文章编号:0258-7106(2001)04-0323-08

块状硫化物矿石中硫化物的压溶和增生及成矿意义

——以加拿大西部矿床为例*

顾连兴¹ Ken R. McClay² 周继荣³ 吴昌志¹

 (1 南京大学地球科学系及内生金属矿床成矿机制国家重点实验室,江苏南京 210093;2 Depart ment of Geology, Royal Holloway, University of London, Egham, Surrey T W20 0EX, U. K.; 3 地质出版社,北京 100083)

摘 要 加拿大西部块状硫化物矿石普遍地发生过硫化物的压溶和增生。增生作用根据增生体的成分可以分为同质增生和异质增生,根据动力环境可以分为静态增生和动态增生。三晶嵌接结构可以是静态增生的产物。压 溶和增生是块状硫化物矿床成岩和变质过程中的重要作用。脉石矿物的压溶可使原生矿石就地加富,硫化物的压 溶可使成矿物质发生再活化。增生可促进矿质沉淀。富含硫化物的地层之所以能成为地球化学障而有利于后期热 液叠加和层控矿床的形成,硫化物晶芽的增生是一种重要机制。

关键词 黄铁矿 压溶 增生 再活化 块状硫化物 层控矿床 中图分类号: P571; P578.2 **文献标识码**: A

自从 McClay 等(1977)发现了沉积岩中硫化物 的压溶以来,研究人员对层控金属矿床中硫化物的 压溶作了大量研究,认为压溶可能在成岩作用的早 期就已经开始,并是低级变质过程中硫化物塑性变 形的一种重要机制(McClay et al.,1983;Cox,1987; Marshall et al.,1987; McClay,1991; Gu et al., 1992)。至于增生,早已有大量文献描述(Stanton, 1972;Spry,1979; Barker,1990; Ramsay,1983),但 是,前人对压溶和增生的成矿意义尚未充分认识。 本文将在研究加拿大西部块状硫化物矿床的基础 上,阐明压溶使原生矿石就地加富并使成矿物质发 生再活化的机制,并探讨硫化物增生在层控矿床形 成过程中的作用。

1 矿床地质特征

Faro和 Tom 锌铅矿床位于育空地区,而 Driftpile和 Cirque 矿床位于不列颠哥伦比亚省西北部(图 1)。这些矿床产在古北美克拉通西缘古生代 Selwyn 盆地和 Kechika 海槽中 (Carne et al., 1982),含矿岩 系分别是寒武系千枚岩 (Faro 矿床)和泥盆系海相 碎屑岩、黑色页岩和碳酸盐 岩(Tom 矿床, Driftpile 矿床及 Cirque 矿床)。主要的硫化物矿体均呈层状 或透镜状,其矿石以块状和层纹状为主。Tom 矿床 西矿带南端层状矿体下方还发现了作为海底热液通 道的脉状和角砾状矿化(McClay,1991)。这些矿床 的矿石矿物主要有黄铁矿、方铅矿和闪锌矿,局部地 段存在磁黄铁矿和磁铁矿;脉石矿物有碳酸盐、重晶 石、石英和粘土矿物。前人研究表明,这些矿床是克 拉通边缘盆地中形成的块状硫化物矿床 (Carne et al.,1982; McClay,1991; Jonasson et al.,1987),矿 床及其围岩的变形和变质发生在晚侏罗世至中白垩 世,变质程度达低级绿片岩相。

为了研究矿石中硫化物的结构特征,笔者将全部矿石光片用 w(HNO₃) = 20%的HNO₃ 浸蚀后,在矿相显微镜下进行观察。

黄铁矿的原生结构主要有微晶结构、莓球和球 粒结构(Guetal.,1992)。黄铁矿微晶多为半自形 至自形,粒径1~8μm。莓球直径变化于5~150μm 之间,其中可含有20~30个呈细胞状排列的黄铁矿 微粒。球粒中有相当一部分呈菊花状,直径多为10 ~50μm,其构成往往是一些棒条状的黄铁矿围绕一

^{*} 本文为国家自然科学基金(49773194)和英国国务院访问学者基金联合资助项目成果

第一作者简介 顾连兴,男,1944年生,南京大学地球科学系教授,博士生导师,从事矿物学,岩石学,矿床学专业教学和研究工作。 收稿日期 2001-05-14;改回日期 2001-08-10。李 岩编辑。

图 1 加拿大西部古生代盆地主要块状硫化物型铅锌矿床分布图(据 Carne et al., 1982) Fig. 1 Locations of major massive sulphide lead-zinc deposits in Palaeozoic basins of western Canada (data from Carne et al., 1982)

个或几个黄铁矿莓球或黄铁矿自形单晶(图 2a)呈放 射状排列,放射状排列的外层通常比其核心更易受 到硝酸的浸蚀。

2 硫化物的压溶结构

压溶又称 Coble 蠕变,是指岩石发生变形时,其 中处于高应力部位的易溶物质被溶解,并通过间隙 流体的扩散而转移到低应力部位重新沉淀下来的过 程(McClay,1977)。加拿大西部块状硫化物矿石中 的如下常见结构,表明矿床中的硫化物曾经发生过 显著的压溶:

(1) 莓球或球粒之间相互嵌入,其接触面呈弯曲状、波状或锯齿状,形成缝合线(图 2b),表明压力 在这里造成了硫化物的强烈溶解。先形成的莓球或 球粒可被后期黄铁矿或其他矿物颗粒嵌入或贯穿, 表明来自后期矿物的压力使莓球发生了溶解。

(2) 有些黄铁矿单晶可在一个方向上受到溶蚀 而在另一个方向上增生,致使颗粒呈透镜状。在图 2c中,一个黄铁矿颗粒左右两侧的增生部分与原有 颗粒边界十分清晰。这种结构明显展示了物质从高 应力部位向低应力部位的转移。

(3) 虽然较粗粒的矿石对于压溶并不灵敏(Rutter, 1983; Cox, 1987; Lehner, 1990; Spiers, 1990),但仍可见到明显的压溶现象。在图 2d 中,上 方的一个黄铁矿颗粒压入了下方的颗粒,使下方颗 粒产生垂向张裂,并在两者的弧形接触面上形成由 细粒黄铁矿残留体构成的压溶线(pressure solution seam)。

(4) 压溶线的存在表明在应力作用下易溶矿物的优先溶解和难溶矿物的相对聚集(Ramsay et al., 1983)。尤其在由黄铁矿和(或)闪锌矿与碳酸盐和(或)硅质构成的矿石中,后两者在应力集中处的优先溶解,往往使黄铁矿和(或)闪锌矿聚集成压溶线。 压溶线既可较平直,也可呈波状弯曲或交织成网状, 其厚度从数微米到数毫米不等,既可与层理平行,也 可与层理垂直或斜交。有时,大量相互平行的压溶 线使矿石呈现条纹状的外貌(图 2e)。

(5)当黄铁矿莓球微层与硅质和(或)碳酸盐微 层相间而构成层纹状矿石时,若这种矿石发生揉皱, 则可见到压溶使易溶的脉石条带在微褶皱翼部强应 力处变薄,莓球聚集成压溶线,并使层理被劈理置换

图 2 加拿大西部块状硫化物矿石的压溶和增生结构

Fig. 2 Pressure solution and overgrowth textures of massive sulphide ores in western Canada (all samples etched with nitric acid) a. 黄铁矿立方体微晶和莓球的两阶段增生。微晶外围黄铁矿增生体的晶面与基体晶面平行;莓球外围的黄铁矿棒条状增生体呈放射状生 长。Driftpile 矿区。b. 黄铁矿莓球的增生和球粒的压溶。球粒由棒条状黄铁矿增生于莓球外侧而成,视域中部两个球粒的增生部分已因 压溶而消失,并形成锯齿状的缝合线。Driftpile 矿区。c. 黄铁矿颗粒因南-北方向的压溶和东-西两侧的增生而呈透镜状。Driftpile 矿区。 d. 两个黄铁矿颗粒的碰撞和压溶。弧形接触面上有细粒黄铁矿的压溶线,下方的颗粒因受压而发生南-北方向的张裂。Faro 矿床。e. 莓 球状黄铁矿矿石中平行排列的压溶线。因脉石矿物的优先压溶而使黄铁矿莓球在强应力处相对聚集成亮带。矿石中的层理已被劈理所置 换。Cirque矿区,抛光面。f.揉皱状黄铁矿矿石的压溶。黄铁矿条带由大量莓球构成,压溶使脉石矿物条带在强应力的微褶皱翼部变薄, 莓球聚集成明亮的压溶线,并使层理被劈理置换。Faro 矿区,抛光面

续图 2

Fig. 2 (Cont .)

g. 球粒状矿石剪切带中的压溶。视域两侧为未受剪切的球粒状矿石。球粒的核心为较难浸蚀的黄铁矿自形单晶或莓球,外部为极易浸蚀 的放射状排列的黄铁矿。视域中部为南北方向的剪切带,其中球粒的外部已被溶解而仅残留其核部高反射率的黄铁矿莓球或立方体微晶, 部分黄铁矿莓球已被拉长或解聚。Faro矿床。h. 黄铁矿颗粒的剪切压溶和增生。视域中三个较大的黄铁矿颗粒在南-北方向上发生压溶 而在东西方向上增生,故成透镜状。增生部分与原颗粒界线清晰。三个颗粒的排列方式表明矿石曾受左旋剪切应力作用。Faro矿床。i. 黄铁矿球粒的动态增生。增生体沿球粒的东、西两侧定向排列。增生部分比球粒本身更难受到浸蚀。Cirque矿床。j. 黄铁矿的静态增生。 核部黄铁矿因易受浸蚀呈黑色。增生部分的颗粒边界两面夹角多呈120°,形成三晶嵌接结构。Tom 矿床。k. 黄铁矿微晶的两个世代增 生。增生体晶面与基体晶面呈45°夹角。Driftpile矿床。l.黄铁矿微晶(白色)和球粒上的闪锌矿增生体(深灰色),呈南北方向排列。

(图 2f)。

(6) 矿石如果受到剪切作用,则常可见到剪切 带中硫化物的强烈溶解现象。图 2g为球粒状矿石, 其核心由较难浸蚀的黄铁矿莓球和立方体构成。图 2g中部为南北方向的剪切带,此带中球粒的放射状 易浸蚀部分已被溶解殆尽,仅留下核部高反射率的 黄铁矿莓球和立方体微晶,多数莓球因受剪切变形 的影响而成透镜状或长条状。图 2h 中有三个黄铁 矿颗粒,均包括一个中部的原生单晶和两侧的增生 部分,其核心单晶的浑圆状和透镜状形态表明这些 单晶曾受到过接近南北向的压应力所造成的压溶, 其雁行排列方式和东、西两侧的增生表明该压应力 可能为北东向左旋剪切力的派生产物。

Heald (1955)的研究表明,由压力引起的不同矿 物溶解度加大的程度,按如下顺序递增:锆石和黄铁 矿(最小),榍石、电气石和胶磷矿,云母、绢云母和粘 土矿物,长石,石英,方解石,赤铁矿(最大)。上文所 列的证据表明,在硫化物矿石中,不但脉石矿物可以 发生强烈压溶,就是 Heald 顺序中最难溶的矿石矿 物黄铁矿,其压溶效应也不容忽视。

3 硫化物的增生结构

增生可以发生在不同的地质作用下。就成分而 言,增生物质既可以围绕同成分的矿物沉淀,也可以 在另一种矿物的表面淀积 (Gary et al., 1973)。

就应力环境而言,增生可以有两种方式。一种 在岩石中具有一定方位,增生产物的延长方向大致 对应于最小主应力方向或剪切带的 S 面理方位。图 2h 中三个黄铁矿颗粒两侧增生部分的延长方向大致 相当于北东向剪切的 S 面理。在图 2i 中,后期黄铁 矿主要增生于基体黄铁矿球粒或单晶的左右两侧, 表明增生过程发生于南北向的压应力条件下;与明 亮的增生部分相比,基体黄铁矿因易受硝酸浸蚀而 反射率降低。图 2h 和 2i 中的增生作用均发生于定 向应力条件之下,可以称为动态增生。这种增生可 能是矿床变质和变形过程中的产物。

与图 2h 及 2i 不同的是,图 2a x2b x2j 和 2k 的增 生黄铁矿无一定优选方位。在图 2a 中,两个不同世 代的黄铁矿或者呈柱条状围绕一个黄铁矿莓球呈放 射状增生,或者使原有的自形黄铁矿微晶次生加大。 黄铁矿莓球的增生可有两种方式,除了图 2a 和 2b 中围绕整个莓球增生的方式外,有时还可见到流体 渗入莓球内部,使黄铁矿增生于各微晶之上,其结果 使莓球发生膨胀。在图 2k 中黄铁矿立方体也经历 了两个世代的增生。第二世代增生黄铁矿的晶面在 图 2a 和 2j 中与基体黄铁矿晶面平行,而在图 2k 中 则与基体晶面呈 45°夹角。这可能取决于增生过程 中溶液物理化学条件的差异,这种差异控制了黄铁 矿不同晶面的生长速度。这种黄铁矿无优选方位的 增生,表明增生作用发生在无定向应力的条件下,可 以称为静态增生。这种增生应是成岩阶段的产物。

在由单矿物组成的岩石或矿石中,矿物颗粒边 界平直镶嵌的结构常被视为退火结构,而两面夹角 呈120°时的三晶嵌接结构(顾连兴等,1990)则通常 被认为是退火达到了平衡的产物,因而被称为退火 平衡结构(Stanton, 1972; Craig et al., 1993)。然 而,图 2j 中增生于易浸蚀的黄铁矿基体之上的黄铁 矿亮晶也具有平直的边界,并且相当一部分两面夹 角也呈120°。由此可见,三晶嵌接结构并非退火平 衡所独有,无定向应力条件下的静态增生也可形成 这种结构。

以上照片中的增生产物与基体成分相同,即是 所谓同质增生 (syntaxial overgrowth) (Ramsay, 1983)。从各同质增生照片可以看出,基体部分通常 比增生部分易受浸蚀,因而反射率较低,这种特征酷 似白云石中常见的雾心亮边结构 (余志伟,2000), 其形成可能是因为成岩晚期流体比早期流体溶质浓 度低,沉淀速度慢,产物所含晶内杂质和缺陷较少的 缘故。另一种情形是增生产物与基体成分不同,即 是所谓异质增生 (antitaxial overgrowth, Ramsay, 1983)。在图 21 中除了可以见到黄铁矿增生于黄铁 矿之上外,还可以见到闪锌矿选择性地增生于黄铁 矿之上。增生产物同光片中的脉石矿物一样,大致 呈南北方向排列,表明该光片中的增生是在应力作 用下的动态增生。在 Driftpile 和 Cirque 矿区常见到 闪锌矿和方铅矿围绕黄铁矿莓球,或者棒条状黄铁 矿围绕一个闪锌矿核心呈放射状增生而构成的球 粒。尽管这些矿区铜含量甚低,但仍可见到黄铜矿 增生于黄铁矿之上的现象。矿床中普遍存在裂缝发 育的黄铁矿,这些裂缝如被后期矿物充填,则最常见 的充填物是黄铜矿,其次是闪锌矿和方铅矿,脉石矿 物通常较少。黄铜矿和其他硫化物的优先充填显然 缘于它们与黄铁矿的较强亲合性。在异质增生过程 中,增生体与基体在晶体化学和结构上的匹配误差, 可由周期性的位错来补偿(Spry,1979)。

4 压溶和增生的成矿意义

以上讨论表明,压溶和增生并不仅仅是砂岩、灰 岩等沉积岩中的特有现象,也是沉积硫化物矿石固 结和变形的重要方式。矿物颗粒在一个方向上的压 溶与另一个方向上的增生,可使硫化物颗粒、莓球、 球粒等被压扁,拉长并发生定向排列,表现出片理和 宏观的韧性变形。

硫化物的压溶和增生决非仅限于加拿大的上述 矿区。作者曾在加拿大苏利文 (Gu et al., 1992) 和 广东云浮大降坪见到了黄铁矿的强烈压溶和增生, 并在澳大利亚 Mount Isa 的光片中见到闪锌矿增生 于黄铁矿立方体之上,形成一个镶边:韩发等 (1997) 报道了广西大厂锡矿区黄铁矿的压溶以及 毒砂在黄铁矿上的增生; Eldridge 等 (1993) 和邬介 人等 (1994) 分别描述了澳大利亚 McArthur River 地区 H.Y.C 矿床和我国秦岭下沟矿床中闪锌矿和 方铅矿在黄铁矿之上的增生;在下扬子铜陵地区铜 官山、马山和冬瓜山等矿区,在块状磁黄铁矿矿石中 普遍可见粗粒黄铁矿变斑晶,变斑晶周围有一圈黄 铜矿镶边(顾连兴等,1989)。黄铜矿和闪锌矿等硫 化物充填黄铁矿裂隙的结构,在很多地区层控硫化 物矿石中都能见到 (Hagni, 1986; Vokes et al., 1993)。笔者的观察表明,挪威 Sulitjel ma 块状硫化 物矿床中粗大的黄铁矿变斑晶,往往是一个或多个 黄铁矿晶核增生的产物;韩发等(1997)将大厂矿区 矿石光片浸蚀后也见到了这种现象。在许多经过强 烈变质的硫化物矿石中通常较少出现压溶结构,这 可能是因为这些主要形成于成岩和低级变质阶段的 结构 (Gu et al., 1992) 在递进变质时受到了均匀化 作用破坏的缘故。

Mookherjee (1976) 将物质从一处转移到另一 处的各种化学的、物理的或介于两者之间的过程均称为活化转移(mobilization),而将物质从先存矿体 中转移出来,然后在他处形成新矿体的过程称为再 活化(remobilization)。压溶是机械能向化学能转变 的一种方式。压溶和再生长经常出现在同一个矿物 颗粒之上,因而 Yardley (1989)认为,由压溶所引起 的物质转移仅局限于同一颗粒附近。然而,不言而 喻,压溶线中难溶物质的聚集是因为易溶物质受压 溶后流失所致,可见压溶产物的迁移可有一定距离。 在未变质-浅变质的石灰岩或砂岩中,形成碳酸盐 或石英等侧分泌脉的过程,其物质来源在很大程度 上可能与围岩中同种矿物的压溶有关(Ramsay, 1983)。从图 2 中可以看到,有些压溶显著的黄铁矿 球粒本身未发生伴随的增生,同时,有些强烈次生加 大的黄铁矿本身也没有显示压溶。这表明压溶和再 生长未必处处共存,在局部地段也可以分别单独存 在,也就是说,孔隙溶液借助压溶作用获得的成矿物 质,可以通过溶液的流动,在远离原颗粒的其他部位 沉淀。如果这种溶液被裂隙系统所沟通,那么由压 溶而导致的成矿再活化,便可以在相当大的范围内 进行,并可能在条件有利之处形成新的矿体。笔者 (顾连兴,1984)曾讨论过华南型块状硫化物矿床中 金属元素的成矿后再活化,如今看来,压溶也是其重 要的驱动因素之一。

在存在流体的情况下,构造应力可使某些造岩 矿物比硫化物和金更强烈地溶解流失,因此许多研 究者强调压溶对韧性剪切带中金初步富集的贡献 (Kerrich, 1989; 王鹤年等, 1992; 刘喜山等, 1992)。 在块状硫化物矿石中,脉石矿物石英和碳酸盐的溶 解度对应力作用尤为敏感,其压溶可使矿石中的硫 化物和相关金属含量相对增高,因而使原生矿石就 地加富。刘连登等 (1994) 和顾连兴等 (2001) 曾报 道了辽宁红透山矿区呈带状分布的矿石糜棱岩,其 铜、金平均品位分别高达15%和1.54 g/t,均为邻近 块状矿石品位的4倍左右。笔者的新近研究表明, 在退变质韧性剪切过程中脉石矿物石英等的强烈压 溶流失,是矿石糜棱岩中铜、金就地加富的一种重要 机制。最近,笔者还研究了江苏省东海县毛北、新沂 县郝湖、赣榆县朱家官庄等地产于榴辉岩中的浸染 状金红石矿石,认为这些矿石中金红石的高度富集, 在相当大的程度上与榴辉岩在退变质剪切过程中脉 石矿物的压溶有关。

层控硫化物矿床的研究者往往强调地层中同生 沉积矿层或矿胚层地球化学障的作用(周怀阳等, 1987;Gu et al., 1993)。上述广泛存在的增生现象 表明,早先存在的硫化物可以作为后期叠加流体的 晶芽,富含晶芽的沉积地层即成为晶芽层。当后期 叠加流体在沉积岩系中循环时,成矿物质将优先围 绕先存晶芽增生并沉淀,从而使原有矿层叠加变富, 或将矿胚层改造成为具有工业价值的层控矿床。

参考文献

顾连兴.1984. 华南型块状硫化物矿床及其伴生矿床中金属的地层

学分带[J]. 南京大学学报 (地质学增刊): 57~71.

- 顾连兴,严正富.1989.华南型块状硫化物矿床及其伴生铁矿床中矿物共生顺序研究[J].矿物岩石,9(4):68~72.
- 顾连兴,郑素娟.1990.华南型块状硫化物矿床中的胶黄铁矿及其退火作用[J].岩石矿物学杂志,9(4):251~256.
- 顾连兴,肖新建,倪 培,等.2001.辽宁红透山块状硫化物矿床中 沉积磁黄铁矿的结构及其成因[J].地质论评,47(2):188~192.
- 韩 发,赵汝松,沈建忠,等.1997.大厂锡多金属矿床地质及成因 [M].北京:地质出版社.1~213.
- 刘连登,朱永正,戴仕炳.1994.金矿与韧性剪切带及叠加构造[A]. 见:张贻侠,刘连登主编.中国前寒武纪矿床和构造[C].北京: 地震出版社.39~78.
- 刘喜山,李树勋,刘俊来.1992.变形变质作用及成矿[M].北京: 中国科学技术出版社.1~188.
- 王鹤年,张守韵,俞受均,等.1992.华夏地块韧性剪切带型金矿地 质[M].北京:科学出版社.1~180.
- 邬介人,任秉琛,黄玉春.1994.西北海相火山岩地区块状硫化物矿 床[M].武汉:中国地质大学出版社.1~271.
- 余志伟.2000.氧、碳同位素在白云岩成因研究中的应用[J].矿物岩石地球化学通报,18(2):103~105.
- Barker A J. 1990. Introduction to metamorphic textures and microstructures [M]. Glasgow and London: Blackie and Sons Ltd. 162p.
- Carne R C and Cathro R J. 1982. Sedimentary Exhalative(SEDEX)zinclead-silver deposits, northern Canadian Cordillera [J]. Can. Inst. Min. Metall., 75(1): 66 ~ 78.
- Cox S F.1987. Flow mechanisms in sulphide minerals [J]. Ore Geol. Rev., $2(1-3): 133 \sim 171$.
- Craig J R and Vokes F M. 1993. The metamorphism of pyrite and pyritic ores: an overview [J]. Mineral. Mag., 57(1): 3~18.
- Eldridge C S, Williams N and Walshe J L. 1993. Sulphur isotope variability in sediment-hosted massive sulphide deposits as determined using the iron microprobe SHRIMP: II. A study of the H. Y. C. deposit at McArthur river, Northern Territory, Australia [J]. Econ. Geol., 88(1): 1 ~ 26.
- Gary M, McAfee Jr R and Wolf L. 1973. Glossary of Geology [M]. Washington D. C: American Geological Institute. 506.
- Gu L X and McClay K R. 1992. Pyrite deformation in stratiform leadzinc deposits of the Canadian Cordillera [J]. Mineral. Deposita, 27 (2):169~181.
- Hagni R D. 1986. Mineral paragenetic sequence of lead-zinc-coppercobal-nickel ores of the Southeast Missouri lead district, USA [A].
 In: Craig J R, Hagni R D, Kiesl W ed. Mineral Paragenesis[C].
 Athens: The Ophrastus Publishions S. A. 73 ~ 193.
- Heald M T. 1955. Stylolites in sandstones [J]. J. Geol., 63(2): 101 ~114.

- Jonasson I R and Goodfellow W D. 1987. Sedimentary and diagenetic textures and deformation structures within the sulphide zone of the Howards Pass(XY) Zn-Pb deposit, Yukon and Northwest Territories [A]. In: Morin J Aed. Mineral Deposits of Northern Cordillera[C]. Can. Inst. Min. Metall. Spec., vol.37, 51 ~ 99.
- Kerrich R. 1989. Geodynamic setting and hydraulic regimes: shear zone hosted mesothermal gold deposits [A]. In: Bursnall J T ed. Mineralization and Shear Zones[C]. Geol. Ass. Can., short course notes. 89 ~128.
- Lehner F K. 1990. Thermodynamics of rock deformation by pressure solution [A]. In: Barber D J, Meredith P G ed. Deformation Processes in Minerals, Ceramics and Rocks[C]. London: Unwin Hyman. 296 ~ 333.
- Marshall B and Gilligan L B. 1987. An introduction to remobilization: information from ore-body geometry and experimental considerations [J]. Ore Geol. Rev. $2(1 \sim 3) : 87 \sim 131$.
- McClay K R. 1977 . Pressure solution and Coble creep in rocks [J] . J . Geol .Soc . Lond . , 134(1) : 71 ~ 75 .
- McClay K R and Ellis P G. 1983. Deformation and recrystallization of pyrite [J]. Mineral. Mag., 47(4): 527 ~ 538.
- McClay K R. 1991. Deformation of stratiform lead-zine (barite) deposits in the Northern Canadian Cordillera[J]. Ore Geol. Rev., $2(1 \sim 3)$: $435 \sim 462$.
- Mookherjee. 1976. Ores and metamorphism: temporal and genetic relationships [A]. In: Wolf K H ed. Handbook of Strata-Bound and Stratiform Ore Deposits, 4[C]. Amsterdamm: Elsevier. 203 ~ 260.
- Ramsay J G and Huber M Z. 1983. The techniques of modern structural geology, V.1, Strain Analysis [M]. London: Academic Press. 1 ~ 307.
- Rutter E H. 1983. Pressure solution in nature, theory and experiment [J]. J. Geol. Soc. London, 140(5): 725 ~ 740.
- Spiers C J and Schutjens P M T M. 1990. Definition of crystal aggregates by fluid-phase diffusional creep [A]. In: Barber D J, Meredith P G ed. Deformation processes in minerals, ceramics and rocks[C]. London: Unwin Hyman. 334 ~ 353.
- Spry A. 1979. Metamorphic textures [M]. Oxford: Pergamon Press Oxford. 1 ~ 350.
- Stanton R L . 1972 . Ore petrology [M] . New York : Mc Graw-Hill . 1 \sim 713 .
- Vokes F M and Craig J R. 1993. Post-recrystallisation mobilisation phenomena in metamorphosed strata-bound sulphide ores [J]. Mineral. Mag., $57(1):19 \sim 28$.
- Yardley B W D. 1989. An introduction to metamorphic petrology [M]. London: Longman. 1 ~ 248.

Pressure Solution and Overgrowth of Sulphides in Massive Sulphide Ores and Their Metallogenic Significance: Exemplified by Deposits of Western Canada

Gu Lianxing¹ Ken R. McClay² Zhou Jirong³ Wu Changzhi¹

(1 Department of Earth Sciences, State Key Laboratory of Mineral Deposit Research, Nanjing University, Nanjing 210093,

Jiangsu, China; 2 Department of Geology, Royal Holloway, University of London, Egham, Surrey T W20 0 EX, U.K.;

3 Geological Publishing House, Beijing 100083, China)

Abstract

The Faro and Tom deposits in the Selwyn basin and the Cirque and Driftpile deposits in the Kechika Trough of western Canada are massive sulphide deposits occurring in Cambrian phyllites (Faro) and Devonian marine clastics, black shales and carbonates (Tom, Cirque and Driftpile), respectively. Sulphide minerals as well as gangues in these deposits have suffered intense pressure solution, and the sulphides have undergone multi-stage overgrowth. Overgrowths can be divided into syntaxial and antitaxial ones based on the compositions of overgrown minerals, or into static and dynamic ones based on the environments for overgrowth processes. Triple junction textures can also be formed under the condition of nonorientable stress, and hence are not unique products of annealing equilibrium. Pressure solution of gangue minerals will raise the ore grades, and can hence be applied to account for the appreciably higher metal quantity in ore mylonites than in surrounding massive ores within some deposits. Pressure solution of sulphide minerals will induce remobilization of metals, which are likely to be precipitated in other locations to form new orebodies. Overgrowth is capable of facilitating the unloading of ore materials from fluids. The overgrowth of sulphide crystal seeds is a possible mechanism for sulphide-bearing strata to act as geochemical barriers, which will be overprinted preferentially by late-stage fluids to produce stratabound mineral deposits.

Key words: pyrite, pressure solution, overgrowth, remobilization, massive sulphide, stratabound deposit

2001 年度《矿床地质》审稿人名单

在 2001 年度中,承蒙以下地质学专家为《矿床地质》杂志审稿,使本刊始终保持了较高的学术水平,在此,《矿床地质》杂志主编,编辑委员会以及编辑部成员向这些为本刊付出了大量心血的专家们致以崇高的敬意和衷心的感谢!祝各位专家在新的一年里取得丰硕的科研成果,并祝身体健康,阖家欢乐!

(按姓氏笔画为序)

丁悌平	于津海	马东升	王小凤	王书凤	王立本	王安建	王汝成	王学求	王丽娟	王登红
王鹤年	邓 军	卢家烂	史维浚	毛景文	白 鸽	刘宝珺	刘淑琴	刘建明	吕古贤	吕庆田
曲晓明	朱裕生	邱小平	华仁民	邬介人	孙晓明	许东禹	汪集	沈保丰	沈渭洲	沈敢富
汤集刚	宋学信	宋 雄	肖克炎	芮宗瑶	杜乐天	李荫清	李厚民	李俊建	李兆龙	李延河
吴淦国	吴良士	吴必豪	张光第	张泽明	张宗清	余津生	余达淦	邹天仁	邵世才	张复新
张德全	陆建军	陈 文	陈文明	陈柏林	陈衍景	范宏瑞	林文蔚	杨 浩	杨进辉	洪大卫
赵一鸣	赵鹏大	赵伦山	胡云中	高 锐	聂凤军	莫宣学	倪培	徐珏	徐志刚	徐贵忠
徐九华	章邦桐	黄典豪	黄民智	夏林圻	盛继福	曾贻善	董树文	韩 发	谢锡林	路凤香
翟裕生	薛春纪									