Fluid inclusions in breccia-type copper-gold ore bodies of Jinchang gold deposit, Dongning County, Heilongjiang Province

MEN LanJing, SUN JingGu, ZHAO JunKang, CHEN Lei, LIANG ShuNeng, PANG Wei and CHEN Dong
(College of Earth Sciences, Jilin University, Changchun 130061, Jilin, China)

Abstract

The Jinchang copper-gold deposit, one of the superlarge hydrothermal deposits located in the east continental margin of China, is mainly composed of breccia-type gold and copper-gold type ore bodies. The fluid phases associated with chalcopyrite-auroiferous quartz veins were investigated by means of microthermometry and Raman microprobe. Some conclusions were reached through petrographic observation: ① There exist four types of fluid inclusions, i.e., pure volatile inclusions (V), aqueous-biphase inclusions (L + V), aqueous polyphase fluid inclusions with daughter minerals (L + V + M) and a few pure liquid fluid inclusions (L). ② Homogenization studies of these fluid inclusions furnish a temperature range of 230°C to 600°C, with the K-feldspar-quartz-pyrite stage, quartz-pyrite stage, and quartz-multimetallic sulfide stage temperatures being 510°C to 600°C, 410°C to 510°C, and 270°C to 410°C, respectively. ③ The salinity $w(\text{NaCl})$ of the fluid inclusions varies between...
2.57% and 73.96%, composed of high temperature high salinity (35.99% to 73.96%), high temperature high-medium-salinity (38.94% to 57.09%), and high-medium temperature medium-low salinity (2.57% to 19.05%). The volatiles are mainly H₂O, CO₂ and a few N₂, C₄H₈, H₂. Halite, sylvine, anhydrite, and chalcopyrite were found in polyphase fluid inclusions. These characteristics indicate that the ore-forming fluids are oxidized magmatic fluids (H₂O-CO₂-NaCl-SO₄²⁻ type). Combined with previous studies of the breccia-type gold fluid inclusions, the authors have summarized the evolutionary process of the ore-forming fluid as follows: The mantle source post-magmatic thermal fluids ascended to the shallow crust and formed low-salinity and high-salinity fluids by cryoexploration and boiling. With the decompression of dense fissures and the decrease of temperature, the fluids crystallized and precipitated to form copper-gold ore bodies. The breccia gold deposits, however, may indicate the result of mixture between the boiling fluid hosted by vanguard gas and the meteoric water.

Key words: geology, Jingchang superlarge copper-gold deposits, breccia-type copper-gold ore body, mineral fluid inclusion, Heilongjiang Province

- Drummion et al. 1985
- Calagari 2004

- 1
- 2002
- 2003
- 2006
- 2007
- 2002
- J-1
- J-2
- J-8
- J-9
- J-9
- J-1
- J-0
- J-0
- J-9
- J-1
- J-1
- J-1
- J-1
- J-1
- 1b
- 18
- 500 m
- 30 m
- 20 m
- SN
- SN
- 82~85°NE
- 1d
图 1 金厂大地构造纲要图（“金厂”）和矿区地质简图（“号脉”）及中段平面图（“号脉”）分别根据赵春荆等（**+）和陈锦荣等（**），修编 — 第四系；— 第三系；— 下侏罗统地层；— 印支期闪长岩；— 印支期文像花岗岩；— 印支期花岗岩；— 闪长玢岩；— 燕山期花岗斑岩脉；— 燕山期闪长玢岩脉；— 断层；— 不整合界线；— 矿脉及编号；— 铜金矿；— 银金矿；— 金矿；— 角砾岩体；— 角砾岩筒界线。

图 2 金厂铜金矿体345m中段平面图

实验样品和实验方法
样品均取自高丽沟CO号铜金矿体的以黄铜矿化为主的多金属硫化物蚀变岩和含角砾黄铁矿化的石英脉。继流体包裹体的岩相学显微观察后，对钾长石—石英—黄铁矿阶段、石英—黄铁矿阶段、石英—多金属硫化物阶段以及同一矿化阶段不同期次的包裹体分别进行均一温度、冰点和成分等项数据的采集。实验分别在吉林大学地球科学院地质流体实验室（**）和南京大学地球科学系成矿作用国家重点实验室（**）完成。测定前对流体包裹体的参数采用人造纯R及NO的R包裹体（国际标样）进行了系统校正，误差为**。测试时，当温度小于**时，升温速率为**；在**以上，升温速率为**；在相变化及冰点附近，升温速率小于**。
表金厂铜金矿床的代表性金铜矿体与金矿体特征对比

<table>
<thead>
<tr>
<th></th>
<th>金铜矿体</th>
<th>金矿体</th>
</tr>
</thead>
<tbody>
<tr>
<td>形态</td>
<td>筒状角砾岩体</td>
<td>筒状角砾岩体</td>
</tr>
<tr>
<td>围岩</td>
<td>闪长岩、闪长玢岩</td>
<td>文像花岗岩、蚀变花岗岩、闪长岩</td>
</tr>
<tr>
<td>角砾成分</td>
<td>闪长岩、闪长玢岩等</td>
<td>闪长岩、蚀变花岗岩、文像花岗岩等</td>
</tr>
<tr>
<td>矿石矿物组成</td>
<td>以黄铜矿为主,其次为黄铁矿,方铅矿,少量的闪锌矿、自然金、银金矿等</td>
<td>主要为黄铁矿,其次黄铜矿、方铅矿、自然金、银金矿等</td>
</tr>
<tr>
<td>矿石类型</td>
<td>团块状黄铜矿硅化型、块状多金属硫化物型、角砾岩硅化型、细脉浸染状黄铁矿型、条带状绿泥石化型等</td>
<td>角砾岩型、蚀变岩型、含石英黄铁矿脉型、多金属硫化物石英脉型</td>
</tr>
<tr>
<td>结构构造</td>
<td>以结晶结构为主,其次为碎裂结构、交代结构等;角砾状构造、条带状构造、浸染状构造、脉状构造</td>
<td>结晶结构为主,角砾状构造、条带状构造、细脉浸染状构造等</td>
</tr>
<tr>
<td>围岩蚀变类型</td>
<td>绿帘石、绿泥石、硅化、阳起石、电气石、碳酸盐等</td>
<td>电气石、钾长石、石英、绢云母、高岭石等</td>
</tr>
<tr>
<td>控矿构造</td>
<td>环形构造和断裂构造</td>
<td>环形构造和断裂构造</td>
</tr>
</tbody>
</table>

实验结果

3 流体包裹体类型和特征

对取自角砾岩型铜金矿体的各类样品进行流体包裹体的显微观察,石英内部的流体包裹体(图2)最清晰,既有沿晶带或随机分布的孤立原生包裹体,又有沿裂隙分布的次生包裹体。从物理相态上,除气液相包裹体、纯液相包裹体外,还出现大量含子矿物的流体包裹体和纯气相包裹体,且含子矿物包裹体、气相包裹体和气液相包裹体呈独立或群体分布,各种类型的特征描述如下。

3.1 纯气相流体包裹体 该类型的流体包裹体分布不均匀,以各种椭圆形孤立产出,个体大小不一,约占流体包裹体总量的20%;室温下为气态单相(据激光拉曼成分确定),呈灰黑色,图2纯气相包裹体。

3.2 纯液相包裹体 该类型的流体包裹体分布不均匀,以各种椭圆形孤立产出,个体大小不一,约占流体包裹体总量的20%;室温下为气态单相(据激光拉曼成分确定),呈灰黑色,图2纯气相包裹体。

3.3 含多个子晶(重晶石、硬石膏)的包裹体; 3.4 含金属矿物子晶的包裹体(黄铜矿、磁铁矿等); 3.5 不同气相百分数的包裹体(流体包裹体外见大量的电气石); 3.6 石盐与钾盐共存的包裹体; 3.7 含两个气泡的包裹体。
多为原生包裹体。

气液两相流体包裹体 包裹体呈椭圆形、负晶形和不规则形状,大小在不同范围内,以%为主,占包裹体总数的左右;常温下可分为以液相为主(气相百分数小于%)和富气相为主两相流体包裹体。富气相流体包裹体的气相百分数大于%,占气液两相包裹体总数的,加热时液相不断缩小,均一为气相。总体上看,既有孤立产出的原生包裹体,还有沿裂隙定向排列且穿过相邻晶体的次生包裹体。

含子晶的多相流体包裹体 该类型十分发育,其含量占包裹体总量的%左右,室温下为液相、气相和子晶矿物,包裹体大小一般为%-%之间,个别大于%,甚至达到%,气相百分数为%左右,椭圆、半椭圆形。其内部子晶矿物有透明的石盐、钾盐、石膏和重晶石等,其中,石盐呈淡绿色的立方体,颗粒在%之间,钾盐多呈圆状,石膏呈片状浑圆形,略带绿色(升温至未达均一);不透明子晶矿物除黄铜矿(激光拉曼峰值)外,可能还含有磁铁矿、黄铁矿以及硅酸盐等矿物,它们呈不规则状、浑圆形和三角形,粒度很小,个别可达%。

此外,一个流体包裹体内可含有个大小为%子晶矿物或存在个子晶矿物和个气泡。因此,根据子晶的种类和组合可分为含多子晶多相流体包裹体、含石盐子晶多相流体包裹体和含不透明子矿物多相流体包裹体。

纯液相流体包裹体 该类型较少,仅占包裹体总数的左右(由于数量少,未冷冻),大小在%之间,个别接近%,长条形、椭圆形为主,少数为不规则状。流体包裹体均一温度和盐度

本次实验共测了个单个流体包裹体,数据显示铜金矿床的均一温度在%之间,具有较宽的变化范围和明显的个温度区(图):第一区间温度为!(%-%)(有的未均一,均值为!),含子晶多相包裹体为主,气相百分数%!#&,且以三相为主,石盐和钾盐子晶的均一温度在#%!-,石膏、重晶石子晶未均一;第二区间为%!#-%(均值为!#-)),由含子晶多相包裹体和气液两相流体包裹体组成(气相百分数%!#&),出现气相百分数!(#&的含子晶矿物的多相流体包裹体和气相百分数!(#&的两相流体包裹体;第三区间为!(#-%(均值为!#-)),由含子晶多相流体包裹体和气相百分数!(#&的两相流体包裹体组成;第四区间为!(#-%,气相百分数!(#&的气液两相流体包裹体。
值为气液两相包裹体为主（气相百分数为9％），少量含子晶矿物的多相流体包裹体（气相百分数9％）；第四区间均一温度为气液两相包裹体，气相百分数9％（此温度区间在图表现不明显）。

在盐度方面，根据卢焕章等（2004）发表的文献，用本次测得的石盐溶化温度以及冰点温度数据（0组），计算出盐度为0（*+,-）。

从盐度与温度关系，可分为高温高盐度（*+,-）,高温中高盐度（*+,-）和高中温低盐度（*+,-）类（图）。图清晰的显示出了富气相与富液相包裹体的均一温度十分接近，但盐度相差较大，反映流体曾经发生过气、液两相分离作用。

流体包裹体成分选择各类（纯气相、气液两相、含子晶的多相流体包裹体）不同温度阶段的典型包裹体，进行了气相成分及子晶激光拉曼探针分析（图2）。对于早期高温

图4

Fig. 4 Histogram showing salinity of fluid inclusions in quartz from No.0 Cu-Au ore body

图5

Fig. 5 Salinity versus homogenization temperature for fluid inclusions from No. 0 Cu-Au ore body

图6

Fig. 6 Raman spectrograms of fluid inclusions in quartz from No.0 Au-Cu ore body

a-f show Raman spectrograms of gas components of fluid inclusions and fig. b shows gas components of opaque daughter minerals.
值的包裹体气相成分为矿化阶段的后期;高温含透明子晶的包裹体,其透的包裹体,其子晶为黄铜矿(图

4

4.1

表 2 比较金矿体和铜金矿体以及典型辉铜矿床流体包裹体

<table>
<thead>
<tr>
<th>温度范围</th>
<th>J-1</th>
<th>ZK04 2007</th>
<th>ZK04 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>矿物</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230~600°C</td>
<td>250~590°C</td>
<td>260~620°C</td>
<td>84~97°C</td>
</tr>
<tr>
<td>283~307°C</td>
<td>325~357°C</td>
<td>350~375°C</td>
<td>5.41%~9.6%</td>
</tr>
<tr>
<td>25%~72%</td>
<td>30%~65%</td>
<td>30%~65%</td>
<td>1.91%~17.07%</td>
</tr>
<tr>
<td>H2O·CO2·N2·C2H6·</td>
<td>H2O·CO2·SO2·C2H6·</td>
<td>H2O·CO2·SO2·CH4·</td>
<td>H2O·CO2·H2·</td>
</tr>
</tbody>
</table>

K+ Na+ Ca2+ Mg2+ F- Cl- SO42-...
流体演化与成矿作用

大多数金矿床的流体包裹体研究表明，热水与不混溶系统对于成矿是重要的（李荫清，毛景文等，1995）。在较高压力和温度条件下，溶解于热水中的溶液，一旦接近开放系统（如沸腾或不混溶），由于压力和温度急剧降低，独立相便会从热水中分离出来，由于一部分气体被排出，会使热水中的盐度略有增高（芮宗瑶等，1995）。

金厂铜金矿体的矿石具有典型的热液充填角砾岩构造特征，反映该矿床形成时曾发生沸腾作用；在大致一致的均一温度区间，流体包裹体的气相百分数不同，这也证明了流体发生过沸腾（张文淮，1995）。通过对铜金矿脉流体包裹体的研究，结合前人对金矿体的研究成果，初步确定金厂矿区流体的演化过程为：来自地幔的高温高氧化的岩浆热流体，在成矿初期，为单质的氢化物，成矿元素以相对稳定态赋存于混溶流体中，金及其它金属元素不易沉淀，矿物组合上表现为黄铁矿等硫化物少，而石英、钾长石等较多，并结晶大量的电气石；岩浆流体沿裂隙不断上升，当到达地壳浅部发生隐爆沸腾作用，温度、压力的下降，形成不混溶流体（1995），出现气相百分数的含子晶的多相流体包裹体、气相百分数较高的两相流体包裹体（1995）和气相百分数较低的两相流体包裹体（1995），流体包裹体中黄铜矿及石膏子晶变少，成矿流体中的硫和氯含量降低，转变为硫、铁离子，黄铜矿沉淀，流体由氧化环境向还原环境转化，金沉淀（1995）下来，在矿物组合上表现为石英多金属硫化物，为成矿的主要阶段，形成铜金角砾岩体。

流体包裹体的成分（图1995）显示，后期流体包裹体的CO_{2}增多，H_{2}O减少，金矿体的盐度较铜金矿体盐度小（表1995）。推测为后期大气水的加入又一次导致了金的大量沉淀，这是形成角砾岩金矿的主要原因（1995）。因此，金矿体和铜金矿体是流体演化到不同阶段的产物。

Mao J W and Li Y Q. 2001. Fluid inclusions of Dongping gold deposit in Hebei Province, China. Involvement of mantle fluid in metallogene-

Wang S X. 1995. Comparison of Zijinshan copper-gold ores and Jingpingshi copper ores and its geological signi-

Wang Y Q, Xi B L, Zhang D H and Zhang W Z. 2007. Geochemical character-

Xia L Q. 1996. The fluid inclusions and magmam inclusions and patty from mantle peridotite xenolith. A. In Du L T et al. Mantle

Zhang D H and Liu W. 1998. The fluid inclusion component and fluid origin in gold deposit. J. Geology Science and Technology Informa-
tion 17 6 7–7 in Chinese with English abstract.

Zhang D H. 1997. Overview of research on the ore depositional mecha-
nisms in ore-forming fluid. Geology Science and Technology Informa-
tion 16 3 53–58 in Chinese with English abstract.

Zhu C, Peng Y J, Dang Z X and Zhang Y P. 1993. Tectonic frame-
work and crust evolution of eastern JiLin and Hei Longjiang Provinces M. Shenyang Liaoning University Press. 1 10 in Chinese.

loch K H, Yardley B W, Gonchar G E. Fluids in the crust equilibri-
um and transport properties C. London Chapman and Hall.

95–132.