DOi:10.16111/j.0258_7106.2017.04.008
前寒武纪VMS与BIF铁矿床共生组合研究进展
彭自栋1,2, 王长乐1, 赵刚3, 朱明田1, 张连昌1**,佟小雪1,2 ,南景博4

(1 中国科学院矿产资源研究重点实验室 中国科学院地质与地球物理研究所, 北京10002 9; 2 中国科学院大学地球科学学院, 北京100049; 3 中国有色集团抚顺 红透山矿业有 限公司, 辽宁 抚顺113000; 4 中国地质大学地球科学与资源学院, 北京10 0083)

第一作者简介彭自栋, 男, 1988年生, 博士研究生, 矿物学、岩石学、矿床学专业。 Email: pengzidong2007@126.com
**通讯作者张连昌, 男, 1959年生, 研究员, 矿床地质与地球化学专业。 Email: lc zhang@mail.iggcas.ac.cn

收稿日期2016_05_16

本文得到国家自然科学基金项目“晚太古代清原绿岩带BIF与VMS矿床的成因联系及沉积环 境”(批准号:41572076)和“973”项目“华北克拉通前寒武纪重大地质事件与成矿”( 批准号:2012CB416601)联合资助

摘要:VMS和BIF铁矿作为两种重要的矿床类型,在前寒武纪常常以共生组合 方式赋存于古 老克拉通内的表壳岩系中,是早期地球构造和环境演化耦合作用的产物。该组合不仅记录了 当时特定的构造及大气和海洋环境,而且两者也是全球铜、铁、铅、锌等金属的重要来源, 因此,开展VMS与BIF共生组合的研究具有重大科学价值和经济意义。前人研究表明,前寒武 纪VMS与BIF集中出现于~2.7 Ga和~1.9 Ga,与同时期地幔柱活动和地壳增生的高峰相对 应, 两者共生时BIF通常产出于VMS外围或上盘,但在矿体空间展布上具有此消彼长的关系;研究 还认为,前寒武纪地幔柱活动诱发的海底扩张、海底和地表强烈的火山活动形成的多重热液 系统,可同时为VMS和BIF提供物质来源,海水的硫逸度、氧逸度及大气的氧含量是影响VMS 与BIF空间分布及VMS硫同位素组成的重要因素。目前,VMS与BIF共生组合研究取得了较大进 展,但仍存在一些问题:缺乏典型共生实例的精细解剖,已有共生模型缺乏详细的矿床成因 机制研究支撑,对两者共生组合产出的构造背景和古海洋环境仍存在不同认识。华北克拉通 的清原和五台新太古代绿岩带发育有较大规模的VMS与BIF铁矿共生现象,对其开展详细研究 工作将为解决上述问题提供借鉴。
关键词: 地质学;火山成因块状硫化物矿床;条带状铁建造;成因机制
文章编号: 0258_7106 (2017) 04_0905_16   中图分类号: P618.31 文献标志码: A
   Research progress of Precambrian VMS_BIF paragenetic assemblage 
PENG ZiDong1,2, WANG ChangLe1, ZHAO Gang3, ZHU MingTian1, ZHANG Lian Chang1TONG XiaoXue1,2 and NAN JingBo4 

(1 Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chi nese Academy of Sciences, Beijing 100029, China; 2 School of Earth Science, Un iv ersity of Chinese Academy of Sciences, Beijing 100049, China; 3 China Nonferrous Hongtoushan Ming Group Co., Ltd., Fushun 113000, Liaoning, China; 4 Sch ool of Earth Science and Resources, China University of Geosciences, Beijing 100083, China)

2016_05_16

Abstract:VMS and BIF are two kinds of important deposit types, regarded as syngenetic and stratabound deposits within the supracrustal rocks of old craton in Precambrian , which were formed as a result of the coupling of tectonic movement and environ mental evolution of the early Earth. Previous researches indicated that the mant le plume activity and crustal growth at ~2.7 Ga and ~1.9 Ga culminated the V MS_B IF paragenetic assemblage in Precambrian, and when BIF and VMS formed synchronou sly they usually occurred at the same stratigraphic horizon with BIF in the imme diate vicinity of or slightly higher than the VMS. These studies also suggested that mantle plume events in Precambrian led to the spreading of midocean ridges and volcanism, which happened both on the ocean floor and at the earth surface, both processes thus having contributed to the forming of multiple hydrothermal s ystems; meanwhile, those systems provided ore_forming materials for VMS and BIF. Furthermore, the sulfur fugacity of the hydrosphere and the oxygen content of t he ocean and atmosphere seem to have been key factors influencing the distributi on of VMS and BIF as well as the sulfur isotopic compositions of VMS. Great prog ress has been made to figure out this intriguing and not fully answered question about the co_existence of VMS and BIF. However, there are still some problems, for example, there is no sufficient detailed study of living cases, the existing paragenetic model requires more study on genetic mechanism, and the geological setting and hydrosphere conditions for the formation of VMS and BIF remain ambig uous. Specifically, both the VMS and BIF in the Neoarchean Qingyuan and Wutai gr eenstone belt of the North China Craton were formed synchronously as shown by re cent high_precision geochronology work; hence, a detailed study of those deposit s may be a fruitful approach to solving the above questions.
Key words: geology, volcanogenic massive sulfide deposit, banded iron formation, genetic mechanism 
         火山成因块状硫化物矿床(Volcanogenic Massive Sulfide, VMS)的形成受区域伸展性构造 运动、火山活动及海底热液作用等的影响,是地球演化过程中出现的最为特殊的一类矿床, 它在整个地球演化历程的75%时间内广泛出现,从太古代到中新生代均有产出(Franklin et al., 2005; Huston et al., 2007; Van Kranendonk et al., 2008; Piercey, 2010);条 带状铁建造(Banded Iron Formation, BIF)是前寒武纪特有的富铁(>15%)化学沉积岩, 为早期地壳的重要组成部分,其产出的构造背景和成分、结构特征可为早期地球构造演化、 水圈和大气圈成分以及生命活动等方面提供重要信息(Klein, 2005; Bekker et al., 2010; 王长乐等, 2012)。同时,这2类矿床也是世界上铜、铁、铅、锌等重要矿产的主要来源(Is ley, 1995; Piercey, 2010)。
        近年来随着前寒武纪地质研究工作的深入,有学者发现VMS与BIF铁矿在早前寒武纪存在共 生现象(Veizer, 1976; Meyer, 1988; Isley et al., 1999; Huston et al., 2004)。目前 ,关于二者共生问题的研究,在时间和空间分布特征上取得了一定认识,即大规模的共生现 象主要见于新太古代早期和古元古代晚期的表壳岩系中,而且二者在同一区域的分布常具此 消彼长的过渡性。然而,关于2类矿床共生的内在成因联系、构造背景及形成古环境等方面 仍存在诸多争议(Slack et al., 2007; Thurston et al., 2004; Bekker et al., 2004; 2 010; Huston et al., 2010; 2014; Rasmussen et al., 2012; Lodge et al., 2015)。
        本文在系统收集和总结近年来国内外相关资料的基础上,详细阐述了VMS与BIF铁矿共生的时 空分布特征、成因联系及其形成时的古构造和古环境等,简要剖析了当前研究存在的问题 ,以期对中国华北克拉通的VMS与BIF铁矿共生组合研究工作有所启示。     
1前寒武纪VMS与BIF铁矿共生组合特征
        在早期地质工作中, VMS与BIF铁矿通常被视为2类独立的矿床进行研究, 关于二者共生组 合 特征的认识始于早前寒武纪VMS矿床周围含铁石英岩和BIF的发现以及硫化物相BIF的识别(Ve izer, 1976; James, 1983)。进一步通过将前寒武纪VMS与BIF形成时间和数量与地壳增生强 度对比发现, ~2.7 Ga和~1.9 Ga这2个全球地壳快速增长时期, VMS与BIF无论在数量 还是在规模方面都达到了高峰(Isley et al., 1999; Bekker et al., 2010; Rasmussen et al., 20 12) (图1)。然而, VMS与BIF是否可共存于同一地区, 一个地区的VMS与BIF可否同时形成 , 这些问题已逐渐成为学者们关注的焦点。
统计显示,目前在全球范围内已有多地存在VMS与BIF铁矿共生的现象,如北美Abitibi绿 岩带(Thurston et al., 2008)、西格陵兰Isua绿岩带(Veizeret al., 1989; Huston et a l., 2014)、中国河北内丘(祁思敬, 1983)、清原(顾连兴等, 2004; 万渝生等, 2005; Gu e t al., 2007; 张雅静等, 2014; Zhu et al., 2015; 彭自栋等, 2015)和五台等地区(Polat et al., 2005; 李碧乐等, 2007)以及美国Arizona州Jerome地区(Slack et al., 2007)。 此外, 基于对前人(Isley et al., 1999; Huston et al., 2004; Franklin et al., 2005 ; 李文渊, 2007; Bekker et al., 2010; Mercier_Langevin et al., 2014)年代学资料的总 结, 发现VMS与BIF在同一区域共存且近乎同时形成的现象较为普遍, 且主要出现于太古代 其次为元古代(图2)。
    图 1前寒武纪VMS、BIF和地壳增生时间演化图
    (改自Rasmussen et al., 2012)
     Fig. 1Histogram showing the abundance of VMS and BIF together with the intensi ty of crust growth in Precambrian 
    (modified after Rasmussen et al., 20 12)
        VMS矿床常以火山岩为赋矿围岩, 成因上与火 山作用相关,因而在前寒武纪与其共生的BIF应隶属于Algoma型,其主要赋存于始太古代—古元古代早期的绿岩带火山_沉积序列中(Goodwin , 1973; James, 1983; Isley et al., 1999) (表1)。位于北美的Abitibi绿岩带为全球最 大、最完整的绿岩带,是新太古代板块俯冲_碰撞和地幔柱活动叠加作用的综合产物(Ayer e t al., 2002; Sproule et al., 2002; Wyman, 2002),详细的锆石年代学研究显示,Abi ti bi绿岩带的岩浆活动主要发生于2750~2670 Ma,持续约90 Ma,根据年代学和岩相学差异 , 该绿岩带自下而上划分为7个火山_沉积旋回,各旋回的岩相组合从基部的超镁铁质_镁铁质 岩石到上部的长英质岩石,再到顶部的沉积岩(Ayer et al., 2002; Thurston et al., 20 0 8)。每个火山_沉积旋回的演化均伴随大规模的成矿作用, 据统计产于该绿岩带中的VMS金 属 量约占太古代VMS矿床金属总量的80%(Huston et al., 2014; Mercier_Langevin et al., 2 014)。基于对该绿岩带层序地层学及相关BIF地质特征的研究, Thurston等(2008; 2012)认 为其中的VMS与BIF矿床密切共生于同一套火山_沉积序列中,且BIF一般位于单个火山序列的 顶端,表明其成矿作用主要发生于火山活动的间歇期。此外,2类矿床在整个绿岩带 中的产出具此消彼长的过渡特征,空间上有明显的分带性, 自西向东由以BIF为主逐渐转变 为以VMS为主(图3)。 相似的共生现象在澳大利亚Koolyanobbing绿岩内也有发现, 其中~3 .0 Ga BIF下部常见富含黄铁矿的块状硫化物透镜体(Angerer et al., 2013)。
  图 2前寒武纪全球主要VMS和BIF分布图 (改自Trendall, 2002; Franklin et al., 2005; Bekker et al., 2010; 
    Mercier_Langevin et al., 2014)
     1—后太古代地体; 2—太古代地体; 3—VMS矿床产区
     Fig. 2Geological map showing the distribution of main VMS and BIF in the world in Precambrian (modified after Trendall, 
    2002; Franklin et al., 2005; Bekker et al., 2010; Mercier_Langevin et al., 2014)
     1—Post Archean terranes; 2—Archean terranes; 3—VMS mineralization areas  
图 3北美太古代Abitibi绿岩带VMS与BIF空间分布图(改自Thurston et al., 2008) 
     a. Abitibi绿岩带; b. 绿岩带内代表性地层柱状图
     1—沉积岩; 2—流纹岩; 3—英安岩; 4—安山岩; 5—玄武岩; 6—科马提岩; 7—层 状侵入体; 8—花岗岩; 9—不整合界面; 10—假整合
    界面; 11—沉积间隔时限(Ma) ; 12—铁建造; 13—块状硫化物矿床
     Fig. 3Geological map showing the spatial relationship of VMS and BIF in the No rth American Archean Abitibi greenstone belt
     (modified after Thurston et al., 2008)
     a. Abitibi greenstone belt; b. Representative stratigraphic columns from select ed locations across the greenstone belt
     1—Sediments; 2—Rhyolite; 3—Dacite; 4—Andesite; 5—Basalt; 6—Komatiite; 7—L ayered intrusion; 8—Granite; 9—Unconformity; 
    10—Pseudoconformity; 11—Durat ion of depositional gap (Ma); 12—Iron Formation; 13—VMS deposit    
 表 1Algoma与Superior型BIF矿床地质特征对比(改自王长乐等, 2012)
     Table 1Comparison of geological features between Algoma_ and Superior_type BIF deposits (modified after Wang et al., 2012)  
        元古代VMS与BIF共生现象集中出现于1.9~1.8 Ga,目前已报道的较大规模共生现象位于 美国Arizona州Jerome地区(1.76~1.70 Ga)。在该地区的变火山_沉积岩系中,经常可见 含磁铁 矿 /赤铁矿碧玉及BIF和VMS矿床密切共生,并且铁碧玉和BIF常产于VMS矿床的外围,空间上呈 现过渡,在部分情况下铁碧玉和BIF也可产于VMS的上盘,类似于“铁帽"(Slack et al., 20 0 7) (图4)。位于Superior克拉通的Flin Flon变火山岩带是世界上VMS矿床产出规模最大的区 域之一,该地区已知规模较大的Cu_Zn型VMS矿床有24个,其中规模最大的Flin Flon矿床金 属总量达62.4 Mt (Syme et al., 1993; Malinowski et al., 2008),年代学研究表明这 些 矿床主要形成于1.92~1.88 Ga (Hoffman, 1988; Syme et al., 1993);同时,Superior 克 拉通也是Supe_rior型BIF最典型的发育区,且研究显示这些BIF的形成时代为1.89~1.84 G a(Findlay et al., 1995; Fralick et al., 2002; Schneider et al., 2002; Rasmussen et al., 2012)。前已述及,前寒武纪与VMS共生的BIF为Algoma型,但Superior克拉通上同时发 育大规模的VMS和Superior型BIF,这是否同样为一类共生现象,目前尚缺乏相关研究。 
图 4美国Arizona州中元古代早期VMS与BIF共生分布图(改自 Slack et al., 2007)
     a. 美国Arizona州中部地区地质简图,仅显示中元古代地层; b. Jerome地区南部和北部中 元古代地层剖面图,为清楚展示VMS与BIF
    的相对空间位置,矿床规模进行了一定程度的扩 大
     1—沉积岩; 2—流纹岩; 3—玄武岩; 4—VMS矿床; 5—碧玉/铁建造; 6—United Verd e矿床; 7—Copper Chief矿床; 8—Verde Central矿床
     Fig. 4Geological map showing the distribution of VMS_BIF paragenetic assemblag e in Arizona, USA (modified after Slack 
    et al., 2007)
     a. Sketch map of central Arizona, Mesoproterozoic strata only; b. Section of Mes oproterozoic strata of south and north Jerome, 
    in order to show the spatial re lationship of VMS and BIF (their scale is exaggerated to some extent)
     1—Sediments; 2—Rhyolite; 3—Basalt; 4—VMS deposit; 5—Jasper/Iron Formati on; 6—United Verde deposit; 7—Copper Chief deposit;
     8—Verde Central depo sit    
2前寒武纪VMS与BIF铁矿共生组合的成因联系
        大量证据表明,普遍出现于前寒武纪的VMS与BIF铁矿共生组合并非偶然,二者存在成因方面 的联系 (Peter, 2003; Slack et al., 2007; Bekker et al., 2010)。当前,关于其成因 联系的研究主要集中于物质来源和形成机制2个方面。
2.1物质来源
        前寒武纪VMS与BIF铁矿在形成时间和规模上具有一致性,均与地质历史时期中的一些重大事 件(如地幔柱、板块构造)密切相关(Bekker et al., 2010; Huston et al., 2010; Planavs ky et al., 2010)。地幔柱或构造运动可诱发海底强烈的火山_热液活动,与此同时,大量 的铁质和还原性气体的输入可为形成VMS与BIF提供物质(Barley et al., 2005)。Abrams等( 1982a; 1982b; 1984)基于美国Georgia州西部前寒武纪晚期(1.3~1.0 Ga)VMS、BIF及围 岩岩 相学和地球化学特征分析认为,该区的VMS和BIF存在成因联系,它们均与双峰式火山活动有 关,成矿作用主要发生于火山活动的间歇期,且VMS的热液系统为BIF提供成矿物质。Angere r等(2013)和Hollis等(2015)对澳大利亚西部太古代Yilgarn克拉通内的VMS和BIF(3.2~2. 7 G a)开展了围岩岩相学和地球化学研究,结合前人年代学资料,他们认为那些成矿时间相近的 VMS与BIF产于同一火山_沉积序列,并且形成于相同的构造背景,据此推测BIF成矿物质源自 VMS的热液系统。
        综上,VMS与BIF成矿物质来自共同的热液系统,但目前在其具体成矿过程方面仍存在不同认 识。Zaleski等(1995)对Superior地区Manitouwadge绿岩带的Geco VMS矿床(2.72 Ga)开展 了 详细的岩相学和地质填图工作,并根据矿化类型、蚀变特征、矿体与BIF空间关系变化及矿 石有用组分差异将矿体划分为3类:下部富Cu、网脉状_浸染状矿体、中部块状Zn_Cu_(Pb)矿 体和上部以BIF为围岩的块状Zn_Pb_(Cu)矿体。通过对比不同类型矿体中矿石Cu/Zn比值及其 空间产出关系,他们认为下部高Cu/Zn比值的矿体形成于热液活动早期的高温阶段,而上部 低Cu/Zn比值的矿体及其围岩BIF则形成于热液系统衰减期的低温阶段。Gross(1995)对全球 古太古代—元古代铁建造的不同沉积相(氧化物相、硅酸盐相、碳酸盐相、硫化物相)进行全 岩地球化学特征分析,结果表明与VMS共生的BIF与双峰式火山作用关系密切,多形成于火山 _热液喷口或其附近,其成矿物质来自VMS成矿系统外围伴生的小规模、低温热液系统。
2.2形成机制
        基于太古代硅质碎屑岩、黑色页岩、VMS中硫化物及BIF中磁铁矿的Δ33S和δ 56Fe特征的系 统研究,Bekker等(2010)认为控制VMS与BIF共生的主导机制为古海洋氧逸度和硫逸度的变化 。海底火山_热液活动会向海洋中输送大量还原性气体(如H2S),促使火山口或热液喷口附 近 硫逸度显著升高,最终可导致VMS矿床的形成;与此同时,在距离热液喷口偏远的地方,由 于海水的稀释作用会导致硫逸度下降,进而在低硫逸度和较高氧逸度条件下会沉淀BIF。此 外,在近陆一侧,陆相火山活动产生的SO2光解产物和陆源物质的输入会造成含黄铁矿 黑 色页岩和硅质碎屑岩的沉积。Farquhar等(2011)通过太古代硫化物和硫酸盐硫同位素特征的 研究,指出古海洋存在因H2S和Fe2+相对含量变化导致的化学变层 (图5)。
        美国Jerome地区发育大规模空间关系密切的含磁铁矿/赤铁矿碧玉、BIF和富铜VMS,它们均 产出于厚约1.0~2.5 km的古元古代晚期(1.74~1.71 Ga)火山_沉积序列中(Lindberg, 1986; Lindberg et al., 1987; Anderson, 1989)。通过铁碧玉和BIF的全岩地球化学分析 ,Slack 等(2007)认为海底火山_热液活动强度是控制其与VMS共生的主要因素。当热液强度较大, 足以阻碍深海氧化反应时,铁会被搬运并在远离热液喷口的地方形成BIF;若其不足,则铁 以硫化物或氧化物形式沉淀在喷口附近。Foustoukos等(2008)认为,在深水缺氧环境中BIF 的形成与海底火山热液作用相关,铁的氧化沉淀可能发生于热液气液相分离条件下,此时挥 发性组分(如H2和HCl)优先进入气相,余下部分相应渐变为碱性、氧化的高盐度溶液,进 而 造成Fe2+氧化沉淀形成BIF。然而,这一假想缺乏实验数据和典型实例支持,但仍可在一定程度上解释VMS与BIF 的共生机制。 
图 5太古代VMS和BIF共生假想成因模式图(改自Bekker et al., 2010; Farquhar et al. , 2011)
     1—含球状黄铁矿黑色页岩; 2—含浸染状黄铁矿灰色页岩/硅质碎屑岩; 3—条带状铁建造 ; 4—长英质火山岩; 5—火山成因块状硫化物
    矿床; 6—化学变层; 7—热液循环单元 ; 8—近海平面/海底热液柱
     Fig. 5Hypothetical genetic model schematic diagram of Archean VMS_BIF paragene tic assemblage 
    (modified after Bekker et al., 2010; Farquhar et al., 2011) 
     1—Black shale with pyrite nodules; 2—Gray shale/fine_grained siliciclastic ro ck with disseminated pyrite; 3—Banded iron formation; 
    4—Felsic volcanic ro ck ; 5—Volcanogenic massive sulfides; 6—Chemocline; 7—Hydrothermal circulatio n cells; 8—Subaerial/submarine plumes    
3前寒武纪VMS与BIF共生组合所反映的古构造和古环境
3.1古构造环境
        Algoma型BIF常形成于俯冲构造背景下,部分可能存在地幔柱的叠加作用(Zhang et al., 20 12; 张连昌等, 2012; Thurston et al., 2012; Rasmussen et al., 2012; Haugaard et al., 2012; Angerer et al., 2013),而VMS矿床普遍产出于张性构造环境(如张性岛弧或 裂谷等)(Franklin et al., 2005; Galley et al. 2007; Thurston et al., 2008; Pierce y, 2010; Huston et al., 2010)。Franklin等(2005)发现VMS形成的峰期与各微陆块聚合形 成超大陆的时间具有一致性,进而推测VMS成矿与板块俯冲或碰撞事件关系密切。如前所述 ,太古代VMS与BIF共生现象主要发生于同时期的绿岩带中,因此,绿岩带形成构造背景的研 究可反映二者共生的构造环境。
        Taylor等(2003)和Lodge等(2015)对~2.7 Ga Vermilion绿岩带(位于Superior地区)的岩相 学 和地球化学研究显示,VMS矿床集中分布地区发育科马提岩和大量具岛弧_弧后特征的镁铁质 火山岩(主要为拉斑质和钙碱性玄武岩),同时,仅以VMS围岩形式出现的长英质岩石,经原 始地幔标准化后,微量元素配分曲线略微右倾,具明显的Nb、Ti负异常和Zr、Hf正异常,其 LREE(轻稀土元素)和HREE(重稀土元素)相对于原始地幔的富集程度分别为10~50倍和7~20 倍 ,整体与FII型长英质火山岩类似,据此认为其形成构造环境为地幔柱叠加的张性岛弧。而L odge等(2015)对该区规模最大的Soudan BIF的围岩地球化学研究显示,经原始地幔标准化后 ,其镁铁质火山岩微量元素配分曲线可分为2类:一类呈平坦_略微右倾,Th、Nb和LREE相对 亏损,Nb/Th比值介于0.8~1.2之间,并且其Th/Yb和Zr/Y比值具有与拉斑玄武岩类似的特 征;另 一类微量元素配分曲线略微右倾,具负的Nb和Ti异常,Nb/Th比值小于0.5,Th/Yb和Zr/Y比 值与 钙碱性玄武岩一致。上述特征表明,其原岩主要为钙碱性玄武岩和拉斑玄武岩,暗示该BIF 产于岛弧向弧后过渡的环境。Ayer等(2002)通过对Abitibi绿岩带的岩相学、同位素年代学 和同位素地球化学进行研究认为,该绿岩带内的火山岩可划分为2750~2697 Ma的以拉斑玄 武 岩和科马提岩组合占主导的5个火山旋回和2696~2675 Ma的以钙碱性玄武岩为主导的2个旋 回 ,对11件不同旋回中的科马提岩、拉斑_钙碱性玄武岩、长英质火山岩的Nd同位素分析显示 ,其εNdt)值变化于2.2~3.4,平均为2.5±0.5,据此认为Abitibi 绿岩带为地幔柱和俯 冲作用下原地演化的产物。Sproule等(2002)对Abitibi绿岩带广泛发育的科马提岩的地球化 学研究显示,它们的化学组成具有明显的时空差异,经原始地幔标准化后,形成于2750~27 35 Ma的科马提岩Ti亏损,具高的Al2O3/TiO2比值(25~35)及低的(Gd/Yb)PM 比值(0.6~0.8),2725~2720 Ma的科马提岩Al亏损、Ti富集,具低的Al2O3/TiO2( 6~14)比值和高的(Gd/Yb)PM比值(1.2~2.0),而2718~2710 Ma的科马提岩则具有 相对居中的Al2O3/TiO2比值(15~25)和(Gd/Yb)PM比值(0.8~1.2),这些都 表明时间跨度长达50 Ma的科马提岩应当为多期次地幔柱活动的产物。在上述工作基础上 梳理,认为该绿岩带不同于世界范围内其他的绿岩带,其广泛发育双峰式火山岩并有大规模 的科马提岩产出,相应的地球化学特征指示其镁铁质火山岩具有岛弧玄武岩_拉斑玄武岩特 征。综上所述Abitibi绿岩带应当形成于张性岛弧_弧后盆地环境,同时具有同期地幔柱作用 的叠加。
3.2对古环境的指示
        BIF的形成需要3个重要前提条件: ① 还原_弱氧化的大气和海洋环境(Holland, 1984; Bek ker et al., 2004); ② 海洋中低的硫酸盐和硫化物含量(Habicht et al., 2002); ③ 大型海底热液系统对铁的供给(Kump et al., 2005)。据此,部分学者利用BIF的丰度变化来 指示古海洋氧化还原状态的转变(Cloud, 1973; Holland, 1973; 1984; Beukes et al., 19 92; Huston et al., 2004)。VMS作为海底热液与周围海水混合作用的产物(Huston et al., 2010),其中硫化物硫同位素组成及伴生喷流沉积岩的地球化学特征可反映同时期的海洋和 大气环境(Farquhar et al., 2003; Slack et al., 2007)。因此,二者的共生组合特征可 有效约束前寒武纪古大气和古海洋环境。
        大规模VMS与BIF共生现象最早出现于~2.7 Ga,这一时期的地质记录中缺乏沉积成因的层 状 硫酸盐矿床,但发育巨量的BIF (以Algoma型为主,少量Superior型),表明新太古代海洋整 体缺硫低氧(Huston et al., 2004)。同时,大量研究表明,与BIF同时期的VMS和海洋积物 中的硫化物、硫酸盐均记录了硫同位素(Δ33S)的非质量分馏现象(Δ33S=-2 ‰~10‰)(Farquhar et al., 2000; Mojzsis et al., 2003; Sharman et al., 2015), 且硫 化物(δ34S=-1‰~3‰)和硫酸盐(δ34S=3.8‰~5.4‰)的δ34S 值未发生较大程度分馏(Veizer et al., 1982; Hayes et al., 1992) (图6a、b),说明当 时大气应处 于缺氧状态(Farquhar et al., 2000)。
        一般认为,发生于2.45~2.20 Ga的大氧化事件(Great Oxidation Event, GOE)导致了大 气中氧含量明显上升,至2.2 Ga时,氧含量已基本接近现代水平(Holland,2002; 2006; B ekker et al., 2004; Hannah et al., 2004)。大气氧含量的升高一方面引 起硫同位素非质 量分馏效应的消失(Farquhar et al., 2000; Pavlov et al., 2002) (图6a、b),并造成大 陆有氧 风化作用的增强,促使大量的可溶性硫酸盐进入海洋(Huston et al., 2010);另一方面 使得 海洋从浅部 到深部的逐渐氧化,最终在1.8 Ga左右海洋整体氧化,从而导致BIF大规模消失 ( Cloud, 1972; Huston et al., 2004)。大量研究显示,1.8 Ga左右Fe、U等氧化还原 状 态变化敏感元素的地球化学行为发生了转变,如古土壤中Fe的亏损、沥青铀矿和黄铁矿等演 化还原敏感矿物的消失、BIF中U含量的升高,同样表明这段时间内大气氧含量的增加(Holla nd, 1984; Holland et al., 1990; Rye et al., 1998; Ono et al., 2000; Partin et al ., 2013a; 2013b)。
图 6前寒武纪硫化物及硫酸盐硫同位素特征演化图(GOE_大氧化事件)
     a. Δ33S同位素; b. δ34S同位素(改自Farquhar et al., 2011)
     Fig. 6Diagram showing characteristics of S isotope evolution of sulfide and su lfate in Precambrian (GOE_Great Oxidation Event)
     a. Δ33S isotopes; b. δ34S isotopes (modified after Farquhar et al ., 2011)    
        然而,关于这一时期大规模BIF消失的原因存在不同认识。Canfield等(1996; 1998)研究了 ~1.8 Ga深海沉积物中广泛发育的硫化物的硫同位素,结果显示其δ34S值普遍为负 值,最低可达-20‰,表明这些硫化物中的硫来自微生物对海洋中大量的硫酸盐的还原而非 海底热液(2.35 Ga之前海水中硫酸盐含量小于0.001 mol/L,在这种低硫酸盐含量的环境 中,微生物造成的δ34S分馏一般小于4‰; Cameron, 1982)。据此,研究者认为1.8 Ga之后大规模BIF沉淀的消失主要归咎于当时海水高的硫逸度,而并非由于海洋的氧化;进 一步的认为GOE虽然导致了大气氧含量增加,并造成了这类氧化还原敏感元素地球化学行 为的转变,但这并不足以证明当时海洋发生了完全氧化。
        Slack等(2007; 2009)对产于深海环境与富铜VMS共生的含铁喷流沉积岩及BIF(1.74~1.71 Ga)的地球化学研究表明,经页岩(PAAS)标准化后,其稀土元素配分型式呈现轻稀土元素亏 损、重稀土元素富集[(La/Yb)SN=0.17~0.75],具正的Eu异常[(Eu/Eu*) SN=1.15~3.33]和微弱负Ce到正Ce异常[(Ce/Ce*)SN=0.95~1.36]。考虑 到同时期的海洋中缺乏浅海相BIF产出,Slack等(2007; 2009)认为~1.8 Ga的海洋应为氧 化还原分层的水体,即浅部处于富硫的氧化状态,而深部则为贫硫弱氧化。Rasmussen等(20 12)对西澳Frere组BIF凝灰岩夹层中的锆石开展了SHRIMP年代学研究,结果表明其形成于~1 .89 Ga,近似代表了该BIF的形成时代,与北美Superior地区广泛发育的BIF沉淀时间一致(~1. 88 Ga)(Findlay et al., 1995; Fralick et al., 2002; Schneider et al., 2002),进一 步说明这种层化海洋的出现是全球性的,其形成应与~18.8亿年大规模的地幔柱活动有关 。
        综上所述,VMS与BIF共生组合研究可为古元古代晚期的海洋环境提供重要约束,表明当时海 洋并非完全氧化或硫化,至少深海应该处于弱氧化贫硫状态。此外,研究显示,中_新元古 代同样存在铁建造(Granular Iron Formation和Rapitan Iron Formation)与VMS或Sedex型 矿床共生的现象,如印度拉贾斯坦邦的Dariba Zn_Pb_Ag矿床(1.8 Ga) (Deb et al., 2004 a; Deb et al., 2004b),澳大利亚新南威尔士州的特大型Broken Hill Pb_Zn_Ag矿床 (16 .8亿年) (Plimer, 1979; Lottermoser, 1989; Page et al., 2005),南非Aggeneys和Gam sberg Pb_Zn_Ag矿床(1.2 Ga)(Stalder et al., 2004; Cornell et al., 2009)以及纳米 比亚Otjosondu地区的Outer Shelf Fe_Mn矿床(~0.7 Ga) (Bühn et al., 1992)等。这在 一定程度上反映中_新元古代可能仍存在局部还原非硫化的海洋或深部海水。
4华北克拉通VMS与BIF铁矿共生组合特征
        华北克拉通作为世界上最古老的克拉通之一,其长达~3.8 Ga的演化史几乎记录了所有地 球 早期的重大地质事件,新太古代晚期的火山_沉积作用在华北形成了清原、五台、固阳、鲁 西等一系列绿岩带(翟明国, 2011)。然而,长期以来华北克拉通VMS与BIF铁矿普遍被视为2 类独立矿床进行研究,关于二者共生组合特征的报道相对较少。
        祁思敬等(1983)较早注意到,河北内丘地区存在太古代杏树台VMS矿床与磁铁石英岩和磁铁 角闪石英岩(条带状,BIF?)的共生和过渡现象,在矿体外围矿石逐渐从硫化物相转变为磁铁 石英岩或磁铁角闪石英岩,部分矿段可见硫化物矿石与磁铁石英岩相伴产出,这些磁铁角 闪石英岩的原始成分应为火山外围堆积的硅铁质化学沉积物。关于二者共生成因,祁思敬等 (1983)认为,火山热液上升至海底与海水混合导致物理化学条件的变化,金属物质卸载形 成VMS,硫化物上部及外围的磁铁矿可能是当热液进入衰微时,∑S迅速降低、f(O2 )回升,海水中游离的残余铁质以氧化物相沉积下来的结果。
        近年来大量的年代学研究表明,在新太古代清原和五台绿岩带同样存在VMS与BIF同时期产出 的现象(Polat et al., 2005; 李碧乐等, 2007; 万渝生等, 2005; 张雅静等, 2014; Zhu e t al., 2015; Wu et al., 2016),但目前关于二者是否为共生成因的研究相对欠缺。彭自 栋等(2015)结合前人(辽宁省区域地质志, 1989; Zhai et al., 1985; 于凤金, 2006; 张雅 静, 2014; 张雅静等, 2014; Zhu et al., 2015)资料对清原地区VMS与BIF地质特征进行了 初步研究,认为区内VMS矿床集中产出于红透山组中段和上段,赋矿地层岩性以黑云斜长片 麻岩和角闪斜长片岩组成的薄层互层带为主,矿床矿体形态多受后期构造运动影响,呈似层 状、脉状、囊状、似筒状等形态产出,其中,在树基沟矿区观察到铜_锌矿体中有条带状铁 矿夹层,在红透山矿区、大荒沟矿区观察到VMS矿床上盘有BIF产出;BIF矿体围岩主要 为角闪斜长片麻岩、角闪片麻岩、黑云变粒岩、角闪变粒岩,矿体呈层状与围岩整合产出, 在区内小莱河、下甸子、马家店矿区矿石中均观察到黄铁矿微条带与磁铁矿微_中条带互层 产出现象。Wu等(2013)基于清原绿岩带浑北地区含石榴子石角闪岩(2.56~2.51 Ga, 万渝 生等, 2005)的岩相学和p_t变质轨迹研究,认为其演化过程遵循逆时针p_t轨迹, 同时,考虑到清原绿岩带发育超镁铁质_镁铁质火山岩、双峰式火山岩以及大规模与绿岩带 表壳岩近同期的TTG (孙德育等, 1993; Bai et al., 1998),认为清原绿岩带形成于地幔 柱活动及其诱发的幔源岩浆底侵作用过程中。Peng等(2015)对清原绿岩带浑南新宾地区的超 镁铁质_镁铁质、长英质火山岩(>2.51 Ga)以及石英闪长岩(2.57~2.51 Ga)、TTG(2.5 7~2.51 Ga)和石英二长岩(2.51~2.49 Ga)系列开展了岩相学、地球化学及同位素年代 学研究,结果显示区内镁铁质侵入体和火山岩具有高的MgO含量(5.4%~7.5%)和Mg#值(4 8~ 61),球粒陨石标准化后,其稀土元素配分曲线平坦_略微右倾((La/Yb)CN=0.4~1 .1; (Gd/Yb)CN=1.1~1.3);变安山_流纹岩经球粒陨石标准化后显示,轻、中稀 土元素富集((La/Yb)CN=50~65; (Gd/Yb)CN=8.3~12),在原始地幔标准化 蛛网图中,其大离子亲石元素富集,高场强元素亏损;石英闪长岩具有高的镁值(60~64), 球粒陨石标准化后稀土元素特征显示其轻、中稀土元素略富集((La/Yb)CN=5.2~6 .7; (Gd/Yb)CN=2.5~2.9),原始地幔标准化后显示大离子 亲石元素略富集;TTG岩系具有与变安山_流纹岩相似的稀土元素配分模式,但在原始地幔标 准化蛛网图中,其Nb、Ta 亏损,Zr、Hf富集;石英二长岩(球粒陨石标注化)稀土元素配分显示轻、中稀土元素略富集 ((La/Yb)CN=3.9~7.8; (Gd/Yb)CN=2.5~2.9),与石英闪长岩相比具有 明显的负Eu异常((Eu/Eu*)=0.6~0.7),原始地幔标准化蛛网图中,其大离子亲石元 素 富集,高场强元素除Zr、Hf外明显亏损;此外,TTG岩系(εNdt)=2~6; ( 87Sr/86Sr)t=~0.700)相对于区内其他岩石(εNd( t)=0~2; (87Sr/86Sr)t=0.701~703)具有更为亏损的Sr_N d同 位素特征。综合上述特征,Peng等认为清原绿岩带是洋壳低角度向陆壳俯冲同时结合垂相 构 造运动作用的综合产物,其逆时针的p_t变质轨迹与火山弧岩浆作用和后期的克拉通化 有关。
        五台绿岩带地层自下而上依次被划分为石咀、台怀和高凡3个亚群,区内BIF和VMS主要共生 产出于中部台怀亚群柏枝岩组的绿泥石阳起石片岩、云母石英片岩中和下部石咀亚群金岗库 组的角闪岩、黑云角闪变粒岩、云母片岩及黑云变粒岩中;其中,BIF矿体通常呈层状、似 层状与围岩整合产出,而VMS矿体则多呈层状、透镜状、块状,多数情况下其赋矿围直接为B IF和黄铁矿化燧石岩,局部可见少量变镁铁质火山岩;空间上BIF常位于VMS上盘,部分情况 下可见二者呈过渡现象(田永清等, 1996; Li et al., 2004; 牛向龙等, 2009)。Polat等(2 005)对该绿岩带中纯橄榄岩、斜辉橄榄岩的地球化学分析显示,其REE(稀土元素)和HFSE(高 场强元素)含量极低(如La=0.09×10-6~0.25×10-6,Ce=0.20×10-6 ~0.50×10-6,Y=0.31×10-6~2.2×10-6,Zr=1×10-6~ 11×10-6),经球粒陨石标准化后,其稀土元素配分模式呈“U型"((La/Sm)CN =0.81~1.92,(Gd/Yb)CN=0.19~0.74),与玻古安山岩类似,认为它们应为同 时期蛇绿岩套的残留物;此外,进一步的岩相学、地球化学研究表明,五台绿岩带同时发育 玄武岩、安山岩、英安岩和流纹岩等基性到酸性系列的火山岩,经球粒陨石标准化后,玄武 岩LREE相对于HREE略分馏((La/Sm)CN=1.6~4.1, (La/Yb)CN=2.1~6.0, (Gd/Yb)CN=1.2~1.7),在原始地幔标准化蛛网图中,其高场强元素Nb((Nb/Nb *)PM=0.2~0.5)和Ti((Ti/Ti*)PM=0.7~0.9)明显亏损;相对于玄武 岩,安山岩具有较高的Al2O3/TiO2(25~32)和Zr/Y比值(7~15)以及略低的Ti/Zr 比值(19~45),球粒陨石标准化后其LREE相对HREE分馏程度较高((La/Yb)CN=8.6~2 4);与流纹岩相比,安山岩的MgO、Fe2O3、Al2O3、CaO、K2O、P2O5、Sr、R b、V、Zr、LREE含量较 高 ,SiO2和Na2O含量较低,在球粒陨石标准化后的稀土元素配分图中,2类岩石的配分曲 线略右倾,安山岩轻、重稀土元素分馏程度更高,并且具更低的Al2O3/TiO2、Th/La 和Ti/V比值。综上所述,Polat等(2005)认为五台绿岩带形成于与洋脊俯冲作用有关的 弧前构造环境,其中VMS的产出与地幔构造窗有关。
        鉴于华北克拉通演化的特殊性和复杂性,细致研究其中VMS与BIF铁矿成因联系具有重要意义 。首先,华北克拉通的VMS与BIF主要形成于新太古代(2.6~2.5 Ga),区别于国际上~2. 7 Ga和~1.8 Ga的2个共生峰期,并且该时间段的VMS矿床国外鲜有报道(Franklin et al., 2005),因此,开展此项研究一方面可填补VMS矿床研究的空白,另一方面可加强和完善VMS 与BIF的共生机制研究;其次,华北这2类矿床同时形成于GOE之前,通过对VMS矿床外围喷流 沉积岩和BIF的综合研究,可为同期的古海洋和大气环境提供指示信息,进一步通过与世界 范围内更为古老的以及GOE之后的BIF和VMS特征进行详细对比,可完整诠释早前寒武纪古环 境的变化规律;最后,清原和五台地区的VMS和BIF作为华北克拉通太古代晚期演化的特色产 物,其共生机制研究可为阐释绿岩带形成的构造背景提供约束,同时,该研究对于总结区域 成 矿规律及建立VMS_BIF成矿系统具有重要理论意义,可为进一步在华北克拉通寻找前寒武纪V MS和BIF矿产提供科学依据。
5有待深入探讨的问题
        当前关于前寒武纪VMS与BIF铁矿共生组合研究主要集中于二者共生的时空关系、共生成因以 及对沉积环境和构造背景的约束等方面,并取得一定进展。然而,仔细来看,其中仍存在一 些问题,具体包括5个方面。
        (1) 研究对象。目前,研究普遍侧重于2类矿床成矿作用与早期地球构造活动的联系(Isley et al., 1999; Bekker et al., 2010),以及VMS或BIF形成同时期古大气和古海洋环境的探 讨(Huston et al., 2004; Slack et al., 2007; 2009),且上述研究工作或着眼于VMS或针 对BIF,并未将二者的共生作为一个整体进行研究;同时,现有共生成因模型的建立同样是 基于太古代以独立的VMS、BIF以及深海沉积物的Fe、S同位素特征研究 (Bekker et al., 20 10 ; Farquhar et al., 2011),缺乏关于二者共生机制的探讨,如共生成矿的物质来源 、构造背景、海洋和大气环境等。
        (2) 物质来源。海底火山活动或地幔柱作用诱发的热液系统一方面会形成VMS (Piercey, 20 10; Huston et al., 2014),另一方面会向海洋中输送大量铁质 (Isley, 1995; Isley et al., 1999; Barley et al., 2005);同时,太古代—古元古代出现了VMS与BIF的大规模共 生 现象 (Isley et al., 1999; Bekker et al., 2010; Rasmussen et al., 2012)。据此,前 人认为二者具有相同的成矿物质来源。然而,目前缺少典型共生实例研究的直接证据,证明 其成矿物质源自同一系统。
        (3) 构造背景。太古代VMS与BIF共生现象主要出现于同时期绿岩带中,因此,绿岩带产出构 造背景的研究可为共生构造环境提供有力约束,但目前关于太古代绿岩带形成构造背景仍存 在地幔柱和类板块构造机制的争议(Ayer et al., 2002; Sproule et al., 2002; Wyman, 2 002; Taylor et al., 2003; Polat et al., 2005; Thurston et al., 2008; Lodge et al ., 2015);此外,太古代和古元古代均存在二者共生现象,这2个时期的成矿构造环境有无 差异同样缺乏研究。
        (4) 共生环境。与VMS共生的BIF主要为Algoma型,受限于产出的构造背景,其地球化学特征 仅能够反映局限海盆火山活动或者海底热液条件(Bekker et al., 2010),鉴于此,目前基 于VMS与BIF共生特征研究获得的关于古海洋环境的认识是否具普遍意义,可能是值得商榷的 。
        (5) BIF的大规模沉淀通常与VMS成矿高峰相对应(Rasmussen et al., 2012),然而精确的年 代学研究表明,2.6~2.4 Ga间沉淀了巨量的BIF,其总量占前寒武纪已知铁资源储量的70%( B ekker et al., 2010),但是这期间关于VMS矿床产出的报道并不如人们预期的那么多(Frank lin et al., 2005),这种BIF大规模产出却缺乏同期VMS现象的成因尚不清楚。
        总体而言,前寒武纪VMS与BIF铁矿共生需要特定的构造背景和环境条件,是地壳和古环境演 化耦合作用的结果,但这种耦合作用的机制是什么,这是亟待解决的问题。
    
        志谢感谢匿名审稿人对稿件的评审及提出的重要建议,感谢中国科学院地质与 地球物理研究所郑梦天博士在写作过程中就相关问题的讨论。    
参考文献
Abbott D and Isley A E. 2001. Oceanic upwelling and mantle_plume activit y: Paleo magnetic tests of ideas on the source of the Fe in Early Precambrian iron format ions[J]. Special Paper of the Geological Society of America, 352: 323_339.
     Abrams C E and Mcconnell K I. 1982a. The relationship of banded iron formation t o mines and prospects of western Georgia[R]. 
     Abrams C E and Mcconnell K I. 1982b. Banded iron formation: A key marker unit fo r massive sulfide exploration in the high grade metamorphic terrain of western G eorgia[R]. 
     Abrams C E and Mcconnell K I. 1984. Geologic setting of volcanogenic base and pr ecious metal deposits of the West Georgia Piedmont: A multiply deformated metavo lcanic terrain[J]. Econ. Geol., 79(7): 1521_1539.
     Anderson P. 1989. Proterozoic plate tectonic evolution of Arizona[J]. Arizona Geological Society Digest, 17: 17_55.
     Angerer T, Kerrich R and Hagemann S G. 2013. Geochemistry of a komatiitic, bonin itic, and tholeiitic basalt association in the Mesoarchean Koolyanobbing greenst one belt, southern Cross Domain, Yilgarn craton: Implications for mantle sources and geodynamic setting of banded iron formation[J]. Precambrian Research, 224 :110_128.
     Ayer J, Amelin Y, Corfu F, Kamo S, Ketchum J F, Kwok K and Trowell N F. 2002. Ev olution of the abitibi greenstone belt based on U_Pb geochronology: Autochthonou s volcanic construction followed by plutonism, regional deformation and sediment ation[J]. Precambrian Research, 115(s1_4): 63_95.
     Bai J and Dai F Y. 1998. Archean crust of China[A]. In: Ma X Y and Bai J, eds. P recambrian crust evolution of China[C]. Beijing: Geological Publishing House. 15_86.
     Barley M E, Bekker A and Krape B. 2005. Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen[J]. Earth Planetary Science Letters, 238(1_2): 156_171.
     Bekker A, Holland H D, Wang P L, Rumble D, Stein H J, Hannah J L, Coetzee L L an d Beukes N J. 2004. Dating the rise of atmospheric oxygen[J]. Nature, 427(6970 ): 117_120.
     Bekker A, Slack J F, Planavsky N, Krape B, Hofmann A, Konhauser K O and Rouxel O J. 2010. Iron formation: The sedimentary product of a complex interplay am ong mantle, tectonic, oceanic and biospheric processes[J]. Econ. Geol., 105: 467_5 08.
     Beukes N J and Klein C. 1992. Models for iron formation deposition[A]. In: Schop h J W and Klein C, eds. The Proterozoic biosphere: A multidisciplinary study[M ]. New York: Cambridge University Press. 146_151.
     Bühn B, Stanistreet I G, Okrusch M, Stanistreet I G and Okrusch M. 1992. Late P roterozoic outer shelf manganese and iron deposits at Otjosondu (Namibia) relate d to the Damaran oceanic opening[J]. Econ. Geol., 87(5): 1393_1411.
     Cameron E M. 1982. Sulphate and sulphate reduction in Early Precambrian oceans[ J]. Nature, 296(2): 145_148.
     Canfield D E and Teske A. 1996. Late Proterozoic rise in atmospheric oxygen conc entration inferred from phylogenetic and sulphur isotope studies[J]. Nature, 3 82(6587): 127_132.
     Canfield D E. 1998. A new model for Proterozoic ocean chemistry[J]. Nature, 39 6(396): 450_453.
     Cloud P. 1973. Paleoecological significance of the banded iron formation[J] . Econ. Geol., 68(7): 1135_1143.
     Cloud P E. 1972. A working model of the primitive Earth [J]. Am. J. Sci., 272: 537_548.
     Cornell D H, Pettersson A, Whitehouse M J and Scherstén A. 2009. A new chronost ratigraphic paradigm for the age and tectonic history of the mesoproterozoic bus hmanland ore district, South Africa[J]. Econ. Geol., 104(3): 385_404.
     Deb M and Pal T. 2004a. Geology and genesis of the base metal sulphide deposits in the Dariba_Rajpura_Bethumni belt, Rajasthan, India[A]. In: Deb M and Goodfe ll ow W D, eds. Sediment_hosted lead_zinc sulphide deposits[C]. New Delhi: Narosa Publishing. 304_327.
     Deb M and Thorpe R I. 2004b. Geochronological constraints in the Precambrian geo logy of Rajasthan and their metallogenic implications[A]. In: Deb M and Go odfell ow W D, eds. Sediment_hosted lead_zinc sulphide deposits[C]. New Delhi: Narosa Publishing. 246_263.
     Farquhar J, Bao H M and Thiemens M. 2000. Atmospheric influence of earths earli est sulfur cycle[J]. Science, 289(5480):756_758.
     Farquhar J and Wing B A. 2003. Multiple sulfur isotopes and the evolution of the atmosphere[J]. Earth Planetary Science Letters, 213(1_2):1_13.
     Farquhar J, Zerkle A L and Bekker A. 2011. Geological constraints on the origin of oxygenic photosynthesis[J]. Photosynthesis Research, 107(1): 11_36.
     Findlay J M, Parrish R R, Birkett T C and Watanabe D H. 1995. U_Pb ages from the Nimish Formation and Montagnais glomeroporphyritic gabbro of the Central New Qu ébec Orogen, Canada[J]. Can. J. Earth Sci., 32(8): 1208_1220.
     Foustoukos D I and Bekker A. 2008. Hydrothermal Fe(II) oxidation during phase se paration: Relevance to the origin of Algoma_type BIFs [J]. Geochim. Cosmochim. Acta, 72(Supp.): 280.
     Fralick P, Davis D W and Kissin S A. 2002. The age of the Gunflint Formation, On tario, Canada: Single zircon U_Pb age determinations from reworked volcanic ash [J]. Can. J. Earth Sci., 39(7): 1085_1091.
     Franklin J M, Gibson H L, Jonasson I R and Galley A G. 2005. Volcanogenic massiv e sulfide deposits[C]. Econ. Geol. 100th Anniversary Volume. 523_560.
     Galley A G, Hannington M D and Jonasson I R. 2007. Volcanogenic massive sulphide deposits[A]. Mineral deposits of Canada: A syntesis of major deposit type s[C]. Newfoundland: Mineral Deposits Division Special Publication. 141_162.
     Goodwin A M. 1973. Archean iron_formations and tectonic basins of the Canadian S hield[J]. Econ. Geol., 68(7): 916_933.
     Gross G A. 1995. The distribution of rare earth elements in iron_formations[J] . Global Tectonics and Metallogeny, 5: 63_67.
     Gu L X, Tang X Q, Zheng Y C, Wu C Z, Tian Z M, Lu J J, Xiao X J and Ni P. 2004. Deformation, metamorphism and ore_component remobilization of the Archean massiv e sulphide deposit at Hongtoushan, Liaoning Province[J]. Acta Petrologica Sini ca, 20(4): 923_934 (in Chinese with EnglishAbstract).
     Gu L X, Zheng Y C, Tang X Q, Zaw K, Della_Pasque F, Wu C Z, Tian Z M, Lu J J, Ni P, Li X, Yang F T and Wang X W. 2007. Copper, gold and silver enrichment in ore mylonites within massive sulphide orebodies at Hongtoushan VHMS deposit, NE Chi na[J]. Ore Geology Reviews, 30(1): 1_29.
     Habicht K S, Gade M, Thamdrup B, Berg P and Canfield D E. 2002. Calibration of s ulfate levels in the Archean ocean[J]. Science, 298: 2372_2374.
     Hannah J L, Bekker A, Stein H J, Markey R J and Holland H D. 2004. Primitive Os and 2316 Ma age for marine shale: Implications for Paleoproterozoic glacial even ts and the rise of atmospheric oxygen[J]. Earth Planetary Science Letters, 225(1_2):43_52.
     Haugaard R, Frei R, Stendal H and Konhauser K O. 2013. Petrology and geochemistr y of the ~2.9 Ga Itilliarsuk banded iron formation and associated supracrustal r ocks, West Greenland: Source characteristics and depositional environment[J]. Precambrian Research, 229: 150_176.
     Hayes J M, Lambert I B and Strauss H. 1992. The sulfur_isotope record[A]. In: Sc hopf J W and Klein C,eds. The Proterozoic biosphere_a multidisciplinary study[C ]. New York: Cambridge University Press. 129_132.
     Hoffman P F. 1988. United Plates of America, the birth of a craton: Early Proter ozoic assembly and growth of Laurentia[J]. Annual Review of Earth and Planetar y Sciences, 16(1): 543_603.
     Holland H D. 1973. The oceans: A possible source of iron in iron_formations[J] . Econ. Geol., 68(7): 1169_1172.
     Holland H D. 1984. The chemical evolution of the atmosphere and oceans[M]. New York: Princeton University Press. 1_582.
     Holland H D and Beukes N J. 1990. A paleoweathering profile from Griqualand West , South Africa: Evidence for a dramatic rise in atmospheric oxygen between 2.2 a nd 1.9 bybp[J]. Am. J. Sci., 290_A(4): 1_34.
     Holland H D. 2002. Volcanic gases, black smokers, and the Great Oxidation event [J]. Geochim. Cosmochim. Acta, 66(21): 3811_3826.
     Holland H D. 2006. The oxygenation of the atmosphere and oceans[J]. Philosophi cal Transactions of the Royal Society B Biological Sciences, 361(361): 903_915. 
     Hollis S P, Yeats C J, Wyche S, Barnes S J, Ivanic T J, Belford S M, Davidson G J, Roache A J and Wingate M T D. 2015. A review of volcanic_hosted massive sulfi de (VHMS) mineralization in the Archaean Yilgarn Craton, western Australia: Tect onic, stratigraphic and geochemical associations[J]. Precambrian Research, 260 : 113_135.
     Huston D L and Logan G A. 2004. Barite, BIFs and bugs: Evidence for the evolutio n of the Earths early hydrosphere[J]. Earth Planetary Science Letters, 220(1_ 2): 41_55.
     Huston D L, Morant P, Pirajno F, Cummins B, Baker D and Mernagh T P. 2007. Paleo archean mineral deposits of the Pilbara Craton: Genesis, tectonic environment an d comparisons with Younger deposits[J]. Developments in Precambrian Geolog y, 15(1): 411_450.
     Huston D L, Pehrsson S, Eglington B M and Zaw K. 2010. The geology and metalloge ny of volcanic_hosted massive sulfide deposits: Variations through geologic time and with tectonic setting[J]. Econ. Geol., 105(3): 571_591.
     Huston D L, Champion D C and Cassidy K F. 2014. Tectonic controls on the endowme nt of Neoarchan cratons in volcanic_hosted massive sulfide deposits: Evidence fr om lead and neodymium isotopes[J]. Econ. Geol., 109(1): 11_26.
     Isley A E. 1995. Hydrothermal plumes and the delivery of iron to banded iron formation[J]. The Journal of Geology, 103(2): 169_185.
     Isley A E and Abbott D H. 1999. Plume_related mafic volcanism and the deposition of banded iron formation[J]. Journal of Geophysical Research, 1041(B7): 15461 _15477.
     James H L. 1983. Distribution of banded iron_formation in space and time[J]. D evelopments in Precambrian Geology, 6: 471_490.
     Klein C. 2005. Some Precambrian banded iron_formations (BIFs) from around the wo rld: their age, geologic setting, mineralogy, metamorphism, geochemistry, and or igin [J]. Am. Mineral., 90(10): 1473_1499.
     Kump L R and Seyfried W E. 2005. Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers[J]. Earth Planetary Science Letters, 235: 654_66 2.
     Li B L, Huo L and Li Y S. 2007. Several problems involved in the study of banded iron formations (BIFs) [J]. Acta Mineralogica Sinica, 27(2): 205_210 (in Chin ese with EnglishAbstract).
     Li J H, Kusky T, Feng J, Polat A. 2004. Neoarchean massive sulfide of Wutai Mo untain, North China: A black smoker chimney and mound complex within 2.50 Ga_o ld oceanic crust[J]. Developments in Precambrian Geology, 13(4): 339_362.
     Li W Y. 2007. Classification, distribution and forming setting of massive sulfid e deposits [J]. Journal of Earth Sciences and Environment, 29(4): 331_344 (in Chinese with EnglishAbstract).
     Liaoning Bureau of Geology and Mineral Resources. 1989. Regional geology of Liao ning Province[M]. Beijing: Geological Publishing House. 1_856 (in Chinese).
     Lindberg P A and Gustin M S. 1987. Field_trip guide to the geology, structure, a nd alteration of the Jerome, Arizona ore deposits[A]. In: Davis G H and Vanden Do lder E M, eds. Geologic diversity of Arizona and its margins[C]. Arizona Burea u of Mines and Mineral Technology Special Paper, 5: 176_181.
     Lindberg P A. 1986. Geology of the copper chief mine, Jerome district, Arizona[ J]. Arizona Geological Society Digest, 16: 343_349.
     Lodge R W D, Gibson H L, Stott G M, Franklin J M and Hudak G J. 2015. Geodynamic setting, crustal architecture, and VMS metallogeny of ca. 2720 Ma greenstone be lt assemblages of the northern Wawa subprovince, Superior Province[J]. Can. J. Earth Sci., 52(3): 196_214.
     Lottermoser B G. 1989. Rare earth element study of exhalites within the Willyama Supergroup, Broken Hill Block, Australia[J]. Mineralium Deposita, 24(2): 92_99.
     Malinowski M, White D J, Mwenifumbo C J, Salisbury M, Bellefleur G, Schmitt D, D ietiker B, Schetselaar E and Duxbury A. 2008. Seismic exploration for VMS deposi ts within the Paleoproterozoic Flin Flon Belt, Trans_Hudson Orogen, Canada[J]. Geophysical Research, 10: 3745.
     Mercier_Langevin P, Gibson H L, Hannington M, Goutier J, Monecke T, Dubé B and Houlé M G. 2014. A special issue on Archean Magmatism, volcanism, and ore depos its: Part 2. volcanogenic massive sulfide deposits [J]. Econ. Geol., 109(1): 1 _9.
     Meyer C. 1988. Ore deposits as guides to geologic history of the Earth[J]. Annual Review of Earth and Planetary Sciences, 16(1): 147_171.
     Mojzsis S J, Coath C D, Greenwood J P, Mckeegan K D and Harrison T M. 2003. Mass _independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides det ermined by ion microprobe analysis[J]. Geochim. Cosmochim. Acta, 67(9): 1635_1 658.
     Niu X L, Li J H, Feng J. 2009. Origin of the Neoarchean massive sulfide deposi ts in Wutaishan Mt: An indication for the submarine exhalation from the microstr uctures[J]. Advances in Earth Science, 9(24): 1009_1014 (in Chinese with Engl ishAbstract).
     Ono S, Fayek M and Ohmoto H. 2000. Origin of uraninite in the Elliot lake distri ct, Canada and the atmospheric oxygen level of 2.3 Ga Earth[J]. Evolution of t he Atmosphere, Ocean, Crust and Biosphere, 67_74.
     Page R W, Stevens B P J and Gibson G M. 2005. Geochronology of the sequence host ing the Broken Hill Pb_Zn_Ag orebody, Australia[J]. Econ. Geol., 100(100): 633 _661.
     Partin C A, Bekker A, Planavsky N J, Scott C T, Gill B C, Li C, Podkovyrov V, Ma slov A, Konhauser K O, Lalonde S V, Love G D, Poulton S W and Lyons T W. 2013a. Large_scale fluctuations in Precambrian atmospheric and oceanic oxygen levels fr om the record of U in shales[J]. Earth Planetary Science Letters, 369_370(3): 284_293.
     Partin C A, Lalonde S V, Planavsky N J, Bekker A, Rouxel O J, Lyons T W and Konh auser K O. 2013b. Uranium in iron formations and the rise of atmospheric oxygen [J]. Chemical Geology, 362(1): 82_90.
     Pavlov A A and Kasting J F. 2002. Mass_independent fractionation of sulfur isoto pes in Archean sediments: Strong evidence for an anoxic Archean atmosphere[J]. Astrobiology, 2(1): 27_41.
     Peng P, Wang C, Wang X P and Yang S Y. 2015. Qingyuan high_grade granite_greenst one terrain in the eastern North China Craton: Root of a Neoarchaean arc[J]. T ectonophysics, 662(1): 7_21.
     Peng Z D, Zhang L C, Wang C L and Zhu M T. 2015. The spatial and genetic relatio nship of VMS and BIF in the Qingyuan Greenstone Belt[J]. Acta Mineralogica Sin ica, 35(s): 539_540 (in Chinese).
     Peter J M. 2003. Ancient iron_rich metalliferous sediments (iron_formations): Th eir genesis and use in the exploration for stratiform base metal sulphide deposi ts, with examples from the Bathurst Mining Camp[A]. In: Lentz D R, ed. Geoche mi stry of sediments and sedimentary rocks: Considerations to mineral deposit_formi ng environments[C]. Canada: Geological Association of Canada, Geo Text, 4: 145 _176.
     Piercey S J. 2010. An overview of petrochemistry in the regional exploration for volcanogenic massive sulfide (VMS) deposits[J]. Geochemistry Exploration Envi ronment Analysis, 10(2): 119_136.
     Planavsky N, Bekker A, Rouxel O J, Kamber B, Hofmann A, Knudsen A and Lyons T W. 2010. Rare earth element and yttrium compositions of Archean and Paleoproterozo ic Fe formations revisited: New perspectives on the significance and mechanisms of deposition[J]. Geochim. Cosmochim. Acta, 74(22): 6387_6405.
     Plimer I R. 1979. Reply to D. Larges comment [J]. Mineralium Deposita, 14(1): 125_127.
     Polat A, Kusky T, Li J H, Fryer B, Kerrich R and Patrick K. 2005. Geochemistry o f Neoarchean (ca. 2.55~2.50 Ga) volcanic and ophiolitic rocks in the Wutaisha n g reenstone belt, central orogenic belt, North China Craton: Implications for geod ynamic setting and continental growth[J]. Geological Society of America Bullet in, 117(11/12): 1387_1399.
     Qi S J, Wang C Y, Yang J P, Gao Z X, Li Y K and Shao Z G. 1983. The origin of th e Precambrian metavolcanic_sedimentary rock systems and the massive sulfide depo sits in Xingshutai Neiqiu, Hebei Province[J]. Journal of Hebei College of Geol ogy, 22(2): 1_16 (in Chinese).
     Rasmussen B, Fletcher I R, Bekker A, Muhling J R, Gregory C J and Thorne A M. 20 12. Deposition of 1.88_billion_year_old iron formations as a consequence of rapi d crustal growth[J]. Nature, 484(1): 498_501.
     Rye R and Holland H D. 1998. Geology and geochemistry of paleosols developed on the Hekpoort Basalt, Pretoria Group, South Africa[J]. Am. J. Sci., 300(2): 85_141.
     Schneider D A, Bickford M E, Cannon W F, Schulz K J and Hamilton M A. 2002. Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergrou p: Implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region[J]. Can. J. Earth Sci., 39(6): 999_1012.
     Sharman E R, Taylor B E, Minarik W G, Dubé B and Wing B A. 2015. Sulfur isotope and trace element data from ore sulfides in the Noranda district (Abitibi, Cana da): Implications for volcanogenic massive sulfide deposit genesis[J]. Mineral ium Deposita, 50(5): 591_606.
     Slack J F, Grenne T, Bekker A, Rouxel O J and Lindberg P A. 2007. Suboxic deep s eawater in the Late Paleoproterozoic: Evidence from hematitic chert and iron for mation related to seafloor_hydrothermal sulfide deposits, Central Arizona, USA[ J]. Earth Planetary Science Letters, 255(1_2): 243_256.
     Slack J F, Grenne T and Bekker A. 2009. Seafloor_hydrothermal Si_Fe_Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma de ep seawater[J]. Geosphere, 5(3): 302_314.
     Sproule R A, Lesher C M, Ayer J A, Thurston P C and Herzberg C T. 2002. Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt[J]. Precambrian Research, 115(1): 153_186.
     Stalder M and Rozendaal A. 2004. Apatite nodules as an indicator of depositional environment and ore genesis for the Mesoproterozoic Broken Hill_type Gamsberg Z n_Pb deposit, Namaqua Province, South Africa[J]. Mineralium Deposita, 2(39): 6 34_637.
     Sun D Y, Liu Z H, Lin X C and Zheng C Q. 1993. Metamorphism and tectonic evoluti on of Early Precambrian rocks in the Fushun area, northern Liaoning Provience[M ]. Beijing: Seimological Press. 99_120 (in Chinese).
     Syme E C and Bailes A H. 1993. Stratigraphic and tectonic setting of Early Prote rozoic volcanogenic massive sulfide deposits, Flin Flon, Manitoba[J]. Econ. Ge ol., 88(3): 566_589.
     Taylor B and Martinez F. 2003. Back_arc basin basalt systematics[J]. Earth Pla netary Science Letters, 210(3_4): 481_497.
     Thurston P C, Ayer J A, Goutier J and Hamilton M A. 2008. Depositional gaps in a bitibi Greenstone Belt stratigraphy: A key to exploration for syngenetic mineral ization[J]. Econ. Geol., 103(6): 1097_1134.
     Tian Y Q, Peng Q M. 1986.The new viewpoint of the forming environment and defo rmation features for Banyukou Formation of Wutai Group[J]. Journal of Geology an d Mineral Resource of the North China, 11(1): 137_141 (in Chinese with EnglishAbstract).
     Thurston P C, Kamber B S and Whitehouse M. 2012. Archean cherts in banded iron f ormation: Insight into Neoarchean ocean chemistry and depositional processes[J ]. Precambrian Research, s 214_215(3): 227_257.
     Trendall A F. 2002. The significance of iron_formation in the Precambrian strati graphic record[J]. Special Publication International Association of Sedimentol ogists, 33: 33_66.
     Van Kranendonk M J, Philippot P, Lepot K, Bodorkos S and Pirajno F. 2008. Geolog ical setting of Earths oldest fossils in the ca. 3.5 Ga dresser formation, Pilb ara Craton, western Australia[J]. Precambrian Research, 167(s1_2): 93_124.
     Veizer J. 1976. Evolution of ores of sedimentary affiliation through geologic hi story; relations to the general tendencies in evolution of the crust, history, a tmosphere and biosphere[J]. Supergene and Surficial Ore Deposits, 3: 1_41.
     Veizer J, Compston W, Hoefs J and Nielsen H. 1982. Mantle buffering of the early oceans[J]. Naturwissenschaften, 69(69): 173_180.
     Veizer J, Laznicka P and Jansen S L. 1989. Mineralization through geologic time: recycling perspective[J]. Am. J. Sci., 289: 484_524.
     Wan Y S, Song B, Yang C and Liu D Y. 2005. Zircon SHRIMP U_Pb geochronology of a rchaean rocks from the Fushun_Qingyuan area, Liaoning Province and its geologica l significance[J]. Acta Geologica Sinica, 79(1): 78_87 (in Chinese with Englis hAbstract).
     Wang C L, Zhang L C, Liu L and Dai Y P. 2012. Research progress of Precambrian i ron formations abroad and some problems deserving further discussion[J]. Miner al Deposits, 31(6): 1311_1325 (in Chinese with EnglishAbstract).
     Wu K K, Zhao G C, Sun M, Yin C Q, He Y H and Tam P Y. 2013. Metamorphism of the northern Liaoning Complex: Implications for the tectonic evolution of Neoarchean basement of the eastern block, North China Craton[J]. Geoscience Frontiers, 4 (3):305_320.
     Wu M L, Lin S F, Wan Y S and Gao J F. 2016. Crustal evolution of the eastern blo ck in the North China Craton: Constraints from zircon U_Pb geochronology and Lu_ Hf isotopes of the northern Liaoning complex[J]. Precambrian Research, 275 : 35_47.
     Wyman D A, Kerrich R and Polat A. 2002. Assembly of archean cratonic mantle lith osphere and crust: Plume_arc interaction in the Abitibi_Wawa subduction_accretio n complex[J]. Precambrian Research, 115(1): 37_62.
     Yu F J. 2006. The study of metallogenic model and prospecting pattern of Hongtou shan_type deposit (Docter thesis) [D]. Supervisor: Wang E D. Shengyang: Northe astern University. 1_109 (in Chinese).
     Zaleski E and Peterson V L. 1995. Depositional setting and deformation of massiv e sulfide deposits, iron_formation and associated alteration in the manitouwadge greenstone belt, superior province, Ontario[J]. Econ. Geol., 90(8): 2244_ 2261.
     Zhai M G, Yang R Y, Lu W J and Zhou J. 1985. Geochemistry and evolution of the Q ingyuan Archaean granite_greenstone terrain, NE China[J]. Precambrian Research , 27(1_3): 37_62.
     Zhai M G. 2011. Cratonization and the Ancient North China Continent: A summary a nd review[J]. Science China Earth Science, 54: 1110_1120 (in Chinese with Engl ishAbstract).
     Zhang L C, Zhai M G, Zhang X J, Xiang P, Dai Y P, Wang C L and Pirajno F. 2012. Formation age and tectonic setting of the Shirengou Neoarchean banded iron depo sit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon U_P b dating[J]. Precambrian Research, s 222_223: 325_338.
     Zhang L C, Zhai M G, Wan Y S, Guo J H, Dai Y P, Wang C L and Liu L. 2012. Study of the Precambrian BIF_iron deposits in the North China Craton: Progresses and questions[J]. Acta Petrologica Sinica, 28(11): 3431_3445 (in Chinese with Engl ishAbstract).
     Zhang Y J. 2014. Formation, evolution and metallogenesis of granite_greenstone b elt in Qingyuan, Liaoning Province (Docter thesis)[D]. Supervisor: Sun F Y . Changchun: Jilin University. 1_228 (in Chinese).
     Zhang Y J, Sun F Y, Huo L, Li B L, Ma F, Qian Y and Liu Z D. 2014. Metallogenic age and ore remobilization of Shujigou coper_zinc deposit, Liaoning Province, Ch ina[J]. Journal of Jilin University (Earth Science Edition), 44(3): 786_795 (i n Chinese with EnglishAbstract).
     Zhu M T, Zhang L C, Dai Y P and Wang C L. 2015. In situ zircon U_Pb dating and O isotopes of the Neoarchean Hongtoushan VMS Cu_Zn deposit in the North China Cra ton: Implication for the ore genesis[J]. Ore Geology Reviews, 67(67): 354_367.     
     附中文参考文献    
     顾连兴, 汤晓茜, 郑远川, 吴昌志, 田泽满, 陆建军, 肖新建, 倪培. 2004. 辽宁 红透 山铜锌块状硫化物矿床的变质变形和成矿组分再活化[J]. 岩石学报, 20(4): 923_934.
     李碧乐, 霍亮, 李永胜. 2007. 条带状铁建造(BIFs) 研究的几个问题[J]. 矿物学报 , 27(2): 205_210.
     李文渊. 2007. 块状硫化物矿床的类型、分布和形成环境[J]. 地球科学与环境学报, 29( 4): 331_344.
     辽宁省地质矿产局. 1989. 辽宁省区域地质志[M]. 北京: 地质出版社. 1_856.
     牛向龙, 李江海, 冯军. 2009. 五台山新太古代块状硫化物矿床成矿作用研究——海底喷 流沉积成因显微构造证据[J]. 地球科学进展, 9(24): 1009_1014.
     彭自栋, 张连昌, 王长乐, 朱明田. 2015. 清原绿岩带VMS和BIF矿床的时空及成因关系[J ]. 矿物学报, 35(增): 539_540.
     祁思敬, 王承义, 杨剑平, 高占兴, 李运科, 邵振国. 1983. 河北内丘杏树台前寒武纪变质 火山岩系及层状硫化物矿床成因[J]. 河北地质学院学报, 22(2): 1_16.
     孙德育, 刘正宏, 凌贤长, 郑长青. 1993. 辽北抚顺东部地区前寒武纪地质及构造演化[M ]. 北京: 地震出版社. 99_120.
     田永清, 彭齐鸣. 1996. 五台群“板峪口组”形成环境与变形特征的新认识[J]. 华北地 质矿产杂志, 11(1): 137_141.
     万渝生, 宋彪, 杨淳, 刘敦一. 2005. 辽宁抚顺_清原地区太古宙岩石SHRIMP锆石U_Pb年代 学及其地质意义[J]. 地质学报, 79(1): 78_87.
     王长乐, 张连昌, 刘利, 代堰锫. 2012. 国外前寒武纪铁建造的研究进展与有待深入探讨的 问题[J]. 矿床地质, 31(6): 1311_1325.
     于凤金. 2006. 红透山式矿床成矿模式与找矿模型研究 (博士论文)[D]. 导师: 王恩 德. 沈阳:东北大学. 1_109.
     翟明国. 2011. 克拉通化与华北陆块的形成[J]. 中国科学:地球科学, 41(8): 1037_1046 .
     张连昌, 翟明国, 万渝生, 郭敬辉, 代堰锫, 王长乐, 刘利. 2012. 华北克拉通前寒武纪B IF铁矿研究: 进展与问题[J]. 岩石学报, 28(11): 3431_3445.
     张雅静. 2014. 辽宁清原花岗_绿岩带的演化及其成矿作用研究 (博士论文)[D]. 导师: 孙丰月. 长春: 吉林大学. 1_228.
     张雅静, 孙丰月, 霍亮, 李碧乐, 马芳, 钱烨, 刘哲东. 2014. 辽宁树基沟铜锌矿成矿时代 及矿石再活化机制[J]. 吉林大学学报: 地球科学版, 44(3): 786_795.