编号:0258-7106(2015)06-1223-14

中国石墨矿床成矿规律概要

李 超^{12,3},王登红¹,赵 鸿³,裴浩翔¹,李欣尉³,周利敏³,杜安道³,屈文俊³ (1中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室,北京 100037;2北京大学造山带 与地壳演化教育部重点实验室,北京 100871;3国家地质实验测试中心,北京 100037)

摘 要 石墨是特殊地质作用的产物,也是新兴产业发展的重要原材料。文章通过对中国石墨矿床分布特征、 矿床类型、成矿时代和矿床成因的分析与归纳,初步总结了中国石墨矿床的成矿规律,以及目前石墨矿资源存在的 问题。可将中国石墨矿床根据成因分为区域变质型、接触变质型和岩浆热液型3种类型。其中,以区域变质型最重 要,其主要与区域变质作用密切相关,分布在古老地台周缘的元古代地层中,分布广、规模大;接触变质型主要分布 在滨太平洋构造域活动大陆边缘活动带,与加里东期、燕山期岩浆活动有关,矿体分布在岩体外接触带,品位高但规 模较小,岩浆热液型石墨矿并不常见,以产于碱性花岗岩中新疆苏吉泉石墨矿床最为典型。各种类型石墨矿床的成 矿物质主要来源于沉积地层中的有机质。

关键词 地质学 石墨矿床 ;成矿规律 资源特征 ;矿床类型 ;成矿时代 ;成矿物质来源 中图分类号 : P612 ; P619.25⁺2 文献标志码 :A

Minerogenetic regularity of graphite deposits in China

LI Chao^{1,2,3}, WANG DengHong¹, ZHAO Hong³, PEI HaoXiang¹, LI XinWei³, ZHOU LiMin³, DU AnDao³ and QU WenJun³

(1 MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 2 Laboratory of Orogen and Crustal Evolution, Peking University, Beijing 100871, China; 3 National Research Center for Geoanalysis, Beijing 100037, China)

Abstract

Graphite is a special geological product and also an important raw material for new industries. China has abundant graphite resources, which serve as one of important strategic minerals. In this paper, based on analyzing and summarizing the distribution features of graphite deposits, deposit types and mineralization epochs, the authors preliminarily summed up the minerogenetic regularity of graphite deposits in China and pointed out the existing problems of graphite mineral resources in China. According to the genesis of the deposits, graphite deposits can be divided into regional metamorphic graphite deposits and contact metamorphic type graphite deposits. The regional metamorphic graphite deposits are closely related to regional metamorphism and are mainly distributed in the periphery of Paleoproterozoic or Neoproterozoic strata of the old platform. The contact metamorphic graphite deposits are mainly related to Caledonian magmatism and Yanshanian activity, with the orebody located in the periphery of the rock mass. Although such kind of deposits has a high grade, but the size is relatively small. Magmatic hydrothermal type graphite deposits are not very common, with the most

^{*} 本文得到中国矿产地质与区域成矿规律综合研究(中国矿产地质志)项目(编号:1212011220369)和国土资源地质大调查项目(编号: 12120113015500)联合资助

第一作者简介 李 超,男,1983年生,助理研究员,从事 Re-Os 同位素和成矿年代学研究。Email:Re-Os@163.com 收稿日期 2015-07-31;改回日期 2015-09-14。秦思婷编辑。

typical deposit being Sujiquan produced in alkaline granites in Xinjiang. The ore-forming materials of various types of graphite deposits were mainly derived from the organic matter in the strata.

Key words: geology, graphite deposit, minerogenetic regularity, resource characteristics, graphite deposit type, ore-forming epoch, source of ore-forming material

石墨由于特殊的结构而具有耐高温性、抗热震 性、导电性、润滑性、化学稳定性以及可塑性等众多 特性,广泛的应用在冶金、机械、化学、电气等众多工 业领域中。作为 2010 年度诺贝尔物理学奖主题、21 世纪革命性的新材料,石墨烯将推动电子等产业步 入新的发展阶段。石墨既具有非金属矿物的一般性 能,又兼有金属和有机塑料的某些特性,因此,它是 一种用途广泛的特殊的非金属矿物原料,也是军工 与现代工业及高、新、尖技术发展中不可或缺的重要 战略资源。中国石墨矿床分布广泛,类型齐全,储 量、产量、出口量均位居世界前列,但新兴产业领域 的高端产品还不多 ,尤其是什么样的石墨原料更适 合作为石墨烯等新兴产业所必需的原料,还没有充 分的研究。本文通过对全国多处石墨矿床产地的调 查 初步总结了全国石墨矿床的成矿规律 ,以供找矿 勘查工作借鉴。

1 中国石墨矿产资源概况

据美国地质调查局数据,截至 2013 年,全球已 探明的天然石墨储量约 1.3 亿吨,其中,中国储量约 为 5500 万吨,占全球的 42%(http://minerals.usgs. gov)。中国石墨虽然储量丰富,但目前还只是处于 产业链中原料供应者的地位,深加工技术非常薄弱。 针对中国石墨矿业的现状和发展形势,深入探讨石 墨矿床的基本特征及成因类型,全面总结成矿规律, 对于石墨矿床的勘探以及石墨产业的发展具有重要 意义(陈毓川等 2010 ;王登红等 2013)。

全球石墨矿产分布相对集中,主要分布于少数 几个国家。晶质石墨矿床主要蕴藏在中国、乌克兰、 斯里兰卡、马达加斯加、巴西等国。其中,马达加斯 加盛产大鳞片石墨,斯里兰卡盛产高品位的致密块 状石墨。隐晶质石墨矿床主要分布于印度、韩国、墨 西哥、奥地利、中国等。多数国家只产出一种类型的 石墨,只有中国等几个国家晶质石墨和隐晶质石墨 都有产出。

石墨矿床在全国 20 个省(自治区、直辖市)均有 产出,已探明储量的矿区有 91 处,总保有储量居世 界第1位,石墨是中国的优势矿种之一。全国石墨 储量约为5500万吨。其中,晶质石墨储量4650万 吨,占总储量的84.5% 隐晶质石墨资源储量850万 吨,占总储量的15.5%。地区分布呈现"东多西少" 的规律(图1)黑龙江最多,它的储量占全国总储量 的45.4%,黑龙江、内蒙古、山东为中国石墨资源的 三大产地,分布有柳毛、兴和、南墅等著名大型、超大 型石墨矿床。

中国石墨矿产资源分布的特点表现为:① 矿石 种类齐全,以晶质石墨为主,也有隐晶质石墨;② 矿 产地分布广泛 ,而储量又相对集中于少数成矿最有 利的地区。根据资源储量的多少,晶质石墨矿床依 次分布于黑龙江、山西、四川、山东、内蒙古、河南、湖 北、陕西等8个省(自治区)(图2)。其中,黑龙江保 有晶质石墨矿储量为全国之冠 ,占中国晶质石墨保 有矿物储量的 53%。隐晶质石墨矿主要分布于内蒙 古、湖南、广东、吉林、陕西、山东、福建 7 个省(自治 区)中(图3)其中内蒙古和湖南两省(区)之和占全 国隐晶质石墨保有矿物储量的 65%。内蒙古、陕西、 广东、吉林、黑龙江、湖南6省(自治区)既有晶质石 墨矿产出 ,又有隐晶质石墨矿产出。中国石墨资源 的分布呈现" 东多西少 "的特征 ,主要是受中国东部 的特定构造环境控制,根本原因在于中国板块与相 邻板块的长时间作用,形成了独特的构造格局,尤其 是在演变过程中发生了一系列的构造-热事件 ,为石 墨矿床的形成提供了有力的条件。

中国区域变质型石墨矿床分布规律明显(图1), 主要分布在古老地台、地块周缘,黑龙江鸡西柳毛和 萝北云山特大型石墨矿床分别位于佳木斯地块的南 缘和北缘;内蒙古兴和、山东南墅特大型石墨矿床分 别位于华北地台的北缘和东缘,在华北地台南缘还 分布有河南鲁山背孜等一系列矿床;在扬子地台的 西缘和北缘分布有四川攀枝花中坝、湖北宜昌三岔 垭等典型矿床。区域变质型石墨矿床产于古老板块 周缘,可能主要与板块汇聚(Tam et al., 2011)、板块 升降过程中的变质作用有关(图4)。接触变质型石 墨矿床主要分布在中国东部活动大陆边缘地区,这 些矿床的产出主要受中酸性侵入岩控制。岩浆热液

7—Contact metamorphic type: 8—Magmatic hydrothermal type: 9—Large deposit; 10—Medium deposit;

11—Small deposit

型石墨矿床主要分布在新疆,与碱性花岗岩有关,其 中以苏吉泉石墨矿床最为典型。

2 矿石及矿床类型

石墨的用途主要决定于它的结晶程度,鳞片状 石墨可用于电池原料和原子能等尖端技术原料,隐 晶质石墨可用于耐火材料和铅笔原料等。因此,根 据工业用途不同,石墨可划分为片度大于1μm的鳞 片状晶质石墨(图 5a)和小于1μm的隐晶质(土状) 石墨(图 5b);相应地,石墨矿床可以划分为晶质石墨 矿和隐晶质石墨矿。 按照成因之不同,石墨矿床的类型可以分为区 域变质型(如黑龙江柳毛、山东南墅等)、接触变质 型(如湖南鲁塘、江西长寿源等)和岩浆热液型(如 新疆奇台苏吉泉等)3类。其中,区域变质型和岩浆 热液型矿床主要发育鳞片状晶质石墨,接触变质型 矿床主要发育隐晶质石墨。根据石墨矿石岩性之不 同,可将石墨矿石划分为多种类型,区域变质型石 墨矿床主要发育片麻岩型、片岩型、大理岩型、变 粒岩型和长英质岩型矿石;接触变质型石墨矿床主 要发育板岩型和千枚岩型矿石;岩浆热液型石墨矿 床主要发育花岗岩型、闪长岩型和长英质岩型矿石 (图 5c)。

图 2 中国各省(自治区)晶质石墨产地资源 储量所占比例

Fig. 2 The proportion of crystalline graphite reserves in China's provinces(autonomous regions)

图 3 中国各省(自治区)隐晶质石墨产地资源 储量所占比例

区域变质型石墨矿床的原岩建造为含碳质黏土 岩-中基性火山岩-碳酸盐岩建造(图 5d、e)(兰心俨, 1981;李寒滨等,2014;余仕军,2012),石墨极负的碳 同位素特征显示其来源于有机质(陈衍景等,2000)。 古老地层中的有机质经过区域变质作用形成石墨, 中国区域变质型石墨矿床主要赋存在元古界孔兹岩 系中,这类地层分布范围较广、研究程度相对较高、 标志明显,可以作为区域地层对比的标志层(万渝生 等,2000)。

接触变质型和岩浆热液型石墨矿床,均是由煤 系沉积地层中的有机质受到岩浆热作用发生变质形 成的。煤系地层中的有机质对锗、镓、铀等金属元素 具有较强的络合能力,在与岩浆发生热接触变质的 过程中,同样有吸附富集岩浆中金属元素的可能。

需要指出的是,在中国区域变质型石墨矿床中, 混合岩化作用十分常见,主要表现为重结晶、局部重 熔和交代作用,重熔分异作用产生一些变斑晶和长 英质脉体(图 5f)。在此过程中,部分组分在混合岩 化过程中发生运移和聚集,长石、石英等造岩矿物发 生伟晶化,石墨鳞片也随之越来越粗大。中国已发 现一些粗鳞片比例较高的矿床,如河南背孜、山东南 墅等,都与混合岩化作用有关。重熔分异产生的长 英质脉体,为石墨重结晶提供了有利条件,从而使整 个矿床的石墨粗鳞片比例大为提高。区域变质型石 墨矿床受到混合岩化作用,石墨发生重结晶的过程 与岩浆热液型石墨矿床的形成机理相似。因此,在 区域变质型石墨矿床中,往往出现岩浆热液型矿床 的一些特征。

区域变质型石墨矿床常产出于古老地台周缘变 质岩地层中,主要见于地壳早期有较高热流值的深 变质地体内,形成石墨的温压范围比较宽。变质程 度从片岩相、角闪岩相到麻粒岩相都有(张清平等, 2011; 柴静等, 1992; Sanyal et al., 2009)(图 4)。这 类矿床虽然矿石品位不高,但是规模很大,其原岩为 沉积于浅海环境的一套富铝黏土岩建造(图 5d、e), 部分夹有基性火山岩。石墨的形成一般与区域动力 热流变质或低温动力变质作用有关。在区域变质过 程中,原岩中的有机质在还原条件下发生脱氧、脱氢 反应,结晶成鳞片状石墨,由于变质作用持续时间 长、变质程度高,区域变质型矿床中的石墨往往结晶 程度较高,通常为鳞片状晶质石墨矿床。一般来说, 变质程度越高,石墨晶体越大,石墨中所含杂质越 少,可选性较好,易于提纯。中国的石墨矿床也以区 域变质型石墨矿床最为重要,而且规模大、储量多、 质量好。

接触变质型石墨矿床主要见于活动大陆边缘, 一般形成于早期挤压-中酸性岩浆活动阶段。石墨 矿体往往产出于侵入岩的外围,原岩为富有机质泥 岩、页岩或者煤系地层,地层中的有机质受到岩浆热 烘烤而变成石墨。由于变质作用持续时间相对较 短,变质条件为高温低压,变质程度相对较低(吴春

图 4 中国石墨矿床在不同时期变质岩系中的分布示意图(据程裕淇等,1994修改) 新生代为主形成(V):1一绿片岩相至角闪岩相;2一一般低于或等于绿片岩相;中生代为主形成(Ⅳ):3一绿片岩相至角闪岩相;4—一般 低于或等于绿片岩相;古生代为主形成(Ⅲ):5-绿片岩相至角闪岩相,祁连山带主要为绿片岩相;6—一般低于或等于绿片岩相;中-新元 古代为主形成(Ⅱ):7一大部为绿片岩相,局部地区为角闪岩相;8—一般低于或等于绿片岩相;古元古代为主形成(Ⅰ):9一大部为角闪岩 相,部分地区为麻粒岩相及绿片岩相;10一中新生代盆地;11一实测/推测区域性断裂;12一石墨矿

Fig. 4 The distribution of graphite deposits in metamorphic series of different periods in China (modified after

Cheng et al., 1994)

Cenozoic strata (V): 1—Greenschist to amphibolite facies; 2—Generally below or at greenschist facies; Mesozoic strata (IV): 3—Greenschist to amphibolite facies; 4—Generally below or at greenschist facies; Paleozoic strata (II): 5—Greenschist to amphibolite facies; The greenschist facies is dominant in Qilianshan Belt; 6—Generally below or at greenschist facies; Middle-Late Proterozoic strata (II): 7—Greenschist facies mostly, and amphibolite facies; locally; 8—Generally below or at greenschist facies; Early Proterozoic strata (II): 9—Amphibolite facies mostly, granulite and greenschist facies; 10—Middle Cenozoic basins; 11—Measured or inferred regional fault; 12—Graphite deposit

林等,1994;张蔚语;2010),所形成的石墨多数为隐 晶质。虽然隐晶质石墨矿床品位较高(最高可达 80%以上)(邵志富等,1988),但可选性差,杂质较多 而不易提纯。

岩浆热液型石墨矿床以新疆苏吉泉为代表。苏 吉泉花岗岩体沿克拉麦里断裂侵入,在侵入过程中 同化了石炭纪地层中富有机质的岩石,地层中长英 质矿物在高温高压下发生熔融,其中的有机质发生 变质而形成石墨,并在岩浆沸腾翻滚条件下可形成 具有球状构造的石墨矿石(图 5c)(张国新等,1996)。 变质条件为高温中压(冯有利等,2007)。

3 成矿时代

石墨矿床多是由富有机质的沉积地层发生变质 作用形成的。石墨矿床的形成要具备 2 个条件,一 是地层沉积时富含有大量有机质,二是沉积地层发 生较为强烈的变质作用。因此,根据石墨矿床的形

图 5 中国典型石墨矿床和矿石野外照片

a. 黑龙江柳毛浸染状晶质石墨矿石; b. 湖南鲁塘块状隐晶质石墨矿石; c. 新疆苏吉泉岩浆热液型石墨矿石; d. 黑龙江萝北云山石墨矿厚 层含石墨石英云母片岩; e. 山东平度刘戈庄石墨矿剖面; f. 湖北三岔垭石墨矿中长英质脉体穿切含石墨片岩地层 Fig. 5 Field photos of typical graphite deposits and ores in China

a. Disseminated crystalline graphite ore from Liumao, Heilongjiang; b. Massive cryptocrystalline graphite ore from Lutang, Hunan; c. magmatic hydrothermal type graphite ore from Suijiquan deposit Xinjiang; d. Thick-bedded graphite-bearing quartz-mica schist from Luobei Yunshan graphite deposit, Heilongjiang; e. Geological section of the Liugezhuang graphite deposit, Pingdu, Shandong; f. Graphitic schist cut by the felsic vein from the Sanchaya graphite deposit, Hubei

成过程,可分为沉积时代和变质时代。中国石墨矿 床的沉积时代主要有太古宙、元古宙、古生代和中生 代。区域变质型石墨矿床是中国石墨矿床的主要类 型,沉积时代多数为元古宙。接触变质型石墨矿的 地层沉积时代多数为石炭纪、二叠纪(邵志富等, 1988),少量为震旦纪、寒武纪和侏罗纪(秦志刚等, 2009;张蔚语,2010),变质作用主要受燕山期岩浆活 动控制。少数石墨矿床的变质作用发生于加里东期

(陈郑辉等,2010)。

区域变质型石墨矿床经历了较为强烈的区域变 质作用,一般来讲,含矿地层均比较古老。中国区域 变质型石墨矿床矿源层的沉积时代从新太古代延续 到寒武纪,其中,元古界在中国古老板块中较为发 育,并且变质作用强烈,是区域变质型石墨矿床最重 要的赋矿层位。中国石墨矿床的变质时代主要在中 条期、晋宁期和加里东期。一些古老富有机质的沉 积地层可能会经历多次区域变质作用,并且可能会 受到后期岩浆事件影响 因此 石墨矿床的变质时代 可能存在多期性。此外,由于区域变质作用并不是 一蹴而就的,通常会持续很长时间。如在山东南墅 石墨矿床所赋存的荆山群中,变质锆石的 U-Pb 年龄 集中在 1900~1850 Ma 和 1840~1820 Ma 分别代 表荆山群富铝片麻岩峰期高压麻粒岩相的变质时代 和峰后中低压麻粒岩相的退变质时代(刘平华等, 2011) 而与石墨共生变质成因黄铁矿的 Re-Os 年龄 为(1779±25)Ma(另文发表)。由于锆石 U-Pb 体系 封闭温度较高,黄铁矿 Re-Os 体系封闭温度较低,记 录了变质作用不同阶段发生的时代,可见,荆山群中 的有机质经麻粒岩相变质形成石墨的过程能够持续 约 100 Ma。

区域变质作用范围较广,佳木斯地块和华北板 块不同位置产出的石墨矿床无论是沉积时代,还是 变质时代都比较一致。在佳木斯地块,含石墨矿床 地层的沉积时代为新元古代(宋彪等,1997),变质作 用主要发生在加里东期(宋彪等,1997;周建波等, 2011),以佳木斯地块南缘麻山群中的柳毛石墨矿 床、北缘大盘道组萝北云山石墨矿床为典型;在华北 地台周缘,分布有山东荆山群中的南墅石墨矿床、辽 宁辽河群中的桓仁石墨矿床、河南太华群中的鲁山、

灵宝石墨矿床、内蒙古集宁群中的兴和石墨矿床等, 其含矿地层的沉积时代为 2.3~2.1 Ga(黄道衺等, 2012;刘平华等,2011;杨长秀,2008;万渝生等, 2000),变质时代为 1.9~1.8 Ga(Guo et al.,2005; 董春艳等 2012);在扬子地台,虽然石墨赋矿层位较 多,从古元古代到寒武纪地层均有,如湖北宜昌崆岭 群中的三岔垭石墨矿床、四川攀枝花盐边群中的中 坝石墨矿床、云南牟定苴林群中的戌街石墨矿床,其 沉积时代为古元古代—新元古代(耿元生等,2012; 杜利林等 2013),区域变质作用发生于晋宁期(耿元 生等 2012);在华夏地块周缘,分布有江西金溪县峡 山罗峰溪群石墨矿床、海南陀烈群伍园石墨矿床、福 建建阳麻源群岭根墙石墨矿床等,沉积时代为新元 古代—寒武纪,变质时代主要为加里东期(徐先兵, 2011)(表1)。

接触变质型石墨矿床和岩浆热液型石墨矿床均 与岩浆作用关系密切,矿体的分布主要受侵入岩控 制 距离岩体越近 变质程度越高 品位也越高 其变 质时代与岩浆侵入时代一致。由煤层受到接触变质 而形成石墨的成矿作用主要发生于东部活动边缘 带 大体相当于古欧亚大陆板块形成晚期 滨太平洋 构造域强烈活动阶段早期。晚古生代古亚洲洋的闭 合使得中国地块与西伯利亚连成一体形成欧亚大 陆。中生代后,中国大陆板块西南缘发生剧烈的碰 撞 从而在西部形成中亚-喜马拉雅型大陆活动带, 表现为挤压隆起、褶皱冲断、地壳加厚、中酸性岩浆 活动。新疆苏吉泉岩浆热液型石墨矿床正是产于这 样的构造背景之下。燕山期太平洋板块向欧亚板块 的强烈俯冲,造成大量中酸性岩浆活动,断裂-岩浆 作用的活跃,为煤层接触变质型石墨矿的形成提供 了有力的条件,如湖南鲁塘石墨矿(表1)。

表 1	中国不同类型、	不同成矿	「域石墨矿	└床成矿	└时代−	-览表
-----	---------	------	-------	------	------	-----

Table 1 Metallogenic epo	ochs for different types of	f graphite deposits in differen	t metallogenic domains	s of China
矿床类型及成矿域	沉积时代	变质时代	变质程度	典型矿床
区域变质作用				
佳木斯地块	新元古代	加里东期(宋彪等 ,1997)	角闪岩相-麻粒岩相	黑龙江柳毛
华北地台	古元古代	中条期(刘平华等 2011)	角闪岩相-麻粒岩相	山东南墅
扬子地台	古元古代—新元古代	晋宁斯 耿元生等 2012)	绿片岩相-角闪岩相	四川中坝
华夏地块 新元古代—寒武纪		加里东期(徐先兵 2011)	角闪岩相	海南伍园
热接触变质				
滨太平洋型大陆活动带	石炭纪—二叠纪	燕山期(朱金初等 2009)	角岩相	湖南鲁塘
华南褶皱带	华南褶皱带 震旦纪—寒武纪		角岩相	江西长寿源
岩浆热液型				
中亚大陆活动带	志留纪—石炭纪	海西期(刘松柏等 2011)	角闪岩相	新疆苏吉泉

由表 2 可知,接触变质型石墨矿床具有较高的 矿石品位,沉积、变质时代成矿规律不是很明显。区 域变质型石墨矿床虽然品位不高,但是规模较大,变 质程度从绿片岩相到麻粒岩相都有产出,同一区域 的石墨矿具有相似的沉积时代和变质时代(表 2)。

4 成矿物源及成因

关于石墨成矿物质的来源问题,长期存在着有 机碳和无机碳2种观点的争论(章少华,1995)。从 表2可见,无论是区域变质型石墨矿床、接触变质型 矿床还是岩浆热液型矿床,由碳同位素显示的成矿 物质来源主要为沉积地层中的有机碳。从柳毛石墨 矿和南墅石墨矿床中石墨及大理岩碳同位素特征的 巨大差异也可以看出,石墨及大理岩中的碳来源不 同。鞍山 BIF铁矿床中石墨的碳同位素特征表明, 石墨中的碳可能来源于无机碳,是由碳酸盐岩脱氧 而形成的(李曙光等,1983)。

区域变质型石墨矿,主要是由于富有机质地层 经过变质作用形成,少数是由碳酸盐岩地层变质形 成。对于接触变质型石墨矿床,其形成与岩浆作用 关系十分密切,岩浆为成矿提供了热源,但从其碳同

衣 2 中国石壶矿体特征一见衣	
-----------------	--

Table 2 Characteristics of graphite deposits in China									
矿床名称	地理位置	矿床规模	亁 矿石品位	矿床类型	赋矿地层	地层时代	变质时代	变质相	资料来源
柳毛	黑龙江鸡西	大型	最高 30%	区域变质	麻山群西麻山组	新元古代	加里东期	麻粒岩相-角闪岩相	柴静等 ,1992
东沟	黑龙江鸡西	中型	平均 6.33%	区域变质	麻山群柳毛组石场	新元古代	加里东期	麻粒岩相-角闪岩相	巩丽等 ,1998
光义	黑龙江穆棱	大型	最高 30%	区域变质	麻山群麻山群余庆组	新元古代	加里东期	角闪岩相	张本臣 2005
云山	黑龙江萝北	特大型	平均 10%	区域变质	兴东群大盘道组	新元古代	加里东期	中高角闪岩相	李寒滨等 2014
神树	黑龙江铁力	小型	平均 65%	接触变质	土门岭组	石炭纪—二叠纪	燕山期	角岩相	莫如爵等 ,1989
泉眼	吉林集安	大型	3% - 6%	区域变质	集安岩群荒岔沟岩组	古元古代	中条期	角闪岩相	吴彦岭等 2011
延边	吉林延边	中型	$60\% \sim 80\%$	接触变质	图门系	石炭纪—二叠纪	中条期	角岩相	钟华邦 ,1990
黑沟	辽宁桓仁	中型	平均8%	区域变质	辽河群高家峪组	古元古代	中条期	低角闪岩相	吴春林等 ,1994
岫岩	辽宁岫岩	中型	5.5% - 8.4%	区域变质	辽河群高家峪岩组	古元古代	中条期	低角闪岩相	周 等 2013
苏吉泉	新疆奇台	小型	2.5% - 8.78%	岩浆热液	苏吉泉花岗岩中		海西期	角岩相	刘松柏等 ,2011
玉泉山	新疆鄯善	小型	4.50%	区域变质	古元古界兴地塔 格群辛格尔岩组	中元古代	加里东期	低角闪岩相	陈刚等 2009
兴和	内蒙古古乌兰察布	5 大型	2.5%~8.7%	区域变质	集宁群	古元古代	中条期	角闪岩相	王时麒 ,1989
查干文都日	内蒙古古达茂旗	大型	2.5%~24.3%	区域变质	白云鄂博群	中元古代	加里东期	角闪岩相	周树亮等 2015
龙关	河北张家口	小型	3%~27%	区域变质	太古界古咀子组	新太古代	中条期	角闪岩相	吴正伟等 ,2008
谈话	河北邢台	中型	平均 3%	区域变质	大和庄组	新太古代	中条期	角闪岩相	徐少康等 2014
背孜	河南鲁山	大型	$3\% \sim 15\%$	区域变质	太华群水底沟组	古元古代	中条期	角闪岩相	杨长秀 ,2008
五里梁	河南淅川	大型	$6.31\% \sim 11.17\%$	区域变质	陡岭群大沟	古元古代	中条期	角闪岩相	曹芳芳等 2012
泉家峪	河南灵宝	中型	4.20%	区域变质	太华群板石山组	古元古代	中条期	角闪岩相	于吉林等 ,2012
小岔沟	河南镇平	大型	4.20%	区域变质	宽坪群	古元古代	中条期	角闪岩相	于吉林等 ,2012
南墅	山东莱西	大型	5%~10%	区域变质	荆山群族旗山组	古元古代	中条期	麻粒岩相-角闪岩相	兰心俨 ,1981
刘戈庄	山东平度	大型	2.5%~6.5%	区域变质	荆山群陡崖组 徐村段	古元古代	中条期	麻粒岩相-高 角闪岩相	颜玲亚等 2012
白山村	山西大同	大型	3%	区域变质	集宁群右所堡组	古元古代	中条期	角闪岩相	于磊 2012
骊山	陕西西安	大型	3% - 7%	区域变质	太华群板石山组	古元古代	中条期	角闪岩相	赵西泽 ,1991
三岔垭	湖北宜昌	大型	$3\% \sim 10\%$	区域变质	水月寺群黄良河组	古元古代	中条期	角闪岩相	张清平等 2011
鲁塘	湖南	大型	平均 75%	接触变质	龙潭组煤层	二叠纪	燕山期	角岩相	邵志富等 ,1988
峡山	江西金溪	小型	平均 9.86%	区域变质	罗峰溪群	寒武纪	加里东期	绿片岩相-低 角闪岩相	余仕军 2012
坪河	四川南江	中型	4.2%~13.5%	区域变质	火地垭群麻 窝子组	中元古代	晋宁期	绿片岩相	莫如爵等,1989
中坝	四川攀枝花	大型	5.4%~6.88%	区域变质	盐边群	新元古代	晋宁期	绿片岩相-低 角闪岩相	莫如爵等,1989
老鹰山	福建永安	小型	平均 80%	接触变质	二叠系童子 岩组煤层	燕山期	燕山期	角岩相	张蔚语 2010
青洋	福建安溪	小型	4.91%	接触变质	二叠系童子岩组 第三段煤系地层中	燕山期	燕山期	角岩相	刘建安 2006
岭根墙	福建建阳	大型	2.50%~3.98%	区域变质	麻源群大金山组	新元古代	加里东期	低角闪岩相	谢惠媚 ,2014
大沟	青海乐都	大型	4.2%~10%	区域变质	蓟县系花石山 群北门峡组	中元古代	加里东期	绿片岩相	陈科 2011
巴勒木特尔	青海都兰	大型	10% - 25%	区域变质	金水口群	中元古代	加里东期	麻粒岩相	王蓉宾 2008
伍园	海南琼海	中小型	10% - 25%	区域变质	陀烈群	寒武纪	加里东期	角闪岩相	黄仕英 ,1979

表 3 不同类型矿床中石墨和大理岩的碳同位素组成对比

Table 3 The comparison of carbon isotope composition between graphite and marble in different types of graphite

			deposits	
矿区名称	矿床类型	测试对象	$\delta^{13}C_{PDB}$ /‰	资料来源
柳毛	区域变质型	石墨	$-24.8 \sim -16.8$	卢良兆等 ,1996 ,李光辉等 ,2008
柳毛	区域变质型	大理岩	-5.6 - 3.0	莫如爵等,1989
南墅	区域变质型	石墨	$-25.9 \sim -14.7$	王克勤,1988
南墅	区域变质型	大理岩	-2.7-1.5	莫如爵等,1989
背孜	区域变质型	石墨	$-21.69 \sim -18.33$	李山坡等 2009
兴和	区域变质型	石墨	$-25.66 \sim -15.77$	王时麒 ,1989 ;Yang et al 2014
什报气	区域变质型	石墨	$-18.16 \sim -7.89$	王时麒,1989
鲁塘	接触变质型	石墨	-17.03	莫如爵等,1989
苏吉泉	岩浆热液型	石墨	-23.9 - 20.5	张国新等 ,1996
鞍山铁矿	BIF 型	石墨	-7.2 - 2.9	莫如爵等,1989

位素特征来看,成矿物质主要是从地层中的有机质 继承下来的。苏吉泉石墨矿产于花岗岩中,看似其 中的碳来源于岩浆,但其碳同位素特征仍然显示成 矿物质来源于地层(张国新等,1996)。由于碳酸盐 岩中的碳和地层中的有机质都有可能为成矿提供物 质来源,碳同位素组成也显示其中的碳主要来源于 有机质(表3),但并不能排除少量碳来源于碳酸盐岩 的可能性。

中国区域变质型石墨矿床含矿建造的原岩性质 一般为黏土-碳酸盐岩沉积,部分矿床夹有基性火山♡ 岩 含矿建造沉积于近陆源浅海滨海地带 还原条件 良好,有机质丰富,为石墨成矿提供了最初的物源。 区域变质作用形成石墨的温压范围比较宽 从麻粒 岩相到绿片岩相都有。一般来讲,变质程度越高,石 墨的鳞片粒度越大。结晶较好的鳞片石墨形成于角 闪岩相或麻粒岩相,细鳞片结构的石墨形成于绿片 岩相。角闪岩相的形成温度为600~800℃ 压力为 400~600 MPa;绿片岩相的形成温度为 300~ 550℃ 压力为 200~500 MPa。佳木斯地块和华北 地台石墨矿床的变质程度达到角闪岩相-麻粒岩相 (图4),石墨晶体粗大 ,资源储量较大 ;扬子地台和华 夏地块石墨矿床的变质程度为绿片岩相-角闪岩相, 石墨晶体细小 ,资源储量较小。接触变质型石墨矿 床是由岩浆侵入煤系地层引起煤层接触变质而成, 接触变质晕的宽度不等,一般可达2~3 km,接触变 质晕内形成各种板岩、千枚岩、变质砂页岩及煤变成 的石墨 ,其变质程度可达角闪石-角岩相和辉石-角岩 相 成矿温度大于 540℃ 但压力小于 200 MPa。

5 典型矿床

5.1 南墅石墨矿床

南墅石墨矿床位于山东省莱西市南墅镇,地处 华北地台东缘胶北古隆起区西南部刘家庄背斜核 部,属沉积变质型晶质石墨矿床。含矿岩系为古元 古界荆山群的大理岩夹石榴斜长片麻岩段和斜长角 闪岩及透辉岩段,变质级别达角闪岩相-麻粒岩相。 通过与石墨共生变质成因黄铁矿 Re-Os 等时线图 (图6)可以看出,区域变质作用成矿发生的时代为 (1779±25)Ma。矿体呈似层状或透镜状产出,固定 碳平均含量为3.94%~5.57%,累计探明资源储量 约1000万吨,属大型矿床。

5.2 鲁塘石墨矿床

湖南省郴州市鲁塘石墨矿床位于粤桂湘赣褶皱 带骑田岭褶皱区鲁塘复向斜东翼,骑田岭花岗岩体 西侧(邵志富等,1988)。矿体赋存于上二叠统乐平 组煤系地层中,属于接触变质型矿床。中生代燕山 期骑田岭花岗岩多与围岩呈齿状或枝叉状侵入接 触。石墨 Re-Os 同位素等时线年龄(155.6±3.6) Ma(图7)较好地记录了鲁塘石墨矿床的形成与骑田 岭岩体第二阶段花岗岩关系紧密,在岩浆烘烤作用 下,在骑田岭岩体西侧外接触带宽约900 m范围内 的地层发生热接触变质,导致靠近岩体的煤变质为 石墨,形成矿体形态复杂的隐晶质石墨矿床。固定 碳含量一般为75%~80%,探明资源储量950万吨, 为大型矿床。 矿

图 6 南墅石墨矿床与石墨共生黄铁矿 Re-Os 等时线 Fig. 6 The Re-Os isochron of pyrite in the Nanshu graphite deposit

5.3 苏吉泉石墨矿床

苏吉泉石墨矿位于新疆克拉麦里山北麓东准噶 尔优地槽褶皱带,剧烈的构造变动,形成一系列紧闭 的线形褶皱和逆冲断裂(刘松柏等,2011),苏吉泉花 岗岩体沿克拉麦里断裂侵入,在侵入过程中同化了 石炭纪地层中富有机质的岩石,地层中的有机质在 高温高压作用下发生变质形成石墨,在岩浆沸腾翻 滚条件下形成独具特色的球状构造矿石。属岩浆热 液型矿床。固定碳含量一般为2.50%~8.78%,探 明资源储量 15 万吨,为小型矿床。

6 结 论

(1)中国石墨资源丰富,但分布不均,呈现出 "东多西少"的特点,以黑龙江省为最多,储量占全国 的45.4%,黑龙江、内蒙古、山东石墨矿为中国石墨 矿三大产地。

(2)按照矿床成因不同,石墨矿床类型可分为 区域变质型、接触变质型和岩浆热液型,其中以区 域变质型石墨矿床最为重要。区域变质型石墨矿床 主要产于古老地台、地块周缘的变质岩系中,接触变 质型石墨矿床主要位于滨太平洋构造域活动大陆边 缘活动带。各种类型石墨矿床中的石墨碳同位素均 显示其来源于沉积地层中有机质。

(3) 区域变质型石墨矿床沉积时代主要为元古 代,变质作用发生在中条期、晋宁期和加里东期,接 触变质型石墨矿沉积时代为古生代和中生代,变质 作用主要发生于加里东期和燕山期。

(4)中国石墨矿床类型较全,分布广泛,找矿前 景较大,但各种类型石墨矿床的成矿物质主要来源 于沉积地层中的有机质。变质程度越高,越有利于 形成质量好的晶质石墨矿床。因此,加强元古宙乃 至于更古老变质岩地层中含有机质地层的含矿性评 价,特别注意有利变质地层与侵入岩的接触带,可能 存在质量更好、品位更高的石墨矿床。

References

- Cao F F, Wang X L and Geng T S. 2012. Geological characteristics and genesis analysis of Wuliliang graphite mine in Xichuan[J]. China Non-metallic Mining Industry Herald, (1): 43-44, 30(in Chinese with English abstract).
- Chai J and Liu S Y. 1992. Geological characteristics of the Liu Mao graphite deposit, Jisi City[J]. Heilongjiang Geology, 3(2): 47-55 (in Chinese).
- Chen G, Li F M and Peng X P. 2009. Discussion for geological characteristics and genesis of Yuquanshan graphite deposit of Xinjiang[J]. Xinjiang Geology, 27(4): 325-329(in Chinese with English abstract).
- Chen K. 2011. Geological conditions and properties of Dagou graphite deposit[J]. Mining Engineering, 9(3): 10-11(in Chinese with English abstract).
- Chen Y C, Wang D H, Chen Z H, Xu Z G, Li J K, Rui Z Y, Sheng J F,

Xu Y, Yuan Z X, Bai G, Zhu M Y, Li H M, Gao L, Li H Q, Qu W J, Chen W, Wang Y B, Zhang Y S, Ye H T, Ying Y J, Wang C H, Liu S B and Fu X J. 2010. The research technology requirements of national important mineral and regional metallogenic regularity[M]. Beijing : Geological Publishing House. 1-179(in Chinese).

- Chen Y J, Liu C Q, Chen H Y, Zhang Z J and Li C. 2000. Carbon isotope geochemistry of graphite deposits and ore-bearing Khondalite series in North China : Implications for several geoscientific problems
 [J]. Acta Petrologica Sinica , 16(2): 233-244(in Chinese with English abstract).
- Chen Z H, Li C, Qu W J, Wang D H, Zhang J Q and Du A D. 2010. Research and preliminary application in metallogenic chronology of Re-Os isotope system in graphite samples J]. Acta Petrologica Sinica, 26 (11): 3411-3417 (in Chinese with English abstract).
- Cheng Y Q. 1994. Generality of Chinese areal geology[M]. Beijing : Geological Publishing House. 389-398 in Chinese).
- Dong C Y , Wan Y S , Xu Z Y , Liu D Y , Yang Z S , Ma M Z and Xie H Q. 2012. SHRIMP zircon U-Pb dating of late Paleoproterozoic Kondalites in the Daqing Mountain area on North China Crator[J]. Science China : Earth Sciences , 42(12): 1851-1862(in Chinese with English abstract).
- Du L L , Guo J H , Geng Y S , Yang C H , Liu F L , Ren L D Zhou X W and Liu P H. 2013. Age and tectonic setting of the Yanbian Group in the southwestern Yangtze Block :Constraints from clastic sedimentary rocks[J]. Acta Petrologica Sinica , 29(2): 641-672(in Chinese with English abstract).
- Feng Y L and Li L. 2007. Genetic research of graphite deposit, Sujiquan, Xinjiang J]. Acta Mineralogica Sinica, (Z) 253-254 (in Chinese with English abstract).
- Geng Y S, Liu Y Q, Gao L Z, Peng N and Jiang X J. 2012. Geochronology of the Mesoproterozoic Tong 'an formation in southwestern margin of Yangtze Craton : New evidence from zircon LA-ICP-MS U-Pb age. J J. Acta Geologica Sinica , 80(9):1479-1490(in Chinese with English abstract).
- Gong L and Zhai F J. 1998. Geological features and genesis of the Donggou graphite deposit , Jixi City[J]. Heilongjiang Geology , 9(1):17-26(in Chinese with English abstract).
- Guo J H , Sun M , Chen F K and Zhai M G. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area , North China Craton : Timing of Paleoproterozoic continental collisior[J]. Journal of Asian Earth Sciences , 24(5):629-642.
- Huang D M , Zhang D H , Wang S Y , Zhang Y X , Dong C Y , Liu D Y and Wan Y S. 2012. 2. 3 Ga magmatism and 1.9 Ga metamorphism

in Xiatang Area, southern margin of the north China craton[J]. Geological Review, 58(3): 565-576(in Chinese with English abstract).

- Huang S Y. 1979. The geological characteristics and genesis of graphite deposit in Hainan , Guangdong J J. Non-Metallic Mines , (3): 10-18(in Chinese).
- Lan X Y. 1981. Study on genesis of Nanshu graphite deposit and on feature of Precambrian graphite-bearing rock association, Shandong J]. Journal of Jilin University (Earth Science Edition), (3): 20-24 (in Chinese).
- Li G H, Huang Y W, Wu R T and Xu D J. 2008. Origin of carbon and concentration of uranium and vanadium from Liumao graphite formation in Jixi[J]. World Geology, 27(1): 19-22(in Chinese with English abstract).
- Li H B and Zhang B. 2014. Metamorphism and its significance of Yunshan graphite deposit in Heilongjiang J J. China Non-metallic Mining Industry Herald , (1):45-46 in Chinese with English abstract).
- Li S G , Zhi X C , Chen J F , Wang J X and Deng Y Y. 1983. Origin of graphites in Early Precambrian banded iron formation in Anshan , Chinf J J. Geochimica ,(2):162-169(in Chinese with English abstract).
- Li S P , Liu B H and Zhang L N. 2009. Geological features and genesis of graphite deposit in Beizi mining area of Lushan County , Henan Province J J. Geology of Chemical Minerals , 31(2): 207-212(in Chinese with English abstract).
- Liu J A. 2006. Geological features and genesis of Qingyang graphite deposit , Anx[J]. West-China Exploration Engineering ,(3):136-138 (in Chinese with English abstract).
- Liu P H , Liu F L , Wang F and Liu J H. 2011. Zircon U-Pb ages and its implications in alumina-rich gneiss in Jinshan Group in Shandong Peninsula J J. Acta Petrologica et Mineralogica , 30(5):829-843(in Chinese with English abstract).
- Liu S B , Yang M Z , Wu H E , Zhao W P and Zhang L L. 2001. Metallogenic model of graphite deposit from Sujiquan , eastern Jungaer [J]. Xinjiang Geology , 29(2):178-182(in Chinese with English abstract).
- Lu L Z, Xu X C and Liu F L. 1996. Kondalites rock series of Precambrian, northern China M J. Chang Chun : Chang Chun Publishing House. 277 (in Chinese).
- Mo R J , Liu S B , Huang C R , Zhang G R , Tan G M , Wang B X and Xiao X Z. 1989. Graphite deposit geology in China[M]. Beijing : China Architecture & Building Press. 65-80(in Chinese).
- Qin Z G , Huang S L and Zhang Q. 2009. The geological features of ore

bed of Yiyang Guankeng graphite mine[J]. Copper Engineering , (4):34-37(in Chinese with English abstract).

- Sanyal P , Acharya B C , Bhattacharya S K , Sarkar A , Agrawal S and Bera M K. 2009. Origin of graphite , and temperature of metamorphism in Precambrian eastern Ghats Mobile Belt , Orissa , India : A carbon isotope approach J l Journal of Asian Earth Sciences , 36(2-3): 252-260.
- Shao Z F and Che Q J. 1988. Geological characteristics of Heye graphite deposit of Quiyang County[J]. Hunan Geology , 7(1): 25-30(in Chinese with English abstract).
- Song B , Li J T , Niu B G and Xu W X. 1997. Single-grain zircon ages and its implications in biotite-plagioclase gneiss in Mashan Group in the eastern Heilongjiang J J. Journal of Earth , 18(3): 306-312(in Chinese with English abstract).
- Tam P Y , Zhao G C , Liu F L , Zhou X W , Sun M and Li S Z. 2011. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt : New SHRIMP U-Pb zircon dating of granulites , gneisses and marbles of the Jiaobei massif in the North China Craton [J]. Gondwana Research , 19(1):150-162.
- Wan Y S, Geng Y S, Liu F L, Shen Q H, Liu D Y and Song B. 2000. Age and composition of the Khondalite series of the North China Craton and its adjacent area J. Progress in Precambrian Research , 23(4):221-237 (in Chinese with English abstract).
- Wang D H , Chen Y C , Xu Z G , Sheng J F , Zhu M Y , Liu X F , Zhang C Q , Wang C H and Wang Y L. 2013. Prediction type of mineral resources and its application in the assessment work of mineral resources potentia[J]. Journal of Jilin University (Earth Science Edition), 43(4):1092-1100(in Chinese with English abstract).
- Wang K Q. 1988. New opinion of geological features and genesis of graphite deposit, Nanshu, Shandong Province [J]. China Non-Metallic Minerals Industry, 1988 (6):1-9 in Chinese with English abstract).
- Wang R B. 2008. Introduction of graphite deposit, Balmuteer, Dulan County J J. China Non-Metallic Minerals Industry, (2): 52-55(in Chinese with English abstract).
- Wang S L. 1989. Characteristic of ore-bearing formation and genesis of the Xingche graphite deposit in Inner Mongolia[J]. Mineral Deposits, & (1):85-96 in Chinese with English abstract).
- Wu C L and Qu T Y. 1994. Geological features and genesis of graphite deposit, Heigou, Huanren County [J]. Journal of Building Materials, (4):25-27 (in Chinese with English abstract).
- Wu Y L , Jie L F , Zhang Y L , Fu M , Ma J C and Wang J M. 2011. Geological features and prospecting direction of Quanyan crystalline

graphite deposit, Ji 'an City, Jilin Province[J]. Jinlin Geology, 30 (3):62-65(in Chinese with English abstract).

- Wu Z W and Yao L. 2008. The ductile shear zone controls the forming of Longguan graphite deposit in eastern Hebe[J]. China Non-Metallic Minerals Industry ,(5):51-54(in Chinese with English abstract).
- Xie H M. 2014. Research on the graphite mineralization condition in Dajinshan Formation, Wuyishan area J J. Science and Technology Innovation Herald, (15):85(in Chinese with English abstract).
- Xu S K , Zhang Q S , Jiao X T , Kang P Y , Zhang J M , Li Y , Chen Y K and Song S C. 2014. Geological characteristics of Tanhua graphite deposit in Xingtai , Hebei Province [J]. Geology of Chemical Minerals , 36(3):152-160(in Chinese with English abstract).
- Xu X B. 2011. Research on Phanerozoic structural deformation and geochronology in Wuyishan area, South China D J. Nanjing Nanjing University. 86-91 (in Chinese with English abstract).
- Yan L Y, Chen Z Y, Du H Z, Sun S X and Zhou X. 2012. Geological characteristics and prospecting criteria of Liugezhuang graphite deposit in Pingdu City of Shandong Province J]. Shandong Land and Resources , 28(2):11-17(in Chinese with English abstract).
- Yang C X, 2008. Zircon SHRIMP U-Pb ages, geochemical characteristics and environmental evolution of the Early Precambrian metamorphic series in the Lushan area, Henan, China J]. Geological Bulletin of China, 27 (4):517-533 (in Chinese with English abstract).
- Yang Q Y , Santosh M and Wada H. 2014. Graphite mineralization in Paleoproterozoic khondalites of the North China Craton : A carbon isotope study J J. Precambrian Research , 255 : 641-652.
- Yu J L and Qiu D S. 2012. Geological characteristic and prospect prediction of graphite mineralization in Henan Province[J]. China Non-Metallic Minerals Industry ,(4):60-62 in Chinese with English abstract).
- Yu L. 2012. Analysis the characteristics of graphite deposits, Baishan County, Xinrong Region, Datong City, Shanxi Province [J]. Friend of Science Amateurs, (24): 119-120(in Chinese with English abstract).
- Yu S J. 2012. The geological characteristics and prospecting direction of Jiangxi Jinxi graphite deposit J]. Non-Metallic Mines , 35(3): 74-77(in Chinese).
- Zhang B C. 2005. Geological features and genesis of the Guangyi graphite deposit of Muling County J J. Jilin Geology, 24(4): 47-53(in Chinese with English abstract).
- Zhang G X , Hu A Q , Zhang H B , Zhang Q F and Hen Y L. 1996. Carbon isotopic evidence for the origin of the spherical graphite in a granite-hosted graphite deposit , Sujiquan , Xinjiang , China [J].

1235

Geochimica, 25(4): 379-386(in Chinese with English abstract).

- Zhang Q P and Tian C S. 2011. Analysis geological features and genesis of graphite deposit, Sanchaya, Hubei [J]. China Non-Metallic Minerals Industry , (Suppl.): 44(in Chinese).
- Zhang S H. 1995. New opinion of genesis of graphite deposit, southwestern Henar[J]. Journal of Building Materials, (1): 2-29 (in Chinese with English abstract).
- Zhang W Y. 2010. Geological characteristics and genesis of graphite deposit in Laoyingshan mine in Fujiar[J]. Journal of Geology, 34(4): 377-381(in Chinese with English abstract).
- Zhao X Z. 1991. The characteristics of crystalloid fine flaky graphite deposit, Lishan, Xi 'ar[J]. Non-Metallic Mines, (5):7-8(in Chinese with English abstract).
- Zhong H B. 1990. preliminary study of spherical graphite deposit, Yanbian, Jilin Province J J. Non-Metallic Mines, 2:6-8 (in Chinese with English abstract).
- Zhou D and He W. 2013. Geological features and genesis of rich graphite deposit, Xiuyan, Liaoning J]. Ground Water, 35(5):151-153(in Chinese with English abstract).
- Zhou J B , Zhang X Z , Simon A W and Zheng C Q. 2011. Confirming of the Heilongjiang 500 Ma Pan-African Khondalite Belt and its tectonic implications[J]. Acta Petrologica Sinica , 27(4): 1235-1245(in Chinese with English abstract).
- Zhou S L , Wang Y P , Zhang X , Gao Y B , Wang G F , Jiang X C , Yu H Y and Zhao J X. 2015. Geological features and development economic significance of ZhaganWenduri graphite deposit of Damao Banner , Inner Mongolia J J. Jinlin Geology , 34(1): 61-66(in Chinese with English abstract).
- Zhu J C , Wang R C , Zhang P H , Xie C F , zhang W L , Zhao K D , Xie L , Yang C , Che X D , Yu A P and Wang L B. 2009. Zircon U-Pb geochronological framework of Qitianling granite batholith , middle part of Nanling Range , South China J]. Science in China Series D : 39(8):111-112(in Chinese).

附中文参考文献

- 曹芳芳,王喜亮,耿同升.2012.淅川县五里梁石墨矿区地质特征及 成因浅析[J].中国非金属矿工业导刊,(1):30,43-44.
- 柴静,刘树友.1992.鸡西柳毛石墨矿床地质特征及成因浅析[J]. 黑龙江地质,3(2):47-55.
- 陈刚,李凤鸣,彭湘萍.2009.新疆玉泉山石墨矿床地质特征及成因 探试[J].新疆地质,27(4):325-329.
- 陈科. 2011. 大沟石墨矿地质概况及矿床特征 J] 矿业工程, 9(3):

10-11.

- 陈衍景,刘丛强,陈华勇,张增杰,李超.2000.中国北方石墨矿床 及赋矿孔达岩系碳同位素特征及有关问题讨论[J].岩石学报, 16(2):233-244.
- 陈毓川,王登红,陈郑辉,徐志刚,李建康,芮宗瑶,盛继福,徐珏, 袁忠信,白鸽,朱明玉,李厚民,高兰,李华芹,屈文俊,陈文, 王彦斌,张永生,叶会寿,应立娟,王成辉,刘善宝,付旭杰. 2010. 全国重要矿产和区域成矿规律研究技术要求[M].北京: 地质出版社,1-179.
- 陈郑辉,李超,屈文俊,王登红,张家菁,杜安道.2010.石墨 Re-Os 同位素分析及其在成矿年代学中的初步运用[J].岩石学报,26 (11):3411-3417.
- 程裕淇. 1994. 中国区域地质概论[M]. 北京 地质出版社. 389-398.
- 董春艳,万渝生,徐仲元,刘敦一,杨振升,马铭株,颉颃强.2012. 华北克拉通大青山地区古元古代晚期孔兹岩系:锆石 SHRIMP U-Pb 定年[1].中国科学(地球科学),42(12):1851-1862.
- 杜利林,郭敬辉,耿元生,杨崇辉,刘福来,任留东,周喜文,刘平 华. 2013. 扬子西南缘盐边群时代及构造环境 来自碎屑沉积岩 的约束 J] 岩石学报,29(2):641-672.
- 冯有利,李丽.2007.新疆苏吉泉石墨矿床的成因研究[J].矿物学报,(Z1):253-254.
- 耿元生,柳永清,高林志,彭楠,江小均.2012.扬子克拉通西南缘 中元古代通安组的形成时代-锆石 LA-ICP MS U-Pb 年龄[J].地 质学报,86(9):1479-1490.
- 巩丽,翟福君.1998.鸡西市东沟石墨矿地质特征及成因[J]黑龙 江地质, ((1):17-26.
- 黄道袤,张德会,王世炎,张毅星,董春艳,刘敦一,万渝生. 2012.
 华北克拉通南缘豫西下汤地区 2.3 Ga 岩浆作用和 1.94 Ga 变质
 作用-锆石 U-Pb 定年和 Hf 同位素组成及全岩地球化学研究 J].
 地质论评,58(3):565-576.
- 黄仕英.1979.广东海南伍园石墨矿地质特征及矿床成因[J].非金 属矿,(3):10-18.
- 兰心徑. 1981. 山东南墅前寒武纪含石墨建造的特征及石墨矿床的 成因研究[]]. 吉林大学学报(地球科学版),(3):20-24.
- 李光辉,黄永卫,吴润堂,徐大杰.2008.鸡西柳毛石墨矿碳质来源 及铀、钒的富集机制[J].世界地质,27(1):19-22.
- 李寒滨,张冰.2014. 黑龙江云山石墨矿床变质作用及其意义[J]. 中国非金属矿工业导刊,(1):45-46.
- 李山坡,刘宝宏,张丽娜.2009.河南省鲁山县背孜矿区石墨矿床地 质特征及其成因探试[].化工矿产地质,31(2):207-212.
- 李曙光,支霞臣,陈江峰,王俊新,邓衍尧.1983.鞍山前寒武纪条 带状含铁建造中石墨的成因[J].地球化学,(2):162-169.

刘建安. 2006. 安溪青洋石墨矿床地质特征及其成因探讨[j]. 西部

探矿工程,(3):136-138.

- 刘平华,刘福来,王舫,刘建辉.2011.山东半岛荆山群富铝片麻岩 锆石 U-Pb 定年及其地质意义[J].岩石矿物学杂志,30(5): 829-843.
- 刘松柏,杨梅珍,吴洪恩,赵文平,张练练.2011.新疆苏吉泉球状 石墨矿床成矿模式[]]新疆地质,29(2):178-182.
- 卢良兆,徐学纯,刘福来. 1996. 中国北方早前寒武纪孔兹岩 系[M].长春,长春出版社. 277.
- 莫如爵,刘绍斌,黄翠蓉,张光荣,谭冠民,王宝娴,肖祥章.1989.中 国石墨矿床地质 M].北京:中国建筑工业出版社.65-80.
- 秦志刚,黄生龙,张青. 2009. 江西省弋阳县管坑石墨矿床地质 特征 J].铜业工程,(4):34-37.
- 邵志富,车勤建.1988.桂阳县荷叶石墨矿床地质特征[J].湖南地 质, ((1):25-30.
- 宋彪,李锦轶,牛宝贵,徐文喜.1997.黑龙江省东部麻山群黑云斜 长片麻岩中锆石的年龄及其地质意义[J].地球学报,18(3): 306-312.
- 万渝生,耿元生,刘福来,沈其韩,刘敦一,宋彪. 2000. 华北克拉 通及邻区孔兹岩系的时代及对太古宙基底组成的制约[J]. 前寒 武纪研究进展,23(4):221-237.
- 王登红,陈毓川,徐志刚,盛继福,朱明玉,刘喜方,张长青,王成辉,王永磊. 2013. 矿产预测类型及其在矿产资源潜力评价中的运用[J]. 吉林大学学报(地球科学版),43(4):1092-1100.
- 王克勤. 1988. 山东南墅石墨矿床地质特征及矿床成因的新 认识 J]. 中国非金属矿工业导刊,(6):1-9.
- 王蓉宾. 2008. 都兰县巴勒木特尔石墨矿床简介[]]. 中国非金属矿 工业导刊,(2):52-55.
- 王时麒. 1989. 内蒙兴和石墨矿含矿建造特征与矿床成因[J]. 矿床 地质, & (1):85-96.
- 吴春林,曲廷耀.1994. 桓仁县黑沟石墨矿床地质特征及成因 研究 J].建材地质,(4):25-27.
- 吴彦岭,解立发,张宇亮,付猛,马骏驰,王继梅.2011. 集安市泉 眼晶质石墨矿地质特征及找矿方向[J]. 吉林地质,30(3):62-65.
- 吴正伟,姚立.2008. 冀北龙关石墨矿区的韧性剪切带及其控矿 机理[]] 中国非金属矿工业导刊,(5):51-54.
- 谢惠媚. 2014. 武夷山地区大金山组地层的石墨成矿条件探究[J]. 科技创新导报,(15):85.
- 徐少康,张青松,焦学涛,康鹏跃,张慧敏,李洋,陈宇凯,宋世超.

2014. 河北省邢台县谈话石墨矿地质特征[J]. 化工矿产地质, 36(3):152-160.

- 徐先兵. 2011. 武夷山地区显生宙构造变形与年代学研究(博士论 文 JD]. 导师:张岳桥. 南京:南京大学. 86-91.
- 颜玲亚,陈军元,杜华中,孙淑贤,周雯.2012.山东平度刘戈庄石 墨矿地质特征及找矿标志[]]山东国土资源,28(2):11-17.
- 杨长秀. 2008. 河南鲁山地区早前寒武纪变质岩系的锆石 SHRIMP U-Pb年龄、地球化学特征及环境演化[J]. 地质通报, 27(4): 517-533.
- 于吉林,邱冬生.2012.河南省石墨成矿地质特征及远景预测[J]. 中国非金属矿工业导刊,(4):60-62.
- 于磊. 2012. 山西省大同市新荣区白山村石墨矿床特征浅析[J]. 科学之友,(24):119-120.
- 余仕军. 2012. 江西金溪地区石墨矿床地质特征及找矿方向[J]. 非 金属矿, 35(3):74-77.
- 张本臣. 2005. 穆棱县光义石墨矿地质特征及成因浅析[J]. 吉林地 质,24(4):47-53.
- 张国新,胡霭琴,张鸿斌,张前锋,申佑林. 1996. 新疆苏吉泉石墨 矿床成因的碳同位素证据 []. 地球化学,25(4):379-386.
- 张清平,田成胜.2011.湖北三岔垭石墨矿地质特征及成因分析 J]. 中国非金属矿工业导刊(增刊):44.
- 章少华.1995.豫西南石墨矿床成因新认识 J] 建材地质,(1):2-29.
- 张蔚语. 2010. 福建老鹰山矿区石墨矿床特征及成因[J]. 地质学刊, 34(4):377-381.
- 赵西泽. 1991. 西安骊山晶质细鳞片石墨矿床地质特征[J]. 非金属 矿,(5):7-8.
- 钟华邦. 1990. 吉林延边球状石墨矿床初步研究[J]. 非金属矿, (2):6-8.
- 周頔,何伟. 2013. 辽宁岫岩丰富石墨矿地质特征及成因分析[J]. 地下水,35(5):151-153.
- 周建波,张兴洲,Simon AW,郑常青.2011. 中国东北500 Ma 泛非 期孔兹岩带的确定及其意义[1]. 岩石学报,27(4):1235-1245.
- 周树亮,王云佩,张旭,高原冰,王高峰,蒋秀程,喻海洋,赵际新. 2015. 内蒙古达茂旗查干文都日区石墨矿地质特征及开发经济 意义[_].吉林地质,34(1):61-66.
- 朱金初,王汝成,张佩华,谢才富,张文兰,赵葵东,谢磊,杨策,车 旭东,于阿朋,王禄彬. 2009. 南岭中段骑田岭花岗岩基的锆石 U-Pb年代学格架,J]. 中国科学(D辑), 39(8):111-112.