山板块构造分区 、演化与成矿地质背景研究[J]. 新疆地质,20(4):302_308. 
     邱家骧. 1985. 岩浆岩石学[M]. 北京:地质出版社. 1_340.
     任志,周涛发,袁峰,张达玉,范裕,范羽. 2014. 安徽沙坪沟钼矿区中酸性侵入岩期次研 究_年代学及岩石化学约束[J]. 岩石学报,30(40):1097_1116. 
     申萍,潘鸿迪,董连慧,杨俊●,沈远超,代华五,关维娜,赵云江. 2012. 新疆延东斑岩 铜矿床火山机构、容矿岩石及热液蚀变[J]. 岩石学报,28(7):1966_1980. 
     汪云亮,张成江. 1994. 地平衡部分熔融和岩浆分离结晶成因岩浆岩的判别[J]. 矿物学 报,14(2) :123_133. 
     王银宏,张方方,刘家军,薛春纪,王建平,刘彬,路魏魏. 2015. 东天山白山钼矿区花岗 岩的岩石成因: 锆石U_Pb年代学、地球化学及Hf同位素约束[J]. 岩石学报,31(7): 1962 _1976.
     吴平霄,吴金平,肖文丁,李才伟. 1997. 斜长石环带的成因机制[J]. 地质地球化学,4 :40_49. 
     吴艳爽,项楠,汤好书,周可法,杨永飞. 2013. 东天山东戈壁钼矿床辉钼矿Re_Os年龄及 印支期成矿事件[J]. 岩石学报,29(1):121_130. 
     肖序常,汤耀庆,冯益民,等. 1992. 新疆北部及其邻区大地构造[M]. 北京: 地质出版 社.1_169. 
     杨志强,吴邦友,郑松森,安金亮,常勇强. 2011. 新疆东戈壁斑岩型钼矿床之斑岩体特征 [J]. 华南地质与矿产,27(3):208_214. 
     张达玉,周涛发,袁峰,范裕,刘帅,屈文俊. 2009. 新疆东天山地区白山钼矿床的成因分 析[J]. 矿床地质,28(5):663_672. 
     张达玉. 2012. 新疆东天山觉罗塔格地区成岩成矿作用及地球动力学过程(博士论文)[D]. 导师:周涛发. 合肥:合肥工业大学博士毕业论文:1_217. 
     张术根,徐莺,余旭辉. 2010. 宁镇中段岩浆带杂岩体的斜长石矿物学研究[J]. 矿物岩 石,30(3):15_22.
     张玉学. 1982. 阳储岭斑岩钨钼矿床地质地球化学特征及其成因探讨[J]. 地球化学,2: 122_132.
     赵连泽,刘昌实,孙菊. 1983. 安徽南部太平_黄山多成因复合花岗岩基的岩石学特征[J] . 南京大学学报(自然科学版),2: 329_339.
     周涛发,袁峰,张达玉,范裕,刘帅,彭明兴,张建滇. 2010. 新疆东天山觉罗塔格地区花 岗岩类年代学、构造背景及其成矿作用研究[J]. 岩石学报,26(2):478_502. 
     朱厚广,杨志强,刘晓,朱展翅. 2012. 新疆东戈壁斑岩型钼矿床斑岩体与脉体关系研究[ J].矿产与地质,26(4):299_304.
     朱江. 2013. 北山造山带南带构造_岩浆建造与多金属成矿(博士论文)[D]. 导师:吕新 彪. 武汉:中国地质大学博士论文:1_198. 
     朱志敏,熊小林,初凤友,吴云辉. 2013. 新疆东天山白山钼矿深部岩体地球化学特征及成 因意义[J].岩石学报,29(1): 167_177.
     ??