文章编号 10258-7106(2007)02-0213-08

内蒙古白音查干银多金属矿化区地质 特征及找矿方向^{*}

聂凤军¹ 温银维² 赵元艺¹ 姜羡义² 江思宏¹ 张万益¹

(1 中国地质科学院矿产资源研究所,北京 100037;2 内蒙古兴业集团股份有限公司,内蒙古赤峰 024005)

关键词 地质学,银多金属矿化带,构造-岩浆活动,成矿作用构造-蚀变岩,找矿突破,白音查干,内蒙古中图分类号:618.52 文献标识码:A

Geological features and prospecting directions of Bayanchagan silver polymetallic mineralized area in Xi Ujmqin Banner, central-eastern Inner Mongolia

NIE FengJun¹, WEN YinWei², ZHAO YuanYi¹, JIANG XianYi², JIANG SiHong¹ and ZHANG WanYi¹

(1 Institute of Mineral Resources, CAGS, Beijing 100037, China; 2 Xingye Mining Company Group of Chifeng 024005, Inner Mongolia, China)

Abstract

Located at the northwestern corner of Xi Ujmqin Banner in the central-eastern part of Inner Mongolia, Bayanchagan is a newly-discovered silver polymetallic mineralized area. Large-sized mineralizations occur as veins, veinlets, and disseminated and massive blocks within pelitic siltstone and sandy slate of Lower Permian Dashizhai Formation. Up till now, a number of mineralized zones have been identified, varying from several hundred of meters to more than 1000 m in length and from tens of meters to more than 100 m in width. Four drill holes (ZK-3, ZK-5, ZK-8 and ZK-9) were operated along the mineralization zones, among which the ZK-9 shows the best result. Twenty-one silver polymetallic ore layers have been identified, with a total thickness of 83.27m. In addition, the total thicknesses of ore layers in the ZK-8 hole and ZK-3 hole are 23.79m and 20. 9m, respectively. The silver polymetallic layer consists mainly of massive, stockwork and disseminated-veinlet

* 本项研究得到国家自然科学基金项目(编号 40573025)资助

第一作者简介 聂凤军,男,1956年生,研究员,博士生导师,从事矿床学和岩石学研究。E-mail:nfij@mx.cei.gov.cn。 收稿日期 2006-11-17;改回日期 2007-01-15。张绮玲编辑。 sulfide ores. Metallic minerals include pyrite, galena, sphalerite, chalcopyrite, argentite and native silver. Gangue minerals are quartz, fluorite, calcite and sericite. The silver contents of these drilling samples range from 22.4×10^{-6} to 2.270×10^{-6} with an average of 502.68×10^{-6} (up to 3.375×10^{-6}), lead from 0.46% to 5.40% with an average of 0.69% (up to 6.19%) and zinc from 1.34% to 18.5%, with an average of 2.64% (up to 32.11%). Field observations show that the Hercynian granitoid magma activity, the NNW-trending fractured zone and the carboniferous siltstone played important roles in the formation of these silver polymetallic mineralized zones in Bayanchagan. All these ore-forming materials, dynamic forces and fluids might have been provided by the Hercynian granitoid magma. Moreover, the accumulation conditions of the ore-forming materials were provided by the NNW-trending fractured zone, carboniferous siltstone and sandy slate. Recent studies, combined with newly-obtained geochemical and geophysical data, indicate that systematic exploration is likely to result in more new discoveries of silver polymetallic zones in Bayanchagan.

Key words: geology, silver polymetallic mineralized zone, tectonic-magma activity metallogeny, tectonicaltered rocks, exploration breakthrough, Bayanchagan, Inner Mongolia

白音查干地区是中国地质科学院矿产资源研究 所(以下简称资源所)和内蒙古兴业集团股分有限公 司(以下简称兴业公司)近两年来在内蒙古锡林郭勒 盟北部发现的一处构造-蚀变岩型银多金属矿预查 区。该区位于内蒙古西乌珠穆沁旗巴彦高勒苏木, 东距该旗政府所在地巴彦乌拉镇90 m,南距锡林浩 特市110 m,地理坐标为东经116°31′19″~116°37′ 21″,北纬44°31′18″~44°34′33″。

白音查干银多金属矿化区及外围的区域地质调 查和找矿勘查工作始于 20 世纪 50 年代末期。原内 蒙古地质局所属地质队分别于 20 世纪 50 年代末 期、60 年代中期和 70 年代中期在该区及外围开展过 1:100 万和 1:20 万区域地质调查以及铬铁矿普查工 作,同时,还完成有 1:10 万航空、地面磁力和重力测 量工作,并且提交有相应的文字报告与图件。20 世 纪 90 年代初期,原地质矿产部第一综合性物探大队 在该区开展了以找矿为目的的 1:20 万区域地球化 学测量,圈定出多处金、银、砷、锑、汞地球化学异常, 为后来的找矿勘查工作奠定了基础(内蒙古自治区 地质矿产局,1991)。

根据前人 1:20 万区域化探测量成果,1999 年内 蒙古第九地质勘查院的地质人员对该区进行过矿产 地质普查工作。2003 年,赤峰金源矿业开发公司首 次获得白音查干地区探矿权,同时委托内蒙古第十 地质勘查院进行矿产地质普查工作。受野外工作条 件较差、地质工作难度较大和找矿效果不理想等因 素影响,金源公司于 2005 年度将探矿权转让给兴业 公司。兴业公司在获取白音查干地区探矿权后,立 即邀请中国地质科学院矿产资源所科技人员前往该 区进行地质考察和制定找矿勘查工作方案。2006 年 度,资源所科技人员在白音查干地区开展了系统的 野外地质调查和室内研究工作,并且获得了新的找 矿信息。根据资源所科技人员所提供了钻孔位置, 兴业公司经钻探验证,在所施工的4个钻孔中分别 见到厚度较大、品位较高和连续性较好的银多金属 矿化体,进而将本区找矿勘查工作推向一个新的阶 段。

1 成矿环境

白音查干银多金属矿化区位于华北地台北缘二 连浩特—贺根山晚古生代构造-岩浆岩带内,其北部 20 m处即是华北陆台与西伯利亚板块的碰撞对接 带二连浩特-贺根山深大断裂带(聂凤军等,2006)⁹。 矿化区范围内各时代地层分布广泛、构造形迹复杂、 侵入岩十分发育,金属矿床(点)星罗棋布,为内蒙古 中东部最为重要的矿化集中区之一(李述靖等, 1998, 邓济安,1991, Tang,1990)。

1.1 地层

白音查干矿化区范围内出露的地层主要有下二 叠统大石寨组火山-沉积岩和下二叠统哲斯组沉积 岩、上侏罗统玛尼吐组、白音高老组火山-沉积岩和 下白垩统大磨拐河组沉积岩以及第四系冲洪积物 (聂凤军等 2006[•] 内蒙古自治区地质矿产局 1991)。

[●] 聂凤军、江思宏、白大明,等.2006.中蒙边境中东段我国一侧(北山二连乌旗地区)铜、金和银矿床成矿规律与找矿方向 (1212010561603-1).地质调查项目内部报告.237~278.

地层分布特征简述如下:①下二叠统火山-沉积岩: 大石寨组火山-积岩主要分布在矿化区的中北部 ,主 要岩石类型有泥质粉砂岩、粉砂岩、细砂岩、板岩、玄 武质凝灰岩、安山质凝灰岩、流纹岩、晶屑凝灰岩和 角砾岩 局部地段见有海相动物化石 其中泥质粉砂 是最重要的含矿地层单元。相比之下,下二叠统哲 斯组沉积岩主要出露在矿化区的南部,主要岩石类 型为粉砂岩、板岩和生物碎屑岩 局部地段见有海相 动物化石 :②上侏罗统火山-沉积岩 :玛尼吐组火山 岩主要分布在矿化区的中南部,主要岩石类型有玄 武岩、安山岩和晶屑凝灰岩,呈角度不整合覆盖在下 二叠统火山-沉积岩地层之上 ,相比之下 ,白音高老 组火山岩主要出露在矿化区的北部,主要岩石类型 为流纹岩,英安岩和凝灰岩,与下二叠统火山-积岩 呈整合接触关系 ③下白垩统沉积岩 :大磨拐河组沉 积岩主要分布在矿化区的北部 ,主要岩石类型有砾 岩、砂砾岩、粉砂岩和泥岩,局部地段具有厚度不等 的煤层 与下伏侏罗系火山-积岩地层呈角度不整合 关系 ④ 第四系沉积物 : 冲洪积物主要分布在矿化区 的低洼处和沟谷中,由砂土和砾石构成。

1.2 侵入岩

白音查干矿化区范围内各个地质时代,不同产 出规模和分布形态各异的侵入岩体分布广泛,其中 海西晚期花岗闪长岩和辉长岩以及印支期斑状花岗 岩以产出规模大、几何形态多样和蚀变带发育为特 征。海西期花岗闪长岩主要分布在该矿化区东南 部,呈岩株状侵位于下二叠统火山-沉积岩地层中 (洪大卫等 2000;内蒙古自治区地质矿产局 1991)。 代表性岩石样品为灰白色,中粗粒花岗结构、块状构 造,主要造岩矿物有石英、斜长石、钾长石、角闪石和 黑云母,副矿物有磁铁矿、磷灰石、锆石和黄铁矿。 海西期辉长岩主要分布在该矿化区的东南部 ,呈岩 株状侵位于下二叠统火山-积岩地层中。代表性岩 石样品为灰绿色-黑灰色,中细粒结构、块状构造,主 要造岩矿物有斜长石、角闪石和辉石 副矿物有黄铁 矿、磁铁矿和磷灰石。与前述海西期侵入岩体相比, 印支期斑状花岗岩体呈岩枝状或岩瘤状侵入到辉长 岩株中。代表性岩石样品为浅肉红色-灰白色,似斑 状结构和块状构造。斑晶有钾长石、石英和黑云母, 基质为细粒石英、钾长石、斜长石和镁铁质矿物 刷 矿物有磁铁矿、磷灰石、锆石和黄铁矿。

1.3 构造

在白音查干矿化区范围内,除了褶皱构造较为

少见外,各种方向、不同规模和形态各异的断裂分布 广泛,其中以北东向断层破碎带产出规模最大,并且 与银多金属矿化带具有密切空间分布关系。需要提 及的是,厚变大、品位高和连续性好的银多金属矿化 体大多在北西向、北东向和近东西向断裂的交汇部 位产出,因此,断裂带的交汇处很可能是成矿流体上 涌的通道和沉淀空间。

1.4 区域矿产分布特征

白音查干银多金属矿化区地处大兴安岭金属成 矿带的最南端,锡林浩特—乌兰浩特银多金属矿化 集中区的西北部(图1)。白音查干矿化区北侧产出 有小坝梁铜矿床和奥尤特铜矿床,南部分布有毛登 锡矿床和大井锡多金属矿床,东南部产出有白音诺 尔铅矿床和拜仁达坝银矿床(金岩等 2005;王建平, 2003;赵一鸣等,1994)。白音查干矿化区及外围金 属矿床空间分布特点表明,该区具有优越的成矿环 境、良好的控矿条件和充足的物质来源,因此,在这 一地区实现找矿工作突破完全是有可能的。

2 银多金属矿化带特征

2.1 银多金属矿化带

白音查干地区银多金属矿化带大都在下二叠统 大石寨组泥质粉砂岩和粉砂质板岩内产出,并且与 北西向构造-蚀变岩带具有密切的空间分布关系。 矿化类型很可能属构造-蚀变岩型银多金属矿化,其 形成作用与中酸性岩浆活动有关。

早期坑(槽)探结果表明,白音查干矿化区中南 部一带近地表处存在有3处规模较小和品位较低的 银多金属矿化体 其分布特征简述如下 :① | 号矿化 体:该矿化体位于矿化区中南部的最西侧,南北长 350 m ,东西宽 1.2~2.5 m ,控制斜深 82 m ,矿化体 向北东方向倾斜,倾角 42°~50°;② || 号矿化体:该 矿化体位于 | 号矿化体的东侧 南北长 150 m ,东西 宽1.2~1.8 m,向北东方向倾斜,倾角45~55°;③ III 号矿化体:该矿化体位于矿化区中南部的最东 侧 南北长 260 m ,东西宽 0.8~1.2 m ,向西南方向 倾斜,倾角44~56°。需要提及的是,受工作程度所 限,无论是在走向上,还是在倾向上均未能对3个矿 化体进行有效的控制。尽管 [、] 和 || 号矿化体在 产出规模、品位高低和分布形态上存在有一定的差 别 ,但是它们均由致密块状、网脉状和浸染状银多 金属矿石构成。矿石中主要金属矿物有褐铁矿、黄铁

图 1 内蒙古白音查干银多金属矿化区区域地质略图(据 Wang et al, 2001 资料改编)

Ⅰ—华北陆台;Ⅱ—古生代兴蒙造山带;Ⅲ—西伯利亚板块。1—断裂带 2—古板块缝合带;3—前寒武纪变质岩地块;4—锡林浩特前寒武纪中间地块推测边界 5—国界 6—金属矿床及编号;7—城镇 8—白音查干银多金属矿化区 9—金属矿床(1)—朝不椤铁-锌-铋多金属矿床(2)—沙麦钨矿床(3)—奥尤特铜矿床(4)—小坝梁铜-金矿床(5)—巴尔哲铌-钇-锆矿床(6)—孟恩陶勒盖银-铅-锌矿床(7)—布敦化铜矿床(8)—浩步高铅-锌-铜-锡矿床(9)—白音诺尔铅-铼 铜 矿床(1)—大井锡-铜-铅-锌-银矿床(11)—黄岗锡-铁矿床(12)—毛登锡-铜矿床(13)—拜仁达坝银矿床

Fig. 1 Simplified regional geological map of the Bayanchagan silver polymetallic mineralized district Xi Ujmqin Banner, central-eastern Inner Mongolia after Wang et al. , 2001)

I—North China continent block ; II—Paleozoic Hinggan-Mongolia orogenic belt ; III—Siberian plate. 1—Fault zone ; 2—Ancient plate suture zone ; 3—Precambrian metamorphic block ; 4—Inferred boundary of the Xilinhaote Precambrian metamorphic massif ; 5—National boundaries ; 6—Ore deposit and its serial number ; 7—Town or City ; 8—Bayanchagan silver polymetallic mineralized district. 9—Major ore deposits : (1)—Chaobuleng Fe-Bi-Zn polymetallic ore deposit ; (2)—Shamai W deposit ; (3)—Aoyoute Cu deposit ; (4)—Xiaobaliang Cu-Au deposit ; (5)—Baerzhe Nb-Y-Zr deposit ; (6)—Mengentaolegai Ag-Pb-Zn deposit ; (7)—Bdunhua Cu deposit ; (8)—Haobugao Pb-Zn-Cu-Sn deposit ; (9)—Baiyinnuo Pb-Zr(Cu) deposit ; (10)—DajingSn-Cu-Pb-Zn-Ag deposit ; (11)—Huanggang Sn-Fe deposit ; (12)—Maodeng Sn-Cu deposit ; (13)—Bairendaba Ag deposit

矿、方铅矿、闪锌矿和辉银矿 脉石矿物有石英、萤石 和碳酸盐类,代表性矿石样品银含量变化范围为 (66.6~6256)×10⁻⁶,平均值为159.7×10⁻⁶,铅为 0.56%~1.58%,平均值为1.28%;锌为0.68%~ 1.89%,平均值为1.28%,铜为0.16%~0.38%,平 均值为0.38%。

近期钻探结果表明,在所施工的4个钻孔中均 见到规模不等的银多金属矿化体,具体情况如下:① ZK-9号钻孔:该钻孔位于矿化区西部,孔深为 431.21m,其中0~91.44m为第四系和白垩系沉积 岩(物);91.44~409.12m为细砂岩和粉砂岩; 409.12~431.21m为安山岩和安山质凝灰岩。银 多金属矿化主要在细砂岩和粉砂岩地层中产出。在 钻孔中,共发现银多金属矿化体21层,累计厚度为 83.27m,其中第10号和第16号矿化层的连续厚度 分别为18.40m(孔深193.00~211.40m)和13m (孔深 312.24~325.24 m)。第 10 号矿化层银含量 变化范围为(10.5~122)×10⁻⁶,平均值为 50.4× 10⁻⁶ , 铅和锌含量分别为 0.09% ~4.24% (平均值为 1.37%)和1.06%~13.68%(平均值为3.91%)。 相比之下,第16号矿化层中银含量变化范围为 (10.2~530)×10⁻⁶,平均值为137.74×10⁻⁶,沿含 量为 0.12% ~ 5.40%, 平均值为 1.61%; 锌含 0.52%~16.23%,平均值为3.01%;②ZK-8号钻 孔 该钻孔位于矿化区西部 孔深 359.45 m 整个钻 孔的岩心全部为安山质晶屑凝灰岩 其中蚀变晶屑 凝灰岩与银多金属矿化体具密切空间分布关系。在 钻孔中共发现银多金属矿化体 8 层,累计厚度为 23.79 m 其中第4号和第7号矿化层的连续厚度分 别为 6 m(孔深 156.64~162.64 m)和 5.24 m(孔深 252.56~257.80 m)。第4号矿化层的银含量变化 范围为(87.2~250.0)×10⁻⁶,平均值为139.00×

 10^{-6} 铅和锌含量分别为 $0.10\% \sim 0.40\%$ 平均值为 0.26%)和1.05%~1.87%(平均值为1.34%)。相 比之下,第7号矿化层银含量变化范围为(105~ 360)×10⁻⁶,平均值219.2×10⁻⁶;铅和锌含量分别 为 0.12% ~ 0.22% (平均值 0.18%)和 0.67% ~ 6.60%(平均值 3.49%);③ZK-3 号钻孔:该钻孔位 于矿化区东部 孔深为 160 m 其中 0~45.10 m 为第 四系和白垩系沉积岩(物);45.10~153.00 m 为安 山质晶屑凝灰岩 ,153~156 m 为构造破碎岩 ;156~ 160 m 为泥质粉砂岩。尽管在上述 3 种岩层中均可 观察到产出规模大小不等的银多金属矿化体,但是 安山质晶屑凝灰岩中矿化体以银含量较高、厚度较 大和连续性较好为特征。在钻孔中共发现银多金属 矿化体 5 层 ,累计厚度 20.9 m ,其中第 4 号和第 5 号 矿化层的连续厚度分别为 9.9 m(孔深 45.1~55 m) 和 4m(孔深 67.86~71.86m)。第 4 号矿化层银和 锌含量分别为(6.45~49.2)×10⁻⁶,平均值为22.4 ×10⁻⁶和1.04%~2.26%,平均值1.47%,铅含量 大多小于 0.5%。相比之下 第 5 号矿化层银和锌含 量分别为(35.4~2050)×10⁻⁶,平均值为680.03× 10⁻⁶和 0.41%~9.46%,平均值为 3.4%,铅含量大 多小于 0.5% (④ZK-5 号钻孔:该钻孔位于矿化区东 部 孔深 356 m。整个钻孔的岩心全部为细砂岩和泥 质粉砂岩 ,其中后者与银多金属矿化体具密切空间 分布关系。尽管在该钻孔中所见矿化层数量较少, 但是在 250 m 处所见矿层的连续厚度为 4 m(孔深 250.20~252.60 m),银含量为(765~3775)× 10^{-6} 平均值为 2 270 × 10^{-6} ;铅和锌含量分别为 0.35%~0.56%(平均值为0.46%)和0.91%~ 2.77%(平均值为1.84%)。另外,局部地段见有黄 铜矿,铜含量为0.67%~2.72%,平均值为1.69%。 2.2 物化探特征

在地球物理测量方面,为了进一步查清白音查 干矿化区银多金属矿化带的分布范围和确定准确的 找矿方向,在该矿化区范围内进行了面积性激电测 量,并且圈定出若干处极化率异常。在所有这些激 电异常中,北部异常、中部异常和南部异常均以分布 范围大和极化率值高为特征,是重点查证对象。北 部异常位于矿化区北侧,平面形态为一不规则条带 状,总体上呈东北向展布,北宽南窄,长度为1650 m,宽度为120~280m,异常中心视极化率值(ns)为 6%。中部异常位于矿化区中心地带,平面形态为一 椭圆形,总体上呈东北向分布;长度为550 m,宽度为 190~260 m,异常中心极化率值(ns)高达8%。相比 之下,南部异常位于矿化区的最南部,平面形态为一 较规则的条带状,总体上呈东北向分布;长度为400 m,宽度为100~200 m,异常中心极化率值(ns)高达 8%。钻探验证结果表明,这3处激电异常分布范围 与银多金属矿化体具有良好的对应关系,为3处致 矿异常。

在地球化学测量方面,对前人所获1:20万化探 资料数据进行了全方位收集、整理和分析,并且圈定 出一系列金、银、汞、砷和锑异常。在所有上述地球 化学异常中 部分金、银和汞单元素异常与银多金属 矿化体和激电异常具有很好的对应关系。在 2006 年度大比例尺土壤(岩屑)地球化学测量过程中,先 后发现和圈定各种元素组合异常 18 处 其中大多数 异常呈串珠状沿近南北向构造-蚀变岩带分布,基本 上反映了矿化带的展布方向。一般情况下,元素组 合异常形态大多为长扁椭圆形和哑铃状,其长轴方 向为北东向、北北西向或近南北向。部分异常由银、 铅、锌、铜、砷、锑和锰元素构成,并且以产出规模大、 形态清晰完整 ,元素组合齐全和浓集中心明显为特 征。在这些异常的中心地带,银、铅和锌的含量分别 为 $(4.17 \sim 8.66) \times 10^{-6}$ (697.6~988.5) × 10⁻⁶和 (766.7~856.8)×10⁻⁶,显示出良好的找矿潜力。

2.3 硫同位素特征

白音查干地区致密块状银多金属矿石中 3 件黄 铁矿样品的 δ^{34} S 值变化范围为 4.2‰~4.8‰,平均 值为 4.5‰。同类矿石中 3 件方铅矿和 3 件闪锌矿 样品的 δ^{34} S 值变化范围分别为 2.8‰~3.4‰(平均 值为 3.0‰)和 1.3‰~3.0‰(平均值为 2.6‰)。尽 管上述各硫化物 δ^{34} S 值分布范围存在有明显重叠之 处,但是从整体上看,它们完全符合在成矿体系平衡 条件下,硫化物中 δ^{34} S 的富集顺序,即 δ^{34} S_{黄铁矿} > δ^{34} S_{闪锌矿} > δ^{34} S_{方铅矿}。另外,上述 3 种硫化物 δ^{34} S 值 变化范围及平均值与岩浆热液金属矿床中的同种硫 化物相似(Bohlke et al., 1988, Taylor, 1987, Ohmoto et al., 1979)。硫同位素特征表明,在银多金属矿化 带形成过程中,岩浆热液流体发挥了重要作用。

3 银多金属矿化带成因及找矿方向

从整体上看,白银查干银多金属矿化区及外围 属于含大量前寒武纪古陆块分布的晚古生代构造-岩浆岩带。该区经历过兴凯期、加里东期、海西期和

图 2 内蒙古白音查干银多金属矿化区地质略图

1—第四系 2—7-下二叠统大石寨组 2—粉砂岩、细砂岩和砂岩 ;3—钙硅质泥岩 ,泥板岩和泥质粉砂岩 ;4—玄武岩、玄武质凝灰岩和角砾 岩 5—流纹岩 6—流纹质晶屑凝灰岩 ;7—安山质凝灰岩和凝灰质岩 8—上侏罗统白音高老组石英斑岩和英安岩 9—石英脉 ;10—地层 产状 ;11—地质界限 ;12—钻孔及编号 ;13—代表性激电异常区 ;14—激电异常

Fig. 2 Sketch geological map of the Bayanchagan silver polymetallic mineralized district ,Xi Ujmqin Banner , central-eastern Inner Mongolia

1—Quarternary ; 2—7-Lower Permian Dashizhai Formation ; 2—Siltstone , pelitic siltstone and sandstone ; 3—Si-Ca pelite ; 4—Basalt ,basaltic tuff and breccia ; 5—Rhyloite 为—Rhyloitic crystal tuff ; 7—Andsitic tuff and tuffaceous sandstone. Upper Jurassic Bayangaolao Formation : 8—Quartz porphyry and dacite ; 9—Quartz vein ; 10—Attitude ; 11—Boundary of stratigraphic units ; 12—Drilling hole and its serial number ; 13—Representive IP anomalous district ; 14—IP anomaly

印支期构造'旋回",与之相对应的是西伯利亚板块、 古蒙古洋壳和华北陆台之间的长时期和多阶段俯 冲、碰撞和对接作用,强烈的构造-岩浆活动不仅形 成有广泛分布的火成岩,同时,也造就了本区极为复 杂的褶皱和断裂构造(Xiao et al.,2003;Sengor et al.,1993)。晚古生代晚期,海西期造山作用致使本 区发生近南北向挤压和东西向拉张构造活动,进而 在华北陆台北缘形成一系列规模大小不等和产出形 态各异的裂陷盆地(王荃等,1991;Wang et al., 1986)。早二叠世火山-沉积作用在这些盆地中不仅 形成有很厚的火山-沉积岩地层,同时,也产出有一 系列银多金属矿化体(Wang et al.,2001)。综合性 研究结果表明,早二叠世银多金属矿化带的成矿作 用是白音查干地区及外围地壳演化的重要组成部 分,是火山-沉积作用的继续和发展(聂凤军等, 2006)⁹。在白音查干银多金属矿化带成矿作用的早 期阶段,随着海相火山活动和陆相沉积作用的交替 进行,部分铅、锌、银和铅及其他成矿组分可随火山 碎屑、火山灰和热液流体进入到特定的盆地,并且直 接沉淀下来。它们要么形成具有工业价值的银多金 属矿石,要么形成银多金属矿胚(或矿源层)。一般 来讲,此阶段形成的矿化体多以层状、似层状和透镜 状为特点,早期致密块状矿石中银、铅和锌含量明显 高于晚期脉状或网脉状矿石。

[●] 聂凤军、江思宏、白大明,等. 2006. 中蒙边境中东段我国一侧(北山二连乌旗地区)铜、金和银矿床成矿规律与找矿方向 (1212010561603-1).地质调查项目内部报告.566~589.

在含矿流体演化的早期阶段,银、铅和锌可与各 种不同的阴离子团结合 进而形成较稳定的络合物 , 并且通过岩层(体)粒间孔隙或原生冷凝细微裂隙进 行扩散与运移,在构造有利地段沉淀形成各种银多 金属矿石。鉴于在此阶段,成矿流体中大气降水量 和围岩组分含量均较低 因此 银多金属矿石硫化物 δ³⁴S 值与岩浆热液型硫化物的相似。随着成矿作用 时间的推移和成矿体系的开放,大量大气降水和围 岩组分将会参加到成矿热液体系中来,并且与以岩 浆水为主的含矿流体混合,形成以大气降水和围岩 组分为主的混源流体,由此所形成的银多金属矿石, 其硫同位素特征与未蚀变粉砂岩相似(聂凤军等, 2006 注建平,2003)。另外,混合热液流体对容矿 围岩的交代作用可导致大量镁铁质矿物解体,释放 出来的铁、镁、铅、锌和银以及其他金属元素可与热 液体系中的挥发性组分相结合,进而形成黄铁矿、方 铅矿、闪锌矿、辉银矿、石英、绢云母和萤石。 当含矿 热液流体沿特定构造破碎带上升到近地表处时,成 矿体系温度和压力的骤然降低,特别是 $f(O_2)$ 的明 显增高和 pH 值的大幅度降低可导致热液体系产生 不平衡,进而沿构造破碎带形成具有工业价值的银 多金属矿体。白音查干银多金属矿化带形成之后, 部分矿化体长期裸露地表 接受风化淋滤 黄铁矿和 其他硫化物的分解可形成规模大小不等的铁帽 为 矿产资源潜力调查与评价提供了有效的找矿标志。

综上所述,白音查干银多金属矿化区是一处与 海西期中酸性岩浆活动有关的构造-蚀变岩型银多 金属矿化带。该矿化带周围海西期中酸性火成岩 (侵入岩和火山岩)分布广泛,其产出环境和岩相学 特征与白音查干矿化区中酸性火成岩相似,并且存 在有一大批银多金属矿化点,是进行银多金属矿床 找矿勘查的有利地段。

4 结 论

(1) 白音查干银多金属矿化区范围内,下二叠统 火山-沉积岩分布广泛,构造形迹复杂,中酸性浸入 岩发育,物化探异常星罗棋布,是寻找银多金属矿床 的最佳地段;

(2) 银多金属矿石黄铁矿、方铅矿和闪锌矿样品

δ³⁴S值与岩浆热液型金属矿床同种硫化物的相似, 由此推断,岩浆热液活动为银多金属矿化带的形成 提供了物质、流体和动力来源;

(3) 野外地质调查和室内综合性研究结果表明, 白音查干地区银多属矿化带是多期次构造-岩浆活动的产物,矿化体兼具层控型和构造-蚀变岩型金属 矿床的双重特征;

(4) 根据笔者对控矿因素的认识,激电异常、银 多金属元素异常、泥质粉砂岩和构造破碎带相互叠 加的部位常常是银多金属矿化体产出的有利部位, 白音查干地区具有找到大中型银多金属矿床的成矿 条件。

References

- Bohlke J K , Coveney R M Jr , Rye R O and Barnes I. 1988. Stable isotope investigat-ions of gold quartz veins at the Oriental mine , Alleghany district , California[R]. U. S. Geological Survey Open-File Report. 88~79 , 1~24.
- Bureau of Geology and Mineral Resource of Inner Mongolia (BGM-RIM). 1991. Regional Geology of Nei Mongol (Inner Mongolia) Autonomous Region [M]. Beijing : Geol. Pub. House. 1 ~ 725 (in Chinese with English abstract).
- Hong D W, Wang S G, Xie X L, et al. 2000. Genesis of Positive ((Nd t)granitoids in Da Hinggan Mts. -Mongolia orogenic belt and growth continental crust[J]. Earth Science Frontiers (China University of Geosciences, Beijing), 7(2):441~456(in Chinese with English abstract).
- Jin Y, Liu Y T and Xie Y L. 2005. Relationship between magmatism and polymetal mineralization in Dongwuqi area, Inner Mongolia J]. Geology and Mineral Resources of South China, (1): $8 \sim 12$ in Chinese with English abstract).
- Li S Q Zhang W J ,Geng M S ,et al. 1998. Introduction to Geology of Mongolian Arc Tectonic and Its Evolution [M]. Beijing Geol. Pub. House. 104 ,111~112 (in Chinese with English abstract).
- Ohmoto H and Rye R O. 1979. Isotopes of sulfur and carbon. In :Geochemistry of hydrothermal ore deposits [M]. Barnes H L ,ed. 2nd edition. New York :John Wiley and Sons. 509~567.
- Sengor A M C , Natalin B A , Burtaman V S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasis[J]. Nature , 364 : 299~307.
- Shao J A. 1991. Crustal Evolution in the Middle Part of the Northern Margin of the Sino-Korean Plate M]. Beijing : Peking Univ. Pub. House. 1~144 (in Chinese with English abstract).

[●] 聂凤军、江思宏、白大明,等. 2006. 中蒙边境中东段我国一侧(北山二连乌旗地区)铜、金和银矿床成矿规律与找矿方向 (1212010561603-1).地质调查项目内部报告.566~589.

- Tang K. 1990. Tectonic development of Paleozoic fold belts at the Northern margin of the Sino-Korean Craton [J]. Tectonics , 9:249 \sim 260.
- Taylor B E. 1987. Stable isotope geochemistry of ore-forming fluid M]. Mineralogical Association of Canada Short Course Handbook. 13: 337~445.
- Xiao W J , Windley B F , Hao Jie , et al. 2003. Accretion leading to collision and the Permian Solonker suture , Inner Mongolia , China : Termination of the central Asian orogenic belt J J. Tectonics , 22 (6):8~20.
- Wang J B , Wang Y W , Wang L J , et al. 2001. Tin-polymetallic mineralization in the southern part of the Da Hinggan Mountains , China [J]. Resource Geology , 51(4):283~291.
- Wang J P. 2003. Metallogeny of Dongwu Banner copper and silver polymetallic ore zone of Inner Mongolia[J]. Mineral Resources and Geology , 17(2):132~135(in Chinese with English abstract).
- Wang Q and Liu X Y. 1986. Paleoplate tectonics between Cathaysia and Angaraland in Inner Mongolia of China J]. Tectonics , $5:1073 \sim 1088$.
- Wang Q , Liu X Y and Li J Y. 1991. Plate tectonics between Cathaysia and Angaraland in China M]. Beijing : Peking Univ. Pub. House. 74~91 (in Chinese with English abstract).

Zhao Y M, Wang D W, Zhang D Q, et al. 1994. Geological setting and kcdzo aco cm/ http://www.kcdzo.aco

exploration model for the polymetallic deposits occurring in the southeastern part of Inner Mongolia[M]. Beijing: Seismologic Press. $1 \sim 234$ (in Chinese).

附中文参考文献

- 洪大卫,王试光,谢锡林,等. 2000. 兴蒙造山带正 € Nd,t)值花岗岩 的成因和大陆地壳生长[J]. 地学前缘, ζ(2):441~456.
- 金 岩,刘玉堂,谢玉玲. 2005. 内蒙古东乌旗地区岩浆活动与多金属 成矿的关系[J]. 华南地质与矿产(1)8~12.
- 李述靖,张维杰,耿明山,等. 1998.蒙古弧形地质构造特征及形成演 化概论[M].北京,地质出版社. 104,111~112.
- 内蒙古自治区地质矿产局. 1991. 内蒙古自治区区域地质志[M]. 北京 地质出版社. 1~725.
- 邵济安. 1991. 中朝板块北缘中段地壳演化[M]. 北京:北京大学出版社.1~144.
- 王建平. 2003. 内蒙古东乌旗铜、银多金属成矿带成矿类型分析[J]. 矿产与地质,17(2):132~135.
- 王 荃,刘雪亚,李锦轶. 1991.中国华夏与安加拉古陆间的板块构造 [M].北京,北京大学出版社. 74~91.
- 赵一鸣,王大畏,涨德全,等. 1994. 内蒙古东南部铜多金属成矿地质 条件及找矿模式[M]. 北京 地震出版社. 1~234.