DOi:Doi: 10.16 111/j.0258_7106.2017.04.001
豆荚状铬铁矿以及其中铂族元素矿物的成因问题——进展与展望
朱永峰

(造山带与地壳演化教育部重点实验室, 北京大学地球与空间科学学院, 北京100871)

第一作者简介:朱永峰, 男, 1965年生, 教授(博导), 矿床地球化学专业。 Email: y fzhu@pku.edu.cn

收稿日期2016 09 26

本文得到国家重点研发计划项目(编号: 2017YFC0601302)和国家自然科学基金项目(编 号: 41672047)资助

摘要:铂族元素矿物(Platinum Group Mineral: 简称PGM)资料的不断积累 ,丰富了人们 对蛇绿岩中豆荚状铬铁矿成因的认识。文章总结近年来有关PGM的新资料和取得的新认识, 探讨豆荚状铬铁矿以及其中PGM的成因问题。幔源岩浆结晶过程中,铬铁矿周边熔体减少将 诱发那些易氧化的铂族元素(Os、Ir、Ru)在熔体中达到饱和状态,并结晶形成纳米级PGM。 在地幔熔体中,随着硫逸度升高,PGM微粒与熔体中的硫反应并逐渐长大。多期次的熔体抽 提和熔体_岩石反应事件,可以在地幔源区通过逐步降低硫逸度、促进含铂族元素的贱金属 硫化物分解,形成PGM以及铂族元素合金。低硫逸度环境更有利于PGM的形成和保存。在变质 环境或流体环境中,这些PGM往往会与流体反应,造就了PGM矿物的多样性。原生PGM与变质 流体反应并发生原地去硫化作用,可以形成次生的PGM环边或者纳米级PGM包体。铬铁矿的多 阶段蚀变/再平衡过程可以导致PGM溶解—沉淀—均一化,并扰动Os同位素体系。不同类型矿 石 在有限空间伴生的现象以及它们所具有显著差异的地球化学特征,说明蛇绿岩是不同地幔组 分的机械混杂。随着俯冲板片,铬铁矿团块被拖曳到地幔深部,并通过地幔对流重新出现在 扩张中心附近,最终混杂在蛇绿岩中。发生循环的铬铁矿团块因此可以与新生铬铁矿及其围 岩伴生在同一蛇绿混杂岩中。
关键词: 地质学;豆荚状铬铁矿;蛇绿岩;铂族元素矿物(PGM); 地幔对流
文章编号: 0258_7106 (2017) 04_0775_20 中图分类号: P618.33; P618.53 文献标志码:A 
Study on podiform chromitite and related platinum group mineral (PGM) Progres s and prospection
ZHU YongFeng

(Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Spa ce Sciences, Peking University, Beijing 100871, China)

2016 09 26

Abstract:Podiform chromitite and related platinum group minerals (PGM) in ophiolitic mela nges are discussed in detail in this review paper. PGM with different origins a nd multi_generations found in chromitite might represent recycled detrital PGM. Reduction of the melt around crystallizing chromite grain caused saturation in t he most easily oxidized platinum group elements (Os, Ir, Ru: IPGE) in melt, whic h precipitate as metallic nanoparticles. Some authors have argued that these nan oparticles would be precursors of larger PGM sulfides by reaction with S upon lo cal increases of f(S2) in melt. An alternative view suggests that the form ation of IPGE_bearing sulfides and alloys is related to the desulfurization of base_meta l sulfides (BMS) during partial melting. In this case, a series of small events of melt extraction and melt_rock reaction produce a progressive but stepped sequ ence of decreasing f(S2) in the mantle source region, promoting the br eakdown of P GE_bearing BMS into residual PGM sulfides and IPGE_bearing alloys. The reaction of primary PGM with metamorphic fluids usually produces secondary rims and/or na nometer to micrometer_sized inclusions via in situ desulfurization. The multi_st age alteration and re_equilibration, linked with the ability of fluids to infilt rate chromite, may cause resolving and recrystallization of PGM, and seriously d isturb the Os isotopic system. The coexistence of different ore_rock types and t heir recorded different magmatic processes demonstrate that ophiolitic melange r epresents a mechanic mingling of different rock units. Chromitite blocks could b e dragged down into deep mantle and brought up to the surface afterwards. These recycled chromitites could occur in extensional center and be located in an ophi olitic melange with newly formed podiform chromitite finally.
Key words: geology, podiform chromitite, ophiolitic mélange, platinum g roup mineral (PGM), manlte convection
         蛇绿岩中豆荚状铬铁矿的成分特征通常被用来分析地幔的演化。携带铬铁矿的幔源岩浆到达 地壳后,通过俯冲带循环到地幔深部,再经岩浆作用回到地壳环境,完成一个地质循环。铬 铁矿以及其中的包体矿物往往记录着上述循环过程,为现代地球动力学研究提供了一个理想 的窗口(Robinson et al., 1997; Standish et al., 2002; Meibom et al., 2002; Spand ler et al., 2007; Yang et al., 2007; Liu et al., 2012; Borisova et al, 2012; Cog gon et al., 2013; González_Jiménez et al., 2014a,2014b; Zhou et al., 2014; Bro ugh et al., 2015; Arai et al., 2016; Badanina et al., 2016; Malitch et al., 201 7; Xiong et al., 2017; Zaeimnia et al., 2017)。大型豆荚状铬铁矿矿体往往赋存在中 等程度难熔的方辉橄榄岩中,二辉橄榄岩和高度难熔的方辉橄榄岩中少见铬铁矿矿体,或者 矿体很小。俯冲带型蛇绿岩往往含大型铬铁矿矿体,如哈萨克斯坦Donskoi、菲律宾Masinlo c、古巴Mercedita。现代二辉橄榄岩或者高度难熔的方辉橄榄岩地幔(如:东太平洋隆、残 余洋脊、岛弧根部)仅产出小规模的铬铁矿矿体。
        有关铬铁矿成因问题研究,近年来取得诸多进展,例如,对埃及东南沙漠地区豆荚状铬铁矿 中矿物包体的研究表明,岛弧环境中铬铁矿结晶温度为1000~1300℃(<3 GPa),与铬 铁矿平衡的熔体富含K、Na、B、Cs、Pb、Sr、Li、Rb、U和轻稀土元素(Khedr et al., 2 016)。土耳其东部蛇绿岩含大小不等的豆荚状铬铁矿矿体,高Cr型铬铁矿矿体与玻安质熔 体平衡(Prichard et al., 2008; Akmaz et al., 2014; Kozlu et al., 2014; Chen et a l., 2015; Uysal et al., 2015a; 2015b; Zhang et al., 2016; Avcl et al., 2017; Hab toor et al., 2017),铬铁矿矿石中铂族元素质量分数为(79~390)×10-9(铂族元 素包括Ru、Rh、Pd、Os、Ir、Pt,其中Ir、Os、Ru称为IPGE,Rh、Pd、Pt称为PPGE),且相 对富集IPGE(Günay et al., 2016)。大量新资料尤其是铂族元素矿物(Platin um Group Mineral: 简 称PGM,表1)资料的不断积累,丰富了人们对豆荚状铬铁矿的认识。本文总结了有关豆荚状 铬铁矿成因的研究进展,重点关注近年来有关PGM的新认识,探讨豆荚状铬铁矿以及其中PGM 的成因问题。
1豆荚状铬铁矿的成因问题
        有关豆荚状铬铁矿的成因依然存在争议。结晶分异模型(Thayer, 1964; Leblanc et al., 1992a)认为,地幔部分熔融过程中,由于其不相容性,Cr将不断富集到熔体中,这 种熔体在岩浆通道中循环并发生结晶分异, 最终形成豆荚状铬铁矿矿床。     
表 1蛇绿岩及其相关豆荚状铬铁矿中常见的铂族元素
    矿物(PGM)和贱金属硫化物(BMS )
     Table 1Platinum_Group Mineral (PGM) and Base_Metal 
    Sulphide (BMS) occurring in ophiolitic melange and related 
    chromitite    
        在扩张洋脊顶部通道中,Cr在上升的玄武质熔体中富集并结晶出铬铁矿(Lago et al., 198 2; Leblanc et al., 1992b; Harvey et al., 2006)。 上升熔体在地幔橄榄岩通道中形成对流,铬尖 晶石/铬铁矿首先结晶,并保持悬浮状态,不断聚集形成团簇。当对流速度降低时,较大的 铬铁矿团块堆积并堵塞对流通道,导致铬铁矿颗粒及其团块在通道中聚集而形成矿床。然而 ,二辉橄榄岩型蛇绿岩来自非常低速扩张的地幔扩张中心,其地幔部分熔融程度很低,不足 以富集大量Cr。在中等扩张速率洋中脊环境的方辉橄榄岩中往往含铬铁矿矿体,其地幔部分 熔融程度可以富集足够大量的Cr,并在形成铬铁矿的同时,产生方辉橄榄岩。上述模式仅考 虑洋中脊环境中豆荚状铬铁矿矿床的成因。然而,大型铬铁矿矿床形成的有利环境是与高速 扩张洋脊或者弧后盆地相关的大洋岩石圈之上的岛弧,这些岛弧的地幔组分主要是中等程度 难熔方辉橄榄岩(González_Jiménez et al., 2014b)。中等程度难熔方辉橄榄岩代表大 洋岩石圈中橄榄岩与熔体反应的部分,其中的纯橄岩通道中含大量豆荚状铬铁矿和硫化物矿 化带。橄榄石_铬铁矿熔体与富Si熔体混合,形成铬铁矿过饱和的混合熔体。从这种混合熔 体中可以结晶出铬铁矿并形成铬铁矿堆晶,随后熔体达到橄榄石_铬铁矿共结线,形成橄榄 石_铬铁矿堆晶体(图1a、b)。这两类堆晶体混合则形成浸染状矿体。熔体与围岩反应必然 导致橄榄石_铬铁矿共熔线向橄榄石方向迁移(图1b),铬铁矿的稳定域扩大,促进铬铁矿 结晶。
        熔体混合模型(Kelemen, 1990; Arai et al., 1994; Zhou et al., 1994, 1996; Ballha us, 1998; Matveev et al., 2002)认为,玻安质岩浆或者俯冲带型岩浆演化导致地 幔源区极度亏损并形成富Cr岩浆。与其他幔源玄武质熔体相比(~200×10-6~500× 10-6 Cr),原始玻安质熔体往往更富Cr (~1000×10-6~1500×10-6 ; Bédard, 1999; Pagé et al., 2009)。在地幔熔融过程中,由于Cr是不相容的,故 富集在熔体中并强烈分配进入铬尖晶石/铬 铁 矿中,例如苏格兰Sheltand铬铁矿中,这种反应使铬铁矿中的Cr质量达到平衡熔体的400倍 (ODriscoll et al., 2010)。在亏损地幔流体参与下发生高程度部分熔融,在孔隙流条 件 下,渗滤到地幔岩中的熔体与橄榄岩反应,改变熔体成分使其更富Si、 Cr和Al(Edwards e t al., 2000)。含橄榄石和铬铁矿晶体的熔体与富SiO2熔体混合,形成铬铁矿过饱和的 混 合熔体,从这种混合熔体中可以形成铬铁矿堆晶,随后熔体达到橄榄石_铬铁矿共结线,形 成橄榄石_铬铁矿堆晶体。一些学者认为辉石熔融是铬铁矿形成的关键因素,该过程能诱发 熔体反应及随后的熔体混合(Zhou et al., 1996; Arai, 1997),因为围岩中辉石或斜长 石熔融会导致熔体的Cr和Al含量升高,导致橄榄石_铬铁矿共熔线向远离橄榄石的方向迁移 (图1c)。Bédard等(1998)在加拿大Arm北山蛇绿岩中观察到高Cr型铬铁矿出 现在橄榄岩侵入体与壳源辉石岩的接触带上,认为辉石发生了不一致熔融,形成Cr饱和的原 始熔体,并最终形成铬铁矿。
        与不同类型熔体平衡的铬铁矿可能存在显著差异,与MORB相比,玻安质熔体相对富Ti和Cr。 高Cr型铬铁矿往往与玻安质岩浆有成因关系,而高Al型铬铁矿一般与MORB共生。如图2a所示 ,地幔橄榄岩发生部分熔融时,其中尖晶石成分发生规律性变化,随着部分熔融程度升高, 尖晶石Cr#值快速增大。地幔高程度部分熔融往往形成玻安质熔体,低程度部分熔融一般 产 生MORB,介于两者之间的形成岛弧拉斑玄武质熔体。 文献中常依据尖晶石Cr#、TiO2和 Al2O3含量变化范围判别与之共生熔体形成的大地构造环境(图2b)。玻安质熔体和拉 斑玄武质 熔体均形成于岛弧环境,与玻安质熔体平衡共生的尖晶石/铬铁矿通常具有低Ti和高Cr的地 球化学特征(Habtoor et al., 2017),从拉斑玄武质熔体中结晶的铬铁矿往往富Ti,从MO RB中结晶出来的铬铁矿则以高Al为特征。例如,伊朗东北部晚白垩世Sabzevar蛇绿岩铬铁矿 矿床中的方辉橄榄岩亏损微量元素,其中含高Cr型和高Al型铬铁矿矿体(Moghadam et al., 2015)。这些作者认为,早期俯冲阶段(初始弧:拉斑玄武质岩浆)形成的弧前MORB型熔 体孕育出高Al型铬铁矿和斜长石_单斜辉石组合,随后,俯冲板片熔融形成玻安质岩浆,并 与地幔反应形成纯橄岩和高Cr型铬铁矿矿体。
        早期岩浆通过与围岩反应形成高Al型铬铁矿矿体(大洋中脊或者SSZ型弧后裂谷);随后在 前弧环境中通过地幔高程度部分熔融,形成高Cr型铬铁矿。在一些蛇绿岩带中,不同类型铬 铁矿矿体往往伴生,例如,阿曼蛇绿岩带中产出的高Cr和高Al 型铬铁矿可以出现在同一矿区 (Wadi Hilti矿区,Miura et al., 2012)。高Cr型铬铁矿矿体与其围岩方辉橄榄岩呈不谐 和关系,而高Al型铬铁矿往往是谐和矿体。岛弧岩浆之后发育MORB型岩浆作 用,且高Al型铬铁矿与MORB型熔体平衡(Rollinson et al., 2013)。这些铬铁矿记录着很宽的 Fe 3+/ΣFe范围(从极低的类似MORB的值,到高于通常岛弧岩浆的值,图3)。阿曼铬铁矿 的氧逸度值高于MORB源区,且铬铁矿的Cr#变化很大(0.50~0.77, Rollinson and et al., 2015)。这些特征表明,原生 岩浆形成于不同的温度(意味着岩浆源区不同),且在 岩浆运移 过程中发生了改造。这些特征不符合MORB或者岛弧拉斑玄武质岩浆源区,可能代表一种不断 演化的源自初始俯冲带的岛弧岩浆,铬铁矿原生岩浆形成于初始俯冲的晚期阶段。例如, 极地乌拉尔Voykar蛇绿岩记录了玻安质熔体与地幔橄榄岩反应过程中氧逸度的巨大变化(Bata nova et al., 2011),(Log f(O2)值从QFM_1.0变化到QFM+1.5(见图3)。沙 特阿拉伯AlAys蛇绿岩的地幔部分主要由大小和组成不均匀的方辉橄榄岩和纯橄岩块体组成 ,其中的铬铁矿 具有不同化学组成(Cr#、铂族元素含量均有差异, Ahmed et al., 2015),在一个 矿 区,方辉橄榄岩、纯橄岩和块状铬铁矿中铬尖晶石的平均Cr#值分别为0.78、0.77和0 .87( 高Cr型),而在相距不远的另外一个矿区,方辉橄榄岩、纯橄岩和块状铬铁矿中铬尖晶石的 平均Cr#值分别为0.5,0.56和0.6(高Al型)。高Cr型矿石的Δlog f(O2) 变化范围较大且多数情况下低于FMQ(log f(O2)<0),而高Al型矿石多高于F MQ(log f(O2)>0,相对较氧化,图3)。如此看来,高Al型矿石形成于相对更 氧化的环境。这显然有问题。引起此问题的根源是 尖晶石含量较高的岩石类型并不适用橄榄石_尖晶石Mg_Fe交换计算,前述计算得出的氧逸度 值仅仅具有相对意义,而且仅对同类岩石之间的对比有意义。
图 1橄榄石_尖晶石_石英体系相图(Irvine, 1977; Arai et al., 1995): 显示岩浆 发生结晶分异和混合过程
    (演化的岩浆与原始岩浆混合)对尖晶石/铬铁矿结晶的影响 
     Fig. 1Phase relations for the olivine_spinel_quartz system with the simplified quaternary liquidus phase diagram 
    (Irvine, 1977; Arai et al., 1995). Parts o f the Cr_rich and Al_rich ternary sections are shown for comparison. 
    The mixin g line between evolved and primitive melts is shown as dotted lines    
图 2蛇绿岩中尖晶石_铬铁矿成分变化范围与大地
    构造环境之间的关系
     a. TiO2—Cr#变异图显示SSZ蛇绿岩中尖晶石的成分变化范围,虚线代表地幔橄榄岩部 分熔融过程中铬尖晶石的成分变化趋势 (依据Pearce et al., 2000); b. TiO2_Al23变异图显示不同构造
    环境中形成铬铁矿的成分范围
     Arc—与岛弧相关的火山岩包括BON和IAT; BON—玻安质; IAT—岛弧拉斑玄武岩; MORB— 大洋中脊玄武岩; OIB—洋岛玄
    武岩
    Fig. 2Spinel and podiform chromitites from ophiolitic 
    harzburgites and dunit es and their correlations to tectonic
     environments
     a. TiO2—Cr# plot for spinel from ophiolitic harzburgites and dunites. The dashed line represents the predicted chrome_spinel composition at different degr ees of partial melting (based on Pearce et al., 2000); b. TiO2_Al2O3 plot for composition of chrome_spinel from podiform 
    chromitites in different tectonic environments 
     Arc—Arc_related volcanic rocks (BON+IAT); BON—Boninitic; IAT—Island_arc tho leiite, MORB—Mid_ocean ridge basalt, OIB—
    Ocean island b asalt    
图 3log f(O2) (FMQ)与Cr#变异图,显示阿曼蛇绿岩 (Rollision et al., 20 15)、AlAys蛇绿岩(Ahmed et al., 2015)和Voykar蛇绿岩(Batanova et al., 2011)铬铁 矿及相
    关地幔橄榄岩的氧逸度随铬尖晶石Cr#的变化特征
     Fig. 3Plot of log f(O2) (FMQ) versus Cr# showing the Oman mantle chrom itites (Rollision et al., 2015), AlAys ophiolitic chromitites and associated p eridotites (Ahmed et 
    al., 2015), and Voykar ophiolite (Batanova et al., 2011)    
2铂族元素及Re_Os同位素地球化学
        铬铁矿是幔源岩浆演化过程中铂族元素的收集器。与硅酸盐熔体不混溶的铜镍硫化物液体中 一般强烈富集Pt和Pd,并从中结晶出优先富集Os、Ir和Ru的硫化物(Liu et al., 2009; Ba rnes et al., 2016; Becker et al., 2016)。地幔中富硫化物相的不一致熔融是造 成IPGE与PPGE分馏的主要原因(Ballhaus et al., 2006)。Re_Os同位素体系能够记录较长 时间完整的同位素地球化学行为变化,Os同位素数据为豆荚状铬铁矿成因分析提供重要依据 (Shi et al., 2007; ODriscoll et al., 2012; Marchesi et al., 2011; McGowan et a l., 2015; Prichard et al., 2017)。与MORB、深海橄榄岩以及蛇绿岩中的橄榄岩相比, 蛇绿岩铬铁矿对于限定亏损地幔中Os同位素的演化更有效(Marchesi et al., 2011; 2013; Liu et al., 2012; Harvey et al., 2016; Badanina et al., 2016)。岩浆型PGM(硫钌 锇矿, 硫砷铱矿)以及 Os_Ir合金具较大的187Os/188Os变化范围(0 .1097~0.1272),而其187Re/188Os值接近于零。这些PGM的Os模 式年龄变化巨大(TRD=0.13~2.6 Ga, González_Jiménez et al., 2015a) ,主要原因可能是早期从体系中分离的PGM微粒在纯橄岩通道中富集并进入铬铁矿中。
        有关地幔橄榄岩的地球化学研究表明,大洋岩石圈的形成与那些来自地幔深部富集源区的玄 武岩无关。Dokuz等(2015)对土耳其Pontide地区橄榄岩_玄武岩中Re_Os同位素地球化 学研究表明,方辉橄榄岩强烈亏损PPGE,富集 IPGE,代表<10%原始地幔部分熔融残余,其 187Os/188Os与187Re/188Os不构成线性关系, 而与其伴生玄武岩的187Re/188Os与187Os/188 Os构成等时线(377±8) Ma。说明在洋中脊岩浆抽提事件后,体系遭受了显著的后期改造 ,第二次岩浆抽提事件(~377 Ma)发生在地幔楔。在二辉橄榄岩中观察到的单斜辉石网脉 和熔体通道记录了第二次岩浆活动,代表俯冲带之上发生的熔体_岩石反应事件。熔体与围 岩反应导致二辉橄榄岩亏损Re、Pd、Pt。二辉橄榄岩具有远高于球粒陨石的 187Os/188Os值,这与简单熔融事件不一致,可以通过流体提供 含放射性Os同位 素的硫化物来解释。例如,挪 威晚寒武世俯冲带型Leka蛇绿混杂岩的地幔端员在露头尺度上显示不均一性。方辉橄榄岩中 含一些纯橄榄岩团块,大量铬铁矿和辉石岩透镜体出现在该单元上部。流体促进地幔熔体萃 取,造就了地幔岩石单元的化学不均一性。与深海橄榄岩相比,方辉橄榄岩的Os同位素更具 放射性(图4a)。一些方辉橄榄岩样品具有较低的初始187Os/188O s比值 (<0.121),显示熔体亏损的地球化学特征(ODriscoll et al., 2015)。
        在γOs_Al2O3图解中(图4a),中新世Taitao蛇绿岩中地幔岩与深海橄榄岩 的Os同位素组成变化范围基本一致,且187Os/188Os与熔体亏损 之间没有明显相关性,亏损地幔长时间熔体抽取可以解释Taitao铬铁矿同位素的变化(Schu lte et al., 2009)。Shetland和阿曼铬 铁矿则更富放射性Os且相对贫Al。Troodos和阿曼蛇绿岩中橄榄岩具有相似的初始γ Os变化范围,且与Al2O3之间没有明显相关性。与其他构造背景的蛇绿岩相比,俯 冲带型蛇绿岩在熔融过程中可以产生显著的地球化学和同位素不均一性,这可能是由于大量 流体/熔体与围岩反应导致的。然而,豆荚状铬铁矿围岩(纯橄岩、二辉橄榄岩、方辉橄榄 岩)的Os同位素 变化较大(图4b),可能是地幔熔融过程中熔体渗透和熔体_地幔岩石反应的结果,该过程 使纯橄岩通道中汇聚富集放射性同位素的地幔熔体,这类熔体最终将较高的187 Os/188Os比值传递给围岩。
        对比不同类型铬铁矿矿床的Re_Os同位素资料表明,在铬铁矿矿石或围岩中均存在极度亏损 的具大陆岩石圈地幔属性的物质:新疆萨尔托海高Al型铬铁矿的 187Os/188Os比值为0.1109~0.1256;西藏雅鲁藏布江蛇绿岩 带中 罗布莎高Cr型铬铁矿的187Os/188Os比值为0.1038~0.1266( 史仁灯等,2012);西藏班公_怒江蛇绿岩带中东巧高Cr型铬铁矿187Os/ 188Os比值为0.123 18~0.123 54。富含Os合金包体的铬铁矿的 187 Os/ 188Os比值有2组: 0.126 45±0.000 04 (2σ; n=145) 和0. 120 03~0.121 94(Shi et al., 2012a)。强烈亏损的纯橄岩具有很低的 187Os/188Os比值(0.117 54, 0.118 15),方辉橄榄岩的 187Os/188Os范围较宽(0.121 07~0.126 12),玄武 岩 具有较高的187Os/188Os比值(0.204 14~0.380 67, 187Re/188Os比值最高达45.4,Shi et al., 2012a)。在蛇绿 岩发育过程中,古老大陆岩石圈地幔参 与循环有利于形成铬铁矿矿床。来自俯冲带的熔体/流体诱发其上覆地幔部分熔融, 并将大量放射性Os带入地幔橄榄岩中。橄榄岩的Os同位素变化较大(图4b),而铬铁矿具有相对均一的Os同位素组成(图4c),说明铬铁矿豆荚 形成时,Os同位素发生了再均一化。类似地, 西班牙Ojén铬铁矿中PGM的Os同位素组成与豆荚状铬铁矿的变化范围基本一致(图4c),但 PGM的γOs(21 Ma)值变化范围较大 (+6.6~-7.4, González_Jiménez et a l., 2013),反映其成因的复杂性。Gonzalez_Jimenez等(2011)用原位MC_ICPMS方法 研究古巴Caridad蛇绿岩豆荚状铬铁矿细小硫化物包体(硫钌锇矿、富含铂族元素的硫化物 固溶体、镍黄铁 矿、针镍矿、赫硫镍矿)的Os同位素组成,发现这些包体矿物具有不同的Os同位素组成,这 种显微尺度上的Os同位素不均一性,需要用地幔岩石_熔体反应、不同性质熔体的混合/混杂 过程来解释。
图 4蛇绿岩中地幔橄榄岩的Al2O3γOs变异关系图、豆
    荚状铬 铁矿 及其围岩的187Re/188Os与187Os/188O s变异图
     a. 蛇绿岩中地幔橄榄岩的Al2O3与 γOs变异关系图(ODriscoll et al., 2012; Hanghj et al., 2010); b. 豆荚状铬铁矿围岩(纯橄岩, 二辉橄榄岩, 方辉橄 榄岩)的187Re/188Os与187Os/188Os变异图( 数据引自ODriscoll et al., 2012; 2015; Dokuz et al., 2015; Shi et al., 2012a; Gao et al., 2015); c. 豆荚状铬铁矿以及PGM的187Re/18 8Os与187Os/188Os变异图,铬铁矿的数据引自ODriscoll e t al. (2012), Shi et al. (2012a), Dharma Rao et al., 2015; Gonzále z Jiménez et al., 2015a; PGM的数据引自González_Jiménez et al., 2013
     Fig. 4Plot of Al2O3 versus γOs for ophiolitic peridotites and chromitites, and plot of 187Re/188Os versus 1 87Os/188Os for ophi_
    olite peridotites and chromitites 
     a. Plot of Al2O3 versus γOs for ophiolitic peridotites a nd chromitites (ODriscoll et al., 2012; Hanghj et al., 2010); b. Plot of 187Re/188Os versus 187Os/188Os for the wall_ rocks of podfo rm chromitites (data after ODriscoll et al., 2012; 2015; Dokuz et al., 2015; Sh i et al., 2012a; Gao et al., 2015); c. Plot of 187Re/188Os versus 187Os/188Os for podform chromitites and PGM (Data fo r chromitite after ODriscoll et al., 2012, Shi et al., 2012a, Dharma Rao e t al., 2015, and González_Jiménez et al., 2015a; PGM data after González_Ji ménez et al., 2013)          
3PGM及其成因
        荚状铬铁矿中常见PGM和BMS(表1)。包裹在铬铁矿中的这些矿物成因复杂,且往往与铂 族元素合金、角闪石、橄榄石和单斜辉石等硅酸盐矿物或者氧化物共生(白文吉等, 2005; Jannessary et al., 2012; Uysal et al., 2015a)。一般情况下,富IPGE的PGM(如:硫 钌锇矿)主要以包体形式赋存在铬铁矿中,而富PPGE的PGM一般出现在矿物晶体之间。实验 研究表明,富IPGE的PGM成核一般发生在铬铁矿晶体的边界层(Finnigan et al., 2008)。 这些矿物形成于高硫逸度和高温条件(1300~1000℃),早于或者与铬铁矿同时结晶 。例如,土耳其东南Berit高Al型铬铁矿位于纯橄岩中,其中富集PPGE,而高Cr型铬铁矿中 相 对富集IPGE(Kozlu et al., 2014)。富含PPGE的矿物集合体包括Pd_Pt碲化物、砷铂矿、P d_锑化物、硫砷铂矿、 Pd_Sb_As和Pt_Pd_Cu_Au合金。土耳其西北Orhaneli和Harmancik蛇 绿岩铬铁矿中的PGM颗粒(包括硫钌锇矿、自然锇、自然铱、硫锇矿、Ru_Ni_Fe硫化物、硫 砷铱矿、硫砷铑矿)往往与硅酸盐矿物(橄榄石、辉石、角闪石)和BMS(如:镍黄铁矿、 针镍矿、斑铜矿、铁镍矿、赫硫镍矿)共生或伴生(Uysal et al., 2015a)。由于硫逸度 较高,体系中普遍存在BMS。这些硫化物往往呈液滴状被铬铁矿包裹。在多相变质作用或者 循环铬铁矿进入到深部地幔过程中,具有Os同位素不均一性的PGM,反映不同地幔源区不同 批次熔体的混合。González_Jiménez等(2014b)将蛇绿岩铬铁矿中PGM的成因归纳 为如下几点: ① 从铬铁矿捕获的不同熔体中直接结晶,残余相如硫钌锇矿或者 Os_Ir合 金 可以来自地幔中含铂族元素的硫化物,硫化物中的这些元素在熔体_岩石反应过程中释放出 来; ② 地幔中的PGM也可以直接进入铬铁矿母岩浆的晶体粥中,铬铁矿中一些PGM可能是铬 铁矿母岩浆在运移过程中蚕食围岩二辉橄榄岩时捕获的或者通过反应形成的; ③ 铬铁矿 矿 石通过俯冲带循环到地幔深部,进入地幔对流系统,交代流体/熔体渗滤并促进PGM结晶; ④ 从渗滤到铬铁矿矿体中的交代流体/熔体中结晶出PGM。
        在地幔环境中随着硫逸度升高,纳米级PGM与熔体中的硫反应可以形成较大的PGM颗粒(Bock rath et al., 2004)。在地幔发生部分熔融时,BMS的去硫化过程也可能形成PGM以及铂族 元素合金(Peregoedova et al., 2004; Fonseca et al., 2012)。如果熔体中S_As_Sb_Te _Se含量较低,漂浮在熔体中的纳米级铂族元素聚积体就保持悬浮状态,直到它们逐渐增大 形成合金。这种次显微铂族元素合金往往与PGM共生(Locmelis et al., 2011; Pagé et al ., 2012)。微小的IPGE金属簇团及其显微合金可以在环绕铬铁矿晶体的还原层边界成核, 一旦形成,它们将附着在铬铁矿表面,与周围熔体保持平衡。这些IPGE合金直接生长在铬铁 矿环带中,或者与周围含硫熔体反应形成PGM(如:硫钌锇矿),而Pt和Pd合金相主要悬浮 在硅酸盐熔体中,这个过程也导致IPGE与PPGE分异。因此,铬铁矿中的包体往往富集IPGE, 而富集PPGE的矿物相往往出现在硅酸盐矿物中,或者位于铬铁矿的蚀变带中。t_f (O2)_f(S2) (±αAs)局部升高会促使硫钌锇矿_硫锇矿、硫砷铱矿和Os_Ir_Ru 合金 结晶,此过程可以同时发 生在铬铁矿形成的不同区域(动态平衡过程,图5a)。一般来说,随温度降低,依次从熔体 中结晶出Os_Ir_Ru合金、硫钌锇矿、PGM和PGM+BMS。BMS的结晶温度相对较低,但要求硫逸 度较高。f(S2)突然变化(开放体系,流体/熔体加入)可以解释硫化物熔滴的成因( 形成与含铂族元素铬铁矿共生的BMS)。
        不同成分熔体的混合会导致t_f(O2)_f(S2) (±αAs)环境的不断变化。在 这种环境中成核并生长 的PGM和BMS颗粒可以从一种熔体进入另一种熔体,并继续生长,从而形成了颗粒内部同位素 组成不同的成分区域。例如,加拿大 Ouen岛的蛇绿岩中,与铂族元素合金、富IPGE硫化物 和Ni_Cu_Fe硫化物共生的硫钌锇矿,均具有显著不同的187Os/188O s比值 (González_Jimé nez et al., 2012a)。形成铬铁矿矿床的地幔熔体中,铂族元素收支平衡取决于熔融区域和 含铂族元素矿物与熔体的反应程度(Prichard et al., 2008; 2017)。在地幔橄榄岩中, 形成于多阶段部分熔融事件或者地幔蚀变过程的含铂族元素矿物(包括Ni_Cu_Fe硫化物、铂 族元素合金、PGM)通常共生(Marchesi et al., 2010; Xu et al., 2008; Akmaz et al., 2014; Zhu et al., 2016)。如图5b所示,赫硫镍矿的稳定域基本覆盖了铂族元素合金及P GM结晶的t_f(S2)范围,因此,这些矿物往往共生。随着温度降低和硫逸度升高 ,赫硫镍矿转 化为针镍矿,铂族元素合金和PGM不能稳定存在,它们将被流体交代并发生溶解重结晶等均 一化过程。例如,在700~550℃还原环境中,渗滤到铬铁矿矿石中的水可以促进铬铁矿与 橄榄石之间的反应,生成富Cr和富Fe2+的“次生"铬铁矿及与之平衡的绿泥石、PGM和 BMS(Gervilla et al., 2012)。岩浆硫化物在还原环境中发生了去硫化过程,形成S相对 亏损的硫钌锇矿。在一些变质的多孔状铬铁矿矿体中,观察到硫钌锇矿被次生Ru_Os_Ir合金 或者硫砷 铱矿包裹的现象(González_Jiménez et al., 2010),表明硫钌锇矿也可以在低温条件下 重结晶。合理的解释是,岩浆成因硫钌锇矿_硫锇矿发生脱硫化作用,所形成的Ru_Os_Ir 合 金残留在铬铁矿空隙中,随后Ru_Os_Ir 合金与含S流体反应,生成次生的硫钌锇矿。铬铁矿 的多阶段蚀变/再平衡过程可以导致PGM溶解— 沉淀—均一化。 因此,一些看起来像原生的PGM 包体,可以是在铬铁矿到达地幔浅部后发生蚀变_改 造所形成的次生矿物,然后被再次拖曳到地幔深部发生重结晶。这类循环可以形成多期次、 多成因的PGM。
图 5PGM和BMS的相图以及显示PGM和BMS稳定域
    的log f(S2)_t图解
     a. PGM和BMS结晶的相图,显示从地幔岩浆中结晶出含铂族元素矿物或者合金的温度和硫逸 度条件范围(Uysal et al., 2015b); b. log f(S2)_T图解显示硫与Ni、Ru、Pt 、 Ir、Os及其合金的平衡关系:在针镍矿和赫硫镍矿的稳定域中,PGE元素能以多种合金或PGM 
    形式出现(Melcher et al., 1997; Garuti et al., 1999)
     Fig. 5The thermodynamic contex of crystallization conditions 
    for PGM a nd BMS and their stable fields in plot of log f(S2)_t
     a. The thermodynamic context of crystallization conditions for PGM and BMS (mod ified after Uysal et al., 2015b); b. Metal_sulfide equilibrium for Ru, Pt , Ir, Os and Ni as a function of sulfur fugacity (log f(S2)) and temperatu re (T) (modified after Melcher et al., 1997; Garuti et al., 1999)    
  
        并不是所有蛇绿岩中的PGM都直接从熔体中 结晶或者来自硫化物的分解反应。一些来自围岩 的PGM通过熔体_围岩反应,被铬铁矿捕获。实验研究(Fonseca et al., 2012)表明,地幔 岩浆持续抽提过程中,进入熔体的S和FeO将促进硫化物分解,并形成独立分布的 PGM以及 铂族元素合金。一系列小规模熔体抽提事件可以导致熔体的f(S2)不断降低,促进含 铂 族元素硫化物分解形成“残余相"硫钌锇矿和Os_Ir合金,这可以解释TRD变化范围较大的PGM 与岩浆事件之间的耦合关系。例如,西班牙Ojen铬铁矿中PGM的Os模式年龄TRD= 0.1~1.4 Ga(0.3 Ga为主,González_Jiménez et al., 2013),西藏铬铁矿中Os_Ir 合金是硫化物分解的产物,Os TRD=(234±3) Ma,而原位Ru_Os_Ir硫化物的T RD变化很大(290~630 Ma,铬铁矿中锆石U_Pb年龄为(376±7) Ma,δ18O=4 . 8‰~8.2‰,Shi et al., 2007; McGowan et al., 2015)。一些地幔岩中存在与Ni_Fe_C u硫化物共生的“残余相"硫钌锇矿(Lorand et al., 2010), 也是这个原因。在与生成铬铁 矿有关的熔体_围岩反应过程中,这些残余相Os_Ir合金颗粒在含水熔体中迁移(高温、低压 、低f(S2)条件), 从而保留其幔源187Os/188Os特征。一 些 合金也可以与S反应并促进硫钌锇矿结晶 (Grieco et al., 2007)。因此,一些铬铁矿中的 PGM和BMS与橄榄岩中的BMS具有类似的187Os/188Os变化范围(Go nzález_Jiménez et al., 2013)。
4变质条件下PGM矿物的稳定环境
        变质和变形过程诱发的成分变化可能会严重影响对铬铁矿化学特征的解释(Zaccarini et a l., 2011; Grieco et al., 2012; Mansur et al., 2017)。铬铁矿矿体裂隙往往 被流体/熔体充填形成各种脉,有时伴随韧性变形,反映地幔流体对铬铁矿的叠加改造过程 。例如,墨西哥Loma Baya铬铁矿经历热接触变质过程,原生铬铁矿_橄榄石集合体被次生多 孔状富Fe2+铬铁矿_绿泥石交代;同时形成了与新生高Mg橄榄石平衡共生的铬铁矿边 (Gonz ález_Jiménez et al., 2015b)。 在变质过程中,铬铁矿中微量元素 (Ga、Ti、Ni、Zn 、Co、Mn、V、Sc)会发生重新分配,形成变质地球化学指纹。从榴辉岩相到角闪岩相的退变 质流体渗滤可以形成4类铬铁矿矿体: ① 多孔状铬铁矿,强烈富集Cr和Fe2+,亏损 Al和Mg,绿泥石充填孔隙中; ② 块状铬铁矿,强烈富集Fe3+、Ti、Ni、Zn、Co、M n和Sc ,亏损Ga; ③ 局部蚀变铬铁矿,其原生铬铁矿核被含绿泥石的多孔状铬铁矿包裹; ④ 环带状铬铁矿: 原生铬铁矿核被富Fe铬铁矿边环绕。与未变质铬铁矿相比,蚀变铬 铁矿通 常富集Zn、Co和Mn,强烈亏损Ga、Ni和Sc,其Mg#和Al值向边部逐渐降低。在微量元素_Fe 3+/(Fe3++Fe2+)图解中,不同类型铬铁矿显示复杂的关系,这说明元素 替代、流体渗滤铬铁矿的能力以及铬铁矿核、边之间的再平衡程度均有很大变化(Colás e t al., 2014)。因此,变质作用可以显著破坏铬铁矿的原生地球化学特征,甚至铬铁矿核 部那些似乎“未蚀变"部分也被改造了。与绿泥石平衡的多孔状富Fe2+铬铁矿是铬铁 矿与蛇纹石变质反应的产物(反应(1), Merlini et al., 2009),在富SiO2流体存在的 条 件下,高Al型铬铁矿与橄榄石反应,形成多孔状富Fe2+铬铁矿_绿泥石集合体(反应( 2)):

        保加利亚Golyamo豆荚状铬铁矿中的铬铁矿残斑保留了岩浆成因的环带特征,其边部形成变 质成因的铬铁矿(Satsukawa et al., 2015)。粗大铬铁矿晶体显示塑性变形特征,晶体内 形变包括弯曲和亚颗粒边界。存在2类细小铬铁矿晶体(F1,F2): F1铬铁矿发育完好的 多边形结构;F2铬铁矿具有低角度边界和晶间错位特征。与粗粒铬铁矿残斑相比,2类细小 铬铁矿均以高Fe3+、高Cr含量和低Mg#值为特征。这些作者认为F1铬铁矿代表非均 一成核结晶过程,F2铬铁矿代表亚颗粒旋转。这些细小铬铁矿形成于铬铁矿矿石与氧化性流 体/熔体反应的初始阶段(退变质过程: ~1.0 GPa, 500~700℃)。剪切带和相关流体 活动可以显著改变铬铁矿的成分特征,流体可以加速铬铁矿重结晶、应力局部集中以及化学 再平衡。局部应力驱动的成核和亚颗粒旋转能促进化学变化。变质流体导致硫钌锇矿脱硫, 释放出Ru_Os_Ir合金。因此,热液变质过程中,可以从硫化物中出溶IPGE微粒并长大。蛇纹 石化橄榄岩中的PGM和铂族元素合金往往是在低f(O2)条件下由原始地幔硫化物分解而 来。
        实验研究表明,铁镍矿稳定区间的f(O2)比以前认为的高 ,在铁镍矿稳定域, Os以金属态出现,Re以ReS2形式存在(Foustoukos et al., 2015)。在相对宽泛的f (S2)_f(O2)条件下,热液蚀变和地幔原生硫化物分解将使Re/Os体系转变为一个开 放体系, 并通过俯冲过程导致地幔O s同位素的不均一性。蛇绿岩中PGM的Os同位素通常被认为不易受流体作用改造,然而,Gonz ález_Jiménez等(2012b)发现,保加利亚Dobromirtsi蛇绿岩铬铁矿中原生和次生PG M的187Os/188Os比值差异巨大,保存在未变质铬铁矿核部的原生 PGM的187Os/188Os=0.1231~0.1270, 187Re/188Os<0.002。由原生PGM转变而来的次生PGM的同位素组 成变化范围 较大(187Os/188Os=0.1124~0.1398, 18 7Re/188Os<0.024),这意味着流体与PGM反应,导致了Os同位素的再平衡过 程。
        新疆萨尔托海高Al型铬铁矿遭受了变质热液改造,在其外围生长了一圈富Cr的尖晶石/铬铁 矿,伴随此过程形成大量绿泥石、BMS和PGM,铬铁矿含一些热液成因PGM和BMS(图6a、c) 。这些次生矿物形成于蛇纹石化过程以及随后的变质改造过程中,其稳定域受H2S活度、 温度和流体酸碱度控制(图6d)。H2S活度和温度降低,将导致镍黄铁矿的稳定域扩大, 而针镍 矿的稳定域相对收缩。这些矿物的成分变化范围与澳大利亚Mount Keith地区铬铁矿中硫化 物的成分基本一致(图6e)。
5铬铁矿深俯冲与壳幔物质循环
        洋壳俯冲及其相关岛弧岩浆活动,与大陆裂谷系统和大洋中脊系统构成了地球动力学的有机 整体。深部地幔物质通过大陆裂谷系统或者大洋中脊系统上升到地球浅部,再通过俯冲带进 入地幔深部。这些循环到深部的物质,一旦进入地幔对流系统,就会重新发生循环。大陆岩 石圈也可以通过深俯冲,将大陆地壳物质运送到地幔深部(Zhu et al., 2002; 2009; Zhe ng, 2012; Levander et al., 2014)。不同类型矿石在有限空间 伴生 的现象以及它们反映出的不同岩浆过程,说明蛇绿岩代表地幔对流循环中不 同组分单元的机械混杂。在地幔对流过程中,循环 的纯橄岩和方辉橄榄岩团块相对容易发生部分熔融并可能被肢解,并与周围地幔岩石发生不 同程度混合。俄罗斯极地乌拉尔Ray_Iz蛇绿岩铬铁矿中发现的壳源矿物包括金刚 石、自然金属元素及其合金(杨经绥等,2007; Yang et al., 2015 )。中国西藏罗布莎_东巧蛇绿岩铬铁矿以及新疆萨尔托海铬铁矿中发现的壳源矿物包括锆 石、石英/柯石英、刚玉、长石、磷灰石、角闪石、石榴子石、蓝晶石、红柱石(白文吉等 ,2 007;Yamamoto et al., 2009; 杨经绥等,2011; Huang et al., 2014; Xu et al., 2015; 田亚洲等,2016 )。这些矿物通过俯冲板片循环到地幔深处后,被铬铁矿捕获。这 些含特殊包体的铬铁矿被熔体带到浅部地幔楔中,在莫霍面附近聚集形成铬铁矿矿床(Robi nson et al., 2015)。这些作者认为含金刚石的铬铁矿晶体或者铬铁矿团块被搬运到地幔 过渡带顶部后,混入软流圈地幔中,这种情况可以发生在洋脊扩张环境,也可以发生在俯冲 带环境中(Yang et al., 2014)。在蛇绿岩铬铁矿中发现的壳源锆石表明,这些壳源锆石 被重新安置在幔源岩浆成因铬铁矿中(Savelieva et al., 2007; Yamamoto et al., 2013; Belousava et al., 2015; Malitch et al., 2017)。这类铬铁矿及其围岩橄榄岩最可能 来源于俯冲带型玻安质岩浆,然后随着俯冲板片被拖曳到地幔深部,通过地幔对流,重新出 现在扩张中心附近。由于铬铁矿难熔且具有非常好的抵抗塑性变形的能力,在发生部分熔融 和地幔对流等地质过程中,豆荚状铬铁矿可以保留其中的原生包体及岩浆成因结构。相反地 ,铬铁矿的围岩(纯橄岩、方辉橄榄岩)相对容易发生熔融和变形,往往被转变为更难熔的 方辉橄榄岩。通过地幔循环,那些发生循环的豆荚状铬铁矿团块将与那些新生铬铁矿团块及 其围岩伴生在同一个蛇绿混杂岩中。
 图 6新疆萨尔托海铬铁矿矿石中矿物相的显微照片、这些矿物在H2_H2S活度图中的位 置和成分变化范围
     a. 新疆萨尔托海铬铁矿矿石显微照片,显示尖晶石(Sp)颗粒之间的绿泥石(Chl),新鲜尖晶 石在边部转变为铬铁矿(Cr),单偏光; b. 铬铁矿边缘分布的硫化物包括镍黄铁矿(Pn)和针 镍矿(Ml),背散射电子图片; c. 背散射电子图片显示硫化物之间的交代关系: 镍黄铁矿 被赫硫
    镍矿(Hz)和砷镍矿(Mr)交代,赫硫镍矿被砷镍矿交代; d. FeO_Fe23_NiO _H2S_H2O体系的H2_H2S活度图(含磁铁矿, Foustoukos et al., 
    2015); e . Fe_Ni_S三角图显示新疆萨尔托海和澳大利亚Mount Keith铬铁矿中硫化物的成分变化范围 (Zhu et al., 2016)
    Fig. 6Photomicrograph showing mineral assemblages in the Sartohay chromitite a nd their locations in H2_H2S activity 
    diagram and chemical composition 
     a. Photomicrograph of spinels (Sp) with chlorite (Chl) in their boundary, and s pinel was altered to Cr_rich chromite (Cr) on rim, plainlight; 
    b. BSE includin g pentlandite (Pn) and millerite (Ml) distributed along an altered chrome_spinel rim, back_scattered electron (BSE); c. BSE image 
    showing phase relationship be t ween pentlandite, maucherite (Mr) and heazlewoodite (Hz), pentlandite was replac ed by heazlewoodite and 
    maucherite, and heazlewoodite was replaced by ma ucherite ; d. H2_H2S activity diagram depicting phase equilibrium relationships in Fe O_Fe2O3_
    NiO_H2S_H2O system (magnetite present, based on Foustouk os et al, 2015); e. Triangular compositional diagram for Fe_Ni_S minerals from 
     chromitite in the Sartohay and Mount Keith (after Zhu et al., 2016)  
        一些蛇绿岩中豆荚状铬铁矿的模式年龄变化范围巨大,且老于其形成年龄,意味着类似的壳 幔物质循环具有普遍性。例如,新疆达拉布特晚古生代蛇绿岩中豆荚状铬铁矿的Os同位素模 式年龄为3.5~0.6 Ga(Shi et al., 2012b),雅鲁藏布江白垩纪蛇绿岩中豆荚状铬铁矿 的Os同位素模式年龄3.37~0.28 Ga(史仁灯等,2012; McGowan et al., 2015)。如图7 a所示,源于大洋中脊的豆荚状铬铁矿通过俯冲带(经历变质改造)被带到地幔深部,堆积 在 地幔过渡带附近,随后,这些来自地壳浅部的铬铁矿卷入地幔对流中,通过大洋或者大陆扩 张中心,到达大洋中脊或者弧后盆地,完成一次循环。部分铬铁矿还可以在俯冲带熔体(玻 安质熔体)与地幔楔橄榄岩反应过程中,通过岛弧岩浆系统,到达地壳浅部。高Cr型铬铁矿 一般与高程度部分熔融的玻安质岩浆有关,高Al型铬铁矿则往往与低程度部分熔融的MORB型 岩浆有成因关系。这两种岩浆可以基本同时流经地幔通道,并发生相互作用,在蛇绿岩带不 同位置形成不同类型铬铁矿矿体。在一些特定地质环境中,早期俯冲阶段形成的弧前MORB型 熔体孕育出高Al型铬铁矿,随后的俯冲板片熔融形成玻安质岩浆,这些岩浆与地幔反应形成 了纯橄岩和高Cr型铬铁矿矿体。在地幔对流过程中,高Cr型铬铁矿及其围岩橄榄岩随着俯冲 板片被拖曳到地幔深部,通过地幔对流,可以重新出现在扩张中心附近。
        豆荚状铬铁矿的围岩(方辉橄榄岩和纯橄岩)在地幔循环过程中往往被改造,变得更亏损。 例如,AlAys蛇绿岩中最大的铬铁矿矿体赋存在方辉橄榄岩中,早期形成的铬铁矿及围岩橄 榄岩团块,通过俯冲带进入地幔深部后,被循环的地幔捕获,在地幔对流过程中被改造,并 重新出现在地幔扩张中心附近(Miura et al., 2012; Arai et al., 2015)。Gonzále z_Jiménez等(2012a; 2014a)发现单个PGM颗粒的187Os/188Os 比值差别较大,一些颗粒的模式年龄甚至老于包含它的铬铁矿,说明铬铁矿捕获了循环的 古 老PGM颗粒。图7b显示大陆岩石圈俯冲并发生大陆碰撞的过程中,位于地壳浅部的铬铁矿团 块或者豆荚状铬铁矿矿 体,也可以通过俯冲带进入地幔深部。这些堆积在地幔深部的发生了超高压变质的大陆地壳 物质,一旦进入地幔对流系统,有可能在大陆裂谷系中形成大型铬铁矿矿床(例如南非布什 维尔德铬铁矿、津巴布韦的大岩墙等,这些矿床与蛇绿岩没有关系,本文不讨论这类形成于 大陆裂谷环境的层状铬铁矿)。岛弧玄武质岩浆与其他硅酸盐熔体或者地幔橄榄岩反应,其 SiO2含量升高必然导致熔体中Cr溶解度降低,促进铬铁矿结晶。纯橄岩中的裂隙网络是熔 体 通道。低熔体/岩石比条件下的熔体浸透过程形成浸染状铬铁矿矿石,高熔体/岩石比条件下 形成块状铬铁矿矿体。熔体与橄榄岩反应过程中,地幔岩中的辉石熔融并加入到熔体中,最 终在蛇绿岩地幔单元中形成相互联通的熔体通道。成分不同的熔体来自不同岩浆源区、不同 程度部分熔融和/或与围岩不同程度的反应。通道中发生的熔体_围岩持续反应、矿物结晶和 熔体混合过程,保障了熔体谱系不断发展,并发育成为一个自持续系统。每次新注入的熔体 将自动寻找SiO2含量相对较低的熔体,并与之反应生成铬铁矿。例如,塞浦路斯Troodos 蛇 绿岩铬铁矿骸晶是被多晶铬铁矿环边围绕的单个晶体,从铬铁矿饱和的岩浆中结晶出来的铬 铁矿被同期硅酸盐矿物包裹,细小富含铬铁矿颗粒的硅酸盐集合体围绕铬铁矿骸晶形成环边 。这类集合体暴露到铬铁矿不饱和的岩浆中,会被熔蚀并形成浑圆状团块或豆荚(Prichard et al., 2015)。
        高Cr型铬铁矿不仅可以形成于深部地幔,也可以形成在地幔浅部的莫霍面附近。例如,阿尔 巴尼亚Bulqiza蛇绿岩带中的铬铁矿主要位于超镁铁岩 套中上部层位的纯橄岩中,下部层位 方辉橄榄岩和辉石岩中仅含零星铬铁矿。这些橄榄岩具有与俯冲带型橄榄岩类似的岩石学和 地球化学特征,并记录 不同程度的熔体抽提过程。流经橄榄岩的熔体通过 与围岩发生反应,从拉斑玄武质逐渐变化到玻安质熔体,形成高Cr型铬铁矿(Xiong et al. , 2015)。伊朗东南部Zagros蛇绿岩带的豆荚状铬铁矿与玻安质熔体平衡,铂族元素含量较 低(80~153×10-9),相对富IPGE,指示地幔源区的部分熔融程度达到20~24%(Na jafzadeh et al., 2014)。在同一地区的 Dehsheikh杂岩体中,高Cr型铬铁矿也 与玻安质熔体平衡,且铬铁矿中存在富Na角闪石包体(Peighambari et al., 2016),指示 在俯冲带环境中,地幔高程度部分熔融产生玻安质熔体,经地幔橄榄岩中的通道网络与围岩 反应,形成豆荚状铬铁矿矿床。
图 7大洋扩张_俯冲体系和大陆俯冲碰撞_弧后伸展体系中豆荚状铬铁矿的形成和循环示意 图
     a. 源于大洋中脊的豆荚状铬铁矿通过俯冲带堆积在地幔过渡带附近,卷入地幔对流并通过 大洋或者大陆的扩张中心,并重新出现在大洋中脊或者弧后盆地;同时,部分铬铁矿还可以 在玻安质熔体与地幔楔橄榄岩反应过程中,通过俯冲带_岛弧岩浆系统,到达地壳浅部; b. 大陆
    岩石圈俯冲_大陆碰撞过程中,豆荚状铬铁矿矿体进入地幔对流系统,最终出 现在大陆裂谷带中
    Fig. 7Genetic model showing the formation and recycling processes for podiform chromitite during spreading of oceanic crust
     to its subduction and during con tinental collision to back_arc basin system
     a. Podiform chromitite generated from middle ocean ridge do down in deep mantle via subduction zone, join manlte convection, and finally come up 
    to mid dle ocea n ridge or back_arc basin; at the same time, some chromitite was involved in the reaction between arc magma and mantle wedge; 
    b. Podiform chromitite in contine ntal crust involved in the mantle convection via subduction of continental litho sphere and superplume system 
    during continental collision    
6结论与展望
        豆荚状铬铁矿及其围岩通过俯冲带循环到地幔深部,进入地幔对流系统,再经岩浆作用回到 地壳环境,完成一个地质循环。铬铁矿以及其中的包体矿物往往记录着上述循环过程,因此 为现代地球动力学研究提供了一个理想的窗口。一些蛇绿岩中的PGM直接从熔体中结晶或者 来自硫化物的分解反应,而来自铬铁矿矿体围岩的PGM通过熔体_围岩反应,也可以被铬铁矿 捕获。在变质环境或流体环境中,这些PGM往往会与流体反应,从而造就PGM矿物的多样性。 变质流体作用可以使硫钌锇矿脱硫,释放出Ru_Os_Ir合金。这些合金随后与含S流体反应, 生成次生PGM。地幔熔融过程中,熔体渗透和熔体_围岩反应使纯橄岩通道中汇聚富集放射性 同位素的熔体,这类熔体最终将较高的187Os/188Os比值传递给 围岩。PGM的187Os/188Os比值和Os模式年龄的变化范围较大,主 要原因可能是早期从体系中分离的硫砷铱矿和铂族元素合金微粒在纯橄岩通道中富集并进入 铬铁矿中。
        有关PGM资料的不断积累极大地促进了铬铁矿矿床成因研究的深入(Spandler et al., 2007 ; ODriscoll et al., 2016; Malitch et al., 2017),随着高分 辨电 子显微镜性能的不断提高,对纳米级PGM的发现和研究,不断为探索PGM成因提供新的证据。 例如,墨西哥Loma Baya铬铁矿在还原环境中遭受了接触变质改造,变质流体促进含Ru_Os_I r硫钌锇矿转变为相对亏损硫的硫钌锇矿,同时析出/出溶Ru_Os_Ir合金的纳米级颗粒(Gonz ález_Jiménez et al., 2015b)。这类铂族元素合金是铬铁矿经受热接触变质过程中,原 生硫钌锇矿脱硫所形成的次生矿物。这个发现意味着其他地区铬铁矿中Ru_Os_Ir合金的成因 需要重新考虑(往往被解释为从岩浆中结晶或者从原始铬铁矿中出溶)。这种由硫钌锇矿脱 硫形成的次生富Os合金具有较高的Re/Os比值,并产生过剩187Os,从而改变 PGM的187Os/188Os初始比值及其模式年龄。若这种矿物通过地幔 对流循环,将在局部造成较高的Pt/Os和Re/Os比值(Foustoukos et al., 2015)。随着新 资料不断积累,有关蛇绿岩以及相关铬铁矿 成因的研究必然将PGM和BMS结合成一个整体,系统考虑其成因及其地球动力学意义。有关PG M矿物集合体的结构复杂性研究将成为焦点,蛇绿岩铬铁矿中可能发育多成因、多期次的PGM 。古老的残余PGM在蛇绿岩铬铁矿中可能占较高的比例,上地幔Os同位素的不均一性很可能 与铬铁矿及其PGM包体有关。研究豆荚状铬铁矿以及其中的PGM和BMS,对探索地球物质深循 环的地质过程有重要意义。
准确测定铂族元素在硅酸盐和硫化物中的溶解度以及在二者之间的分配系数、研究铬铁矿在 遭受变质改造过程中,铂族元素赋存形式的变化,对探讨铂族元素的地球化学行为非常重要 (Brenan et al., 2016)。例如,铬铁矿的Fe3+含量显著控制某些铂族元素的分配 系数(B renan et al., 2012)。新技术的应用将带来突破:高分辨率场发射扫描电镜和透射电子显 微镜的应用,可以观察研究纳米级PGM;LA_ICP_MS技术的应用获得大量有关PGM和BMS的地球 化学数据包括187Os/188Os和186Os/188 Os比值。开展微区微量元素填图(例如,利用NanoSIMS开展in situ元素填图),揭示PGM 与 BMS、铬铁矿以及其他矿物之间发生元素分配的地球化学行为,分析研究显微尺度的同位素 不均一性,是重要的研究方向。
志谢 匿名评审人和终审主编提出的修改意见和建议,对提升本文的质量起到 重要作用。特此志谢。   
参考文献
Ahmed A H and Habtoor A. 2015. Heterogeneously depleted Precambrian lith osphere deduced from mantle peridotites and associated chromitite deposits of AlAys oph iolite, northwestern Arabian Shield, Saudi Arabia[J]. Ore Geology Reviews, 67: 279_296.
     Akmaz R M, Uysal I and Saka S. 2014. Compositional variations of chromite and so lid inclusions in ophiolitic chromitites from the southeastern Turkey: Implicati ons for chromitite genesis[J]. Ore Geology Reviews, 58: 208_224.
     Arai S and Abe N. 1994. Podiform chromitite in the arc mantle: Chromitite xenoli t
HS from the Takashima alkali basalt, southwest Japan arc[J]. Mineralium Depos ita, 29: 434_438.
     Arai S and Abe N. 1995. Reaction of orthopyroxene in peridotite xenolit
HS with a lkali basalt melt and its implication for genesis of alpine_type chromitite[J] . American Mineralogist, 80: 1041_1047.
     Arai S. 1997. Origin of podiform chromitites[J]. Journal of Asian Earth Scienc es, 15: 303_310.
     Arai S and Miura M. 2015. Podiform chromitites do form beneath mid_ocean rid ges[J]. Lithos, 232: 143_149.
     Arai S and Miura M. 2016. Formation and modification of chromitites in the mantl e[J]. Lithos, 264: 277_295.
     Avcl E, Uysal I, Akmaz R M and Saka S. 2017. Ophiolitic chromitites from the Klzllyüksek area of the Pozantl_Karsantl ophiolite (Adana, southern Turkey): Im plic ation for crystallization from a fractionated boninitic melt[J]. Ore Geology R eviews, http://dx.doi.org/10.1016/j.oregeorev.2016.08.033.
     Badanina I Y, Malitch K N, Lord R A, Belousova E A and Meisel T C. 2016. Closed _system behaviour of the Re_Os isotope system recorded in primary and second ary platinum_group mineral assemblages: Evidence from a mantle chromitite at Harold s Grave (Shetland Ophiolite Сomplex, Scotland) [J]. Ore Geology Reviews, 75: 174_185.
     Bai W J, Yang J S, Fang Q S, Ren Y F, Yan B G and Rong H. 2005. A study on Os_Ir _Ru alloy and bonitic inclusion in the Luobusa ophiolite, Tibet[J]. Acta Geolo gica Sinica, 79: 814_822 (in Chinese with EnglishAbstract).
     Bai W J, Shi N C, Yang J S, Fang Q S, Ren Y F, Rong H, Li G W and Ma Z S. 2007. As assemblage of simple oxide minerals from ophiolitic podiform chromitites in T ibet and their ultrahigh pressure origin[J]. Acta Geologica Sinica, 81: 1538_1 549 (in Chinese with EnglishAbstract).
     Barnes S J and Ripley E M. 2016. Highly siderophile and strongly chalcophile ele ments in magmatic ore deposits[J]. Reviews of Mineralogy and Geochemistry, 81: 725_774.
     Batanova V G, Belousov I A, Savelieva G N and Sobolev A V. 2011. Consequences of C hannelized and Diffuse MeltTransport in Supra_subduction Zone Mantle: Evidence f rom the Voykar Ophiolite (Polar Urals)[J]. Journal of Petrology, 52: 2483_2521 .
     Ballhaus C. 1998. Origin of podiform chromite deposits by magma mingling[J]. E arth and Planetary Science Letters, 156: 185_193. 
     Ballhaus C, Bockrath C, Wohlgemuth_Ueberwasser C, Vera Laurenz V and Berndt J. 2 006. Fractionation of the noble metals by physical processes[J]. Contributions to Mineralogy and Petrology, 152: 667_684.
     Becker H and Dale C W. 2016. Re_Pt_Os isotopic and highly siderophile element be havior in oceanic and continental mantle tectonite[J]. Reviews of Mineralogy a nd Geochemistry, 81: 369_440.
     Bédard J H. 1999. Petrogenesis of boninites from the Betts Cove ophiolite, Newf oundland, Canada: Identification of subducted source components[J]. Journal of Petrology, 40: 1853_1889.
     Bédard J H and Hébert R. 1998. Formation of chromitites by assimilation of cru stal pyroxenites and gabbros into peridotitic intrusions: North Arm Mountain Mas sif, Bay of Islands ophiolite, Newfoundland, Canada [J]. Journal of Geophysica l Research, 103(B3): 5165_5184.
     Belousova E A, González Jiménez J M, Graham I, Griffin W L, OReilly S Y, Pear son N, Martin L, Craven S and Talavera C. 2015. The enigma of crustal zircons in upper_mantle rocks: Clues from the Tumut ophiolite, southeast Australia[J]. G eology, 43: 119_122.
     Borisova A Y, Ceuleneer G, Kamnetsky V S, Arai S, Bejina F, Abily B D, Bindeman Y , Polve M, De Parseval P, Yaigouy T and Pokrovski G S. 2012. A newview on the pe trogenesis of the omanophiolite chromitites from microanalyses of chromite_hoste d inclusions[J]. Journal of Petrology, 53: 2411_2440.
     Bockrath C, Ballhaus C and Holzheid A. 2004. Stabilities of laurite RuS2 and m on osulphide liquid solution at magmatic temperature[J]. Chemical Geology, 208: 2 65_271.
     Brenan J M, Finnigan C F, McDonough W F and Homolova V. 2012. Experimental cons traints on the partitioning of Ru, Rh, Ir, Pt and Pd between chromite and silica te melt: The importance of ferric iron[J]. Chemical Geology, 302_303: 16_32.
     Brenan J M, Bennett N R and Zajacz Z. 2016. Experimental results on fractionatio n of the highly siderophile elements (HSE) at variable pressures and temperature s during planetary and magmatic differentiation [J]. Reviews of Mineralogy and Geochemistry, 81: 1_87.
     Brough C P, Prichard H M, Neary C R, Fisher P C and McDonald I. 2015. Geochemic al variations within podiform chromitite deposits in the Shetland ophiolite: Imp lications for Petrogenesis and PGE Concentration[J]. Econ. Geol., 110: 18 7_208.
     Coggon J A, Luguet A, Nowell G M and Appel P W U. 2013. Hadean mantle melting re corded by southwest Greenland chromitite 186Os signatures[J]. Na ture Geoscience, 6: 871_874. 
     Colás V, González_Jiménez J M, Griffin W L, Fanlo I, Gervilla F, OReilly S Y , Pearson N JK and Kerestedjian T N. 2014. Fingerprints of metamorphism in chrom ite: New insights from minor and trace elements[J]. Chemical Geology, 389, 137 _152.
     Chen C, Su B X, Uysal I, Avci E, Zhang P F, Xiao Y and He Y S. 2015. Iron isotop ic constraints on the origin of peridotite and chromitite in the Klzllda ophio lite, southern Turkey[J]. Chemical Geology, 417: 115_124.
     Dharma Rao C V, Santosh M and Tang Y J. 2015. Re_Os isotope systematics of Arche a n chromitites from the Chimalpahad Anorthosite Complex, south_east India: Implic ations for mantle extraction processes[J]. Ore Geology Reviews, 65: 274_282.
     Dokuz A, Uysal I, Dilek Y, Karsli O, Meisel T and Kandemir R. 2015. Geochemistry , Re_Os isotopes and highly siderophile element abundances in the eastern Pontid e peridotites (NE Turkey): Multiple episodes of melt extraction_depletion, melt_ rock interaction and fertilization of the Rheic Ocean mantle[J]. Gondwana Rese arch, 27: 612_628.
     Edwards S J, Pearce J A and Freeman J. 2000. New insights concerning the influen ce of water during the formation of podiform chromite[A]. In: Dilek Y, Moo res E M, Elthon D and Nicolas A, eds. Ophiolites and Oceanic Crust: New insights from field studies and the ocean drilling program[M]. Geological Society of A me rica Special Paper, 49: 139_147. 
     Finnigan C S, Brenan J M, Mungall J E and McDonough W F. 2008. Experiments and m odels bearing on the role of chromite as a collector of platinum group minerals by local reduction[J]. Journal of Petrology, 49: 1647_1665.
     Fonseca R O C, Laurenz V, Mallmann G, Luguet A, Hoehne N and Jochum K P. 2012. N ew constrains on the genesis and long_term stability of Os_rich alloys in the Ea rths mantle[J]. Geochimca et Cosmochimica Acta, 87: 227_242.
     Foustoukos D I, Bizimis M, Frisby C and Shirey S B. 2015. Redox controls on Ni_F e_PGE mineralization and Re/Os fractionation during serpentinization of abyssal peridotite[J]. Geochimica et Cosmochimica Acta, 150: 11_25.
     Gao J F, Zhou M F, Leung H S S, Robinson P T and Yang S H. 2015. Re_Os isotopic and platinum group elemental constraints on the genesis of the Xiadong ophioliti c complex, Eastern Xinjiang, NW China[J]. Gondwana Research, 27: 629_648.
     Garuti G, Zaccarini F, Moloshag V and Alimov V. 1999. Platinum_groupminerals as indicators of sulfur fugacity in ophiolitic upper mantle: An example from chromi tites of the Ray_Iz ultramafic complex, Polar Urals Russia[J]. Canadian Minera logists, 37: 1099_1115.
     Gervilla F, Padrón_Navarta J A, Kerestedjian T, Sergeeva I, González_Jiménez J M and Fanlo I. 2012. Formation of ferrian chromite in podiform chromitites fro m the Golyamo Kamenyane serpentinte, Eastern Rhodopes, SE Bulgaria: A two_stage processs[J]. Contributions to Mineralogy and Petrology, http://dx.doi.org/10. 1007/s00410_012_0763_3.
     González_Jiménez J M, Gervilla F, Kerestedjian T and Proenza J A. 2010. Altera tion of Platinum_group and base_metal mineral assemblages in ophiolite chromitit es from the Dobromirtsi Massif, Rhodope Mountais (Bulgaria)[J]. Resource Geol ogy, 60: 315_334. 
     González_Jiménez J M, Proenza J A, Gervilla F, Melgarejo J C, Blanco_Moreno J A, Ruiz_Sánchez R and Griffin W L. 2011. High_Cr and high_Al chromitites from t h e Sagua de Tánamo district, Mayarí_Cristal Ophiolitic Massif (eastern Cuba): C onstraints on their origin from mineralogy and geochemistry of chromian spinel a nd platinumgroup elements[J]. Lithos, 125: 101_121.
     González_Jiménez J M, Gervilla F, Griffin W L, Proenza J A, Augé T, OReilly, S Y and Pearson N J. 2012a. Os_isotope variability within sulfides from podifor m chromitites[J]. Chemical Geology, 291: 224_235.
     González_Jiménez J M, Griffin W L, Gervilla F, Kerestedjian T N, OReilly S Y, Proenza J A, Pearson N J and Sergeeva I. 2012b. Metamorphism disturbs the Re_Os signatures of platinum_group minerals in ophiolite chromitites[J]. Geology, 4 0: 659_662.
     González_Jiménez J M, Marchesi C, Griffinin W L, Gutiérrez_Narbona R, Lorand J P, OReilly S Y, Garrido C J, Gervilla F, Pearson N J and Hidas K. 2013. Trans fer of Os isotopic signatures from peridotite to chromitite in the subcontinenta l mantle: Insights from in situ analysis of platinum_group and base_metal minera ls (Ojén peridotite massif, southern Spain)[J]. Lithos, 164_167: 74_85.
     González_Jiménez J M, Griffin W L, Gervilla F, Proenza J A, OReilly S Y and P earson N J. 2014a. Chromitites in ophiolites: How, where, when, why? Part I. A r eview and new ideas on the origin and significance of platinum_group minerals[J ]. Lithos, 189: 127_139.
     González_Jiménez J M, Griffin W L, Proenza J A, Gervilla F, OReilly SY, Akbul ut M, Pearson N J and Arai S. 2014b. Chromitites in ophiolites: How, where, whe n, why? Part II. The crystallization of chromitites[J]. Lithos, 189: 140_158. 
     González_Jiménez J M, Locmelis M, Belousova E and Gervilla F. 2015a. Genesis a nd tectonic implications of podiform chromitites in the metamorphosed ultramafic massif of Dobromirtsi (Bulgaria)[J]. Gondwana Research, 27: 555_574.
     González_Jiménez J M, Reich M, Camprubí A and Gervilla F. 2015b. Thermal meta morphism of mantle chromites and the stability of noble_metal nanoparticles [J ]. Contributions to Mineralogy and Petrology, 170: 15, DOI 10.1007/s00410_015_1169 _9.
     Grieco G, Diella V, Chaplygina N L and Savelieva G N. 2007. Platinum group eleme nts zoning and mineralogy of chromitites from the cumulate sequence of the nural i massif (southern Urals, Russia)[J]. Ore Geology Reviews, 30: 257_276. 
     Grieco G and Merlini A. 2012. Chromite alteration processes within Vourinos ophi olite[J]. International Journal of Earth Science, 101: 1523_1533.
     Günay K and olakolu A R. 2016. Spinel compositions of mantle_hosted chro miti te from the eastern Anatolian ophiolite body, Turkey: Implications for deep and shallow magmatic processes[J]. Ore Geology Reviews, 73: 29_41.
     Habtoor A M, Ahmed A H, Akizawa N, Harbi N and Arai S. 2017. Chemical homogeneit y of high_Cr chromitite as indicator for widespread invasion of boninitic melt i n mantle peridotite of Bir Tuluha ophiolite, northern Arabian Shield, Saudi Ara b ia[J]. Ore Geology Reviews, http://dx.doi.org/10.1016/j.oregeorev.2017.03. 010 
     Hanghj K, Kelemen P B, Hassler D and Godard M. 2010. Composition and genesis of depleted mantle peridotites form the Wadi Tayin Massif, Oman ophiolite: Major a nd trace element geochemistry, and Os isotope and PGE systematics[J]. Journal of Petrology, 51: 201_227.
     Harvey J, Gannoun A, Burton K W, Rogers N W, Alard O and Parkinson I J. 2006. An cient melt extraction from the oceanic upper mantle revealed by Re_Os isotopes i n abyssal peridotites from the Mid_Atlantic ridge[J]. Earth Planetary Science Letters, 244: 606_621.
     Harvey J, Warren J M and Shirey S B. 2016. Mantle sulfides and their role in Re _Os and Pb isotope geochronology[J]. Reviews in Mineralogy and Geochemistr y, 81: 579_649.
     Huang M X, Yang J J, Powell R and Mo X X. 2014. High_pressure metamorphism of se rpentinized chromitite at Luobusha (southern Tibet) [J]. American Journal of S cience, 314: 400_433.
     Irvine T N. 1977. Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: A new interpretation[J]. Geology, 5: 273_277.
     Jannessary M R, Melcher F, Lodziak J and Meisel T C. 2012. Review of platinum_gr oup element distribution and mineralogy in chromitite ores from southern Iran[J ]. Ore Geology Reviews, 48: 278_305.
     Kelemen P B. 1990. Reaction between ultramafic rock and fractionating basaltic m agma I. Phase relations, the origin of calc_alkaline magma series, and the forma tion of discordant dunite[J]. Journal of Petrology, 31: 51_98.
     Khedr M Z and Arai S. 2016. Chemical variations of mineral inclusions in Neopro terozoic high_Cr chromitites from Egypt: Evidence of fluids during chromitit e genesis[J]. Lithos, 240_243: 309_326.
     Kozlu H, Prichard H, Melcher F, Fisher P, Brough C and Stueben D. 2014. Platinum group element (PGE) mineralisation and chromite geochemistry in the Berit ophio lite (Elbistan/Kahramanmara, SE Turkey[J]. Ore Geology Reviews, 60: 97_111. 
     Lago B L, Rabinowicz M and Nicolas A. 1982. Podiform chromite orebodies: A genet ic model[J]. Journal of Petrology, 23: 103_125. 
     Leblanc M and Ceuleneer G. 1992a. Chromite crystallization in a multicellular ma g ma flow: Evidence from a chromitite dike in the Oman ophiolite[J]. Lithos, 27: 231_257.
     Leblanc M and Nicolas A. 1992b. Ophiolitic chromitites[J]. International Geolo gy Review, 34: 653_686.
     Levander A, Bezada M J, Niu F, Humphreys E D, Palomeras I, Thurner S M, Masy J, Schmitz M, Gallart J, Carbonell R and Miller M S. 2014. Subduction_driven recycl ing of continental margin lithosphere[J]. Nature, 515: 253_257.
     Liu C Z, Snow J E, Brugmann G, Hellebrand E and Hofmann A W. 2009. Non_chondriti c HSE budget on Earths upper mantle evidenced by a byssal peridotites from Gakke l ridge (Arctic Ocean)[J]. Earth Planetary Science Letters, 283: 122_132. 
     Liu C Z, Wu FY, Chu Z Y, Ji W J, YU L J and Li J L. 2012. Preservation of ancien t O s isotope signatures in the Yunbwa ophiolite (south Tibet) after subduction modi fication[J]. Journal of Asian Earth Sciences, 53: 38_50.
     Locmelis M, Pearson N J, Barnes S J and Florentini M L. 2011. Ruthenium in komat iic chromite[J]. Geochimica et Cosmochimica Acta, 75: 3645_3661.
     Lorand J P, Alard O and Luguet A. 2010. Platinum_group element micronuggets and refertilization process in Lherz orogenic peridotite (northeastern Pyrenees, Fra nce) [J]. Earth Planetary Science Letters, 289: 298_310.
     Malitch K N, Belousova E A, Griffin W L, Badanina I Y, Knauf V V, OReilly S Y a nd Pearson N J. 2017. Laurite and zircon from the Finero chromitites (Italy): Ne w insights into evolution of the subcontinental mantle[J]. Ore Geology Reviews , http://dx.doi.org/10.1016/j.oregeorev.2017.06.027.
     Mansur E T and Filho C F F. 2017. Chromitite from the Luanga Complex, Carajás, Bra zil: Stratigraphic distribution and clues to processes leading to post_magmatic alteration[J]. Ore Geology Reviews, http://dx.doi.org/10.1016/ j.oregeorev.201 7.03.016 
     Marchesi C, Gonzalez_Jimenez J M, Gervilla F, Garrido C J, Griffin W L, OReilly S Y, Proenza J A and Pearson N J. 2010. In situ Re_Os isotopic analysis of plat inum_group minerals from the Mayari_Cristal ophiolitic massif (Mayari_ Baracoa o phiolitic belt, eastern Cuba): Implications for the origin of Os_isotope heterog eneities in podiform chromitites[J]. Contributions to Mineralogy and Petrology , 161: 977_990.
     Marchesi C, González_Jiménez J M, Gervilla F, Garrido C J, Griffin W L, OReil ly S Y, Proenza J A and Pearson N J. 2011. In situ Re_Os isotopic analysis of pl atinu m_group minerals from the Mayarí_Cristal ophiolitic massif (Mayarí_Baracoa Oph iolitic Belt, eastern Cuba): Implications for the origin of Os_isotope heterogen eities in podiform chromitites[J]. Contributions to Mineralogy and Petrology, 161: 977_990.
     Marchesi C, Garrido C J, Boch D, Bodinier J L, Gervilla F and Hidas K. 2013. Man tle refertilisation by melts of crustal_derive garnet pyroxenites: Evidence from the Ronda peridotite massif, southern Spain[J]. Earth and Planetary Science L etters, 362: 66_75.
     Matveev S and Ballhaus C. 2002. Role of water in the origin of podiform chromiti te deposits[J]. Earth and Planetary Science Letters, 203: 235_243.
     McGowan N M, Griffin W L, González_Jiménez J M, Belousova E, Afonso J C, Shi R D, McCammon C A, Pearson N J and OReilly SY. 2015. Tibetan chromitites: Excava ting the slab graveyard[J]. Geology, 43: 179_182.
     Meibom A, Sleep N H and Wooden J L. 2002. Re_Os isotopic evidence for long_lived h eterogeneity and equilibration processes in the earths upper mantle[J]. N ature, 419: 705_708.
     Melcher F, Grum W, Simon G, Thalhammer T V and Stumpfl F. 1997. Petrogenesis of t he ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite[J]. Journal of Petrology, 38: 1419_1458.
     Merlini A, Grieco G and Diella V. 2009. Ferritchromite and chromian_chlorite for mation in mélange_hosted Kalkan chromitite (southern Urals, Russia) [J]. Amer ican Mineralogists, 94: 1459_1467.
     Miura M, Arai S, Ahmed A H, Mizukami T, Okuno M and Yamamoto S. 2012. Podiform c hromitite classification revisited: A comparison of discordant and concordant ch romitite pods from Wadi Hilti, northern Oman ophiolite[J]. Journal of Asian Ea rth Sciences, 59: 52_61.
     Moghadam H S, Khedr M Z and Arai S. 2015. Arc_related harzburgite_dunite_chromit it e complexes in the mantle section of the Sabzevar ophiolite, Iran: A model for f ormation of podiform chromitites[J]. Gondwana Research, 27: 575_593.
     Najafzadeh A R and Ahmadipour H. 2014. Using platinum_group elements and Au geoc hemistry to constrain the genesis of podiform chromitites and associated peridot ites from the Soghan mafic_ultramafic complex, Kerman, southeastern Iran[J]. O re Geology Reviews, 60: 60_75.
     ODriscoll B, Emeleus C H, Donaldson C H and Daly J S. 2010. Cr_spinel seam petr ogenesis in the Rum Layered Suite, NW Scotland: Cumulate assimilation and in sit u crystallisation in a deforming crystal mush[J]. Journal of Petrology, 51: 11 71_1201.
     ODriscoll B, Day J M, Walker R J, Daly S, McDonough W F and Piccoli P M. 2012. Chemical heterogeneity in the upper mantle recorded by peridotites and chromitit es from the Shetland ophiolite complex, Scotland[J]. Earth and Planetary Scien ce Letters, 333_334: 226_237. 
     ODriscoll B, Walker R J, Day J M D, Ash R D and Daly J S. 2015. Generations of melt extraction, Melt_Rock interaction and high_temperature metasomatism preserv ed in peridotites of the ~497 Ma Leka Ophiolite Complex, Norway[J]. Journal o f Petrology, 56: 1797_1828.
     ODriscoll B and González_Jiménez J M. 2016. Petrogenesis of the Platinum_Gr oup Minerals[J]. Reviews in Mineralogy and Geocheistry, 81: 489_578.
     Pagé P and Barnes S J. 2009. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Quebec, Canada [J]. Econ. Geol., 104: 997_1018.
     Pagé P, Barnes S J, Bédard J H and Zientek M L. 2012. In situ determination of Os, Ir, and Ru in chromites formed from komatiite, tholeiite and boninite magmas : Implications for chromite control of Os, Ir and Ru during partial melting and crystal fractionation[J]. Chemical Geology, 302_303: 3_15.
     Pearce J A, Barker P F, Edwards S J, Parkinson I J and Leat P T. 2000. Geochemis try a nd tectonic significance of peridotites from the South Sandwich arc_basin system , South Atlantic[J]. Contributions to Mineralogy and Petrology, 139: 36_53.
     Peighambari S, Uysal I, Stosch H G, Ahmadipour H and Heidarian H. 2016. Genesis and tectonic setting of ophiolitic chromitites fromthe Dehsheikh ultramafic comp lex (Kerman, southeastern Iran): Inferences from platinum_group elements and chr omite compositions[J]. Ore Geology Reviews, 74: 39_51.
     Peregoedova A, Barnes S J and Baker D R. 2004. The formation of Pt_Ir alloys and C u_Pd_rich sulfide melts by partial desulfurization of Fe_Ni_Cu sulfides: Results of experiments and implications for natural systems[J]. Chemical Geology, 208: 247_264.
     Prichard H M, Neary C R, Fisher P C and OHara M J. 2008. PGE rich podiform chro mitites in the AlAys ophiolite complex, Saudi Arabia: An example of critical ma ntle melting to extract and concentrate PGE[J]. Econ. Geol. 103: 1507_1529.
     Prichard H M and Barnes S J, Godel B, Reddy S M, Vukmanovic Z, Halfpenny A, Near y C R and Fisher P C. 2015. The structure of and origin of nodular chromite from the Troodos ophiolite, Cyprus, revealed using high_resolution X_ray computed to mography and electron backscatter diffraction[J]. Lithos, 218_219: 87_98.
     Prichard H M, Barnes S J, Dale C W, Godel B and Nowell G M. 2017. Paragenesis of mu ltiple platinum_group mineral populations in Shetland ophiolite chromitite: 3D X _ray tomography and in situ Os isotopes[J]. Geochimica et Cosmochimica Acta, h ttp://dx.doi.org/10.1016/j.gca.2017.03.035
     Robinson P T, Zhou M F, Malpas J and Bai W J. 1997. Podiform chromitites: Their composition, origin and environment of formation[J]. Episodes, 20: 247_252.
     Robinson P T, Trumbell R B, Schmitt A, Yang J S, Li J W, Zhou M F, Erzinger J, D are S and Xiong F. 2015. The origin and significance of crustal minerals in ophi olitic chromitites and peridotites[J]. Gondwana Research, 27: 486_506. 
     Rollinson H and Adetunji J. 2013. Mantle podiform chromitites do not form beneat h midocean ridges: A case study from the Moho transition zone of the Oman ophiol ite[J]. Lithos, 177: 314_327.
     Rollinson H and Adetunji J. 2015. The geochemistry and oxidation state of podifo rm chromitites from the mantle section of the Oman ophiolite: A review[J]. Gon dwana Research, 27: 543_554. 
     Satsukawa T, Piazolo S, González_Jiménez J M, Colas V, Griffin W L, OReilly S Y, Gervilla F, Fanlo I and Kerestedjian T N. 2015. Fluid_present deformation a ids chemical modification of chromite: Insights from chromites from Golyamo Kamenyan e, SE Bulgaria[J]. Lithos, 228_229: 78_89. 
     Savelieva G N, Suslov P V and Larionov A N. 2007. Vendian tectono_magmatic event s in mantle ophiolitic complexes of the Polar Urals: U_Pb dating of zircon from chromitite[J]. Geotectonics, 41: 105_133.
     Schulte R F, Schilling M, Anma R, Farquhar J, Horan M F, Komiya T, Piccoli P M, Pitcher L and Walker R J. 2009. Chemical and chronologic complexity in the conve cting upper mantle: Evidence from the Taitao ophiolite, southern Chile[J]. Geo chimica et Cosmochimica Acta, 73: 5793_5819.
     Shi R D, Alard O, Zhi X C, OReilly S Y, Pearson N J, Griffin W L, Zhang M and C hen X M. 2007. Multiple events in the Neo_Tethyan oceanic upper mantle: Evidence from Ru_Os_Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitite s, Tibet[J]. Earth and Planetary Science Letters, 261: 33_48.
     Shi R D, Griffin W L, OReilly S Y, Huang Q S, Zhang X, Liu D, Zhi X, Xia Q and Din L. 2012a. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re_Os systematics in the Dongqiao Neo_tethyan ophiolite, nor thern Tibet[J]. Gondwana Research, 21: 194_206.
     Shi R D, Griffin W L, OReilly S Y, Zhou M F, Zhao G C, Huang Q H, Zhang X R, Di ng B H and Ding L. 2012b. Archean mantle contributes to the genesis of chromitit e in the Palaeozoic Sartohay ophiolite, Asiatic Orogenic Belt, northwestern China[J ]. Precambrian Research, 216_219: 87_94.
     Shi R D, Huang Q S, Liu D L, Fan S Q, Zhang X R, Ding L, Griffin W L and OReill y S Y. 2012. Recycling of ancient sub_continental lithospheric mantle constrain ts on the genesis of the ophiolitic podiform chromitites[J]. Geological Review , 58: 643_652. (in Chinese with EnglishAbstract).
     Spandler C, ONeill H St C and Kamenetsky V S. 2007. Survival times of anomalous melt inclusions from element diffusion in olivine and chromite[J]. Nature, 44 7: 303_306.
     Standish J J, Hart S R, Blusztajn J, Dick H J B and Lee K L. 2002. Abyssal perid o tite osmium isotopic compositions from Cr_spinel[J]. Geochemistry Geophysi cs Geosystems, 3: 10.1029/2001GC000161.
     Thayer T P. 1964. Principal features and origin of podiform chromitite deposits, and some observations on the Guleman_Soridag district, Turkey[J]. Econ. Geol. 59: 1497_1524.
     Tian Y Z and Yang J S. 2016. Study on the mineral inclusions in Sartohay chromit ites[J]. Acta Geologica Sinica, 90: 3114_3128 (in Chinese with English abstrac t).
     Uysal I, Ersoy E Y, Dilek Y, Escayola M, Sarlfaklolu E, Saka S and Hirata T. 2 01 5a. Depletion and refertilization of the Tethyan oceanic upper mantle as reveale d by the Early Jurassic Refahiye ophiolite, NE Anatolia_Turkey[J]. Gondwana Re search, 27: 594_611. 
     Uysal I, Akmaz RM, Kapsiotis A, Demir Y, Saka S, Avcl E and Müller D. 2015b. Ge nesis and geodynamic significance of chromitites from the Orhaneli and Harmancik ophiolites (Bursa, NWTurkey) as evidenced by mineralogical and compositional da ta[J]. Ore Geology Reviews, 65: 26_41.
     Xu S, Griffin W L, OReilly W L, Pearson N J, Geng H and Zheng J. 2008. Re_Os is otopes of sulfides in mantle xenolit
HS from eastern China: Progressive modificat ion of lithospheric mantle[J]. Lithos, 102: 43_64.
     Xu X Z, Yang J S, Robinson P T, Hiong F H, Ba D Z and Guo G L. 2015. Origin of u ltrahigh pressure and highly reduced minerals in podiform chromitites and associ ated mantle peridotites of the Luobusa ophiolite, Tibet[J]. Gondwana Resea rch, 27: 686_700. 
     Xiong F, Yang J, Robinson P T, Dilek Y, Milushi I, Xu X Z, Chen Y H, Zhou W D, Z hang Z M, Lai S M, Tian Y Z and Huang Z. 2015. Petrology and geochemistry of hig h Cr# podiform chromitites of Bulqiza, Eastern Mirdita Ophiolite (EMO), Albani a[J]. Ore Geology Reviews, 70: 188_207.
     Xiong F H, Yang J S, Robinson P T, Xu X Z, Liu Z, Zhou W D, Feng G M, Xu J F, Li J and Niu X L. 2017. High_Al and high_Cr podiform chromitites from the western Yarlun g_Zangbo suture zone, Tibet: Implications from mineralogy and geochemistry of ch romian spinel, and platinum_group elements[J]. Ore Geology Reviews, 80: 1020_1 041.
     Yamamoto S, Komiya T, Hirose K and Maruyama S. 2009. Coesite and clinopyroxene e xsolution lamellae in chromites: In_situ ultrahigh_pressure evidence from podifo rm chromitites in the Luobusa ophiolite, southern Tibet[J]. Lithos, 109: 314_3 22.
     Yamamoto S, Komiya T, Yamamoto H, Kaneko Y, Terabayashi M, Katayama I, Iizuka T, Maruyama S, Yang J S, Kon Y and Hirata T. 2013. Recycled crustal zircons from p odiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Island Arc, 2 2: 89_103.
     Yang J S, Bai W J, Fang Q S, Meng F C, Chen S Y, Zhang Z M and Rong H. 2007. Dis covery of diamond and an unusual mineral group from the podiform chromite, Polar Ural[J]. Geology in China, 34: 950_952 (in Chinese with EnglishAbstract) .
     Yang J S, Dobrzhinetskaya L, Bai W J, Fang Q S, Robinson P T, Zhang J and Green II H W. 2007. Diamond_ and coesite_bearing chromitites from the Luobusa ophiolit e, Tibet[J]. Geology, 35: 875_878.
     Yang, J S, Xu X Z, Li Y, Li J Y, Ba D Z, Rong H and Zhang Z M. 2011. Diamond rec overed from peridotite of the Purang ophiolite in the Yarlung_Zangbo suture of T ibet: A proposal for a new type of diamond occurrence[J]. Acta Petrologica Sin ica, 27: 3171_3178 (in Chinese with EnglishAbstract).
     Yang J S, Robinson P T and Dilek Y. 2014. Diamonds in ophiolites[J]. Elements, 10: 127_130.
     Yang J, Meng F, Xu X, Robinson T, Dilek Y, Makeyev A B, Wirth R, Widenbeck M, Gr iffin W L and Cliff J. 2015. Diamonds, native elements and metal alloys from chr omitites of the Ray_Iz ophiolite of the Polar Urals [J]. Gondwana Research, 27 : 459_485.
     Zaccarini F, Garuti G, Proenza J A, Campos L, Thalhammer O A R, Aiglsperger T an d Lewis J. 2011. Chromite and platinum_group_elements mineralization in the Sant a Elena ophiolitic ultramafic nappe (Costa Rica): Geodynamic implications[J]. Geologica Acta, 9: 407_423.
     Zaeimnia F, Arai S and Mirmohammadi M. 2017. Na_rich character of metasomatic/me tamorphic fluids inferred from preiswerkite in chromitite pods of the Khoy ophio lite in Iran: Role of chromitites as capsules of trapped fluids[J]. Lithos, 26 8_271: 351_363.
     Zhang P F, Uysal I, Zhou M F, Su B X and Avcl E. 2016. Subduction initiation for the formation of high_Cr chromitite in the Kop ophiolite, NE Turkey[J]. Litho s, 26: 345_355.
     Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zone s[J]. Chemical Geology, 328: 5_48.
     Zhou M F, Robinson P T and Bai W J. 1994, Formation of podiform chromitites by m e lt/rock interaction in the upper mantle[J]. Mineralium Deposita, 29: 98_10 1.
     Zhou M F, Robinson P T, Malpas J and Li Z J. 1996. Podiform chromitites in the L uobusa ophiolite (southern Tibet): Implications for melt_rock interaction and ch romite segregation in the upper mantle[J]. Journal of Petrology, 37: 3_21.
     Zhou M F, Robinson P T, Su B X, Gao J F, Li J W, Yang J S and Malpas J. 2014. Co mpositions of chromite, associated minerals, and parental magmas of podiform chr omite deposits: The role of slab contamination of asthenospheric melts in supras ubduction zone environments[J]. Gondwana Research, 26: 262_283.
     Zhu Y F and Ogasawara Y. 2002. Carbon recycled into the deep Earth: Evidenced by dolomite dissociation in subduction_zone rocks[J]. Geology, 30: 947_950.
     Zhu Y F, Massonne H J and Zhu M F. 2009. Petrology of low_temperature, ultrahigh pressure marbles and interlayered coesite eclogites near Sanqingge, Sulu terran e, eastern China[J]. Mineralogical Magazine, 73: 307_332.
     Zhu Y F, Tang J J and Qiu T. 2016. Platinum group mineral (PGM) and Fe_Ni_As_S m i nerals in the Sartohay chromitite, Xinjiang (NW China): Implications for the mob ility of Os, Ir, Sb, and As during hydrothermal processes[J]. Ore Geology Revi ews, 72: 299_312.    
     附中文参考文献   
     白文吉, 杨经绥, 方青松, 任玉峰, 颜秉刚, 戎合. 2005.西藏罗布莎蛇绿岩的Os_ Ir_Ru合金及其中玻安岩质包体的研究[J]. 地质学报, 79: 814_822.
     白文吉, 施倪承, 杨经绥, 方青松, 任玉峰, 戎合, 李国武, 马●生. 2007.西藏蛇绿岩豆 荚状铬铁矿中简单氧化物矿物组合及其超高压成因[J].地质学报, 81: 1538_1549.
     史仁灯, 黄启帅, 刘德亮, 樊帅权, 张晓冉,丁林, Griffin W L, OReilly S Y. 2012.古 老大陆岩石圈地幔再循环与蛇绿岩中铬铁矿床成因[J]. 地质论评, 58: 643_652.
     田亚洲, 杨经绥. 2016.萨尔托海铬铁矿中的矿物包体研究[J].地质学报, 90: 3114_3128 .
     杨经绥, 白文吉, 方青松, 孟繁聪, 陈松永, 张仲明, 戎合. 2007.极地乌拉尔豆荚状铬铁 矿中发现金刚石和一个异常矿物群[J]. 中国地质, 34: 950_952.
     杨经绥, 徐向珍, 李源, 李金阳, 巴登珠, 戎合, 张仲明. 2011. 西藏雅鲁藏布江缝合带的 普兰地幔橄榄岩中发现金刚石: 蛇绿岩型金刚石分类的提出[J]. 岩石学报, 27: 3171_3 178.