文章编号 0258-7106(2006)05-0613-07

西藏搭格架热泉型铯矿床同位素特征及形成过程。

赵元艺¹,聂凤军¹,侯增谦²,李振清¹,赵希涛³,马志邦³

(1中国地质科学院矿产资源研究所 北京 100037 2 中国地质科学院地质研究所 北京 100037;3 中国科学院地质与地球物理研究所 北京 100029)

摘 要:文章系统研究了西藏搭格架超大型热泉型铯矿床泉华的 Si、O、C、Sr、Nd 同位素特征,并探讨了矿床的 形成过程。结果表明,泉华的 δ^{30} Si = -0.7‰~-1.5‰,平均为-0.9‰; δ^{18} O=0.4‰~19.5‰,平均为8.4‰; δ^{13} C_{PDB}= -5.9‰~-0.1‰,平均为-2.8‰; s^{87} Sr/⁸⁶Sr = 0.71062~0.71247, c(Sr)=85.9~112.1;¹⁴³ Nd/¹⁴⁴ Nd = 0.51214~0.51225 (Nd) = -9.7~-7.6。这种同位素特点体现出 CO₂ 主要为壳源,其次为生物源,矿床中的铯来 源于上地壳内的熔融岩浆。印度—亚洲大陆的碰撞作用,是导致硅华铯矿成矿作用的关键因素。成矿作用的因子 分析结果表明 C₈的成矿作用与热水携带物质及氧化作用关系密切,因此这种矿床仅能形成于地表,而形成在地下 和海底的可能性很小。C₈与 SiO₂ 没有明显相关性,反映出 C₈与 SiO₂ 的来源不一致。矿床形成的主要因素是热泉 水的脱气(CO₂), f(O₂)升高和温度压力的骤然降低。

关键词:地球化学 热泉型铯矿 同位素 建华 西藏搭格架 中图分类号:P618.84 文献标识码:A

Isotope characteristics and formation process of hot spring type cesium deposit in Targejia, Tibet

ZHAO YuanYi¹, NIE FengJun¹, HOU ZengQian², LI ZhenQing¹, ZHAO XiTao³ and MA ZhiBang³ (1 Institute of Mineral Resources, Chinese Academy of geological Science, Beijing 100037, China; 2 Institute of Geology, Chinese Academy of Geological Science, Beijing 100037, China; 3 Institute of Geology and Geophysics,

Chinese Academy of Sciences, Beijing 100029, China)

Abstract

The Targejia hot spring geyserite cesium deposit, located in Ang Ren County of Xigaze district in Tibet, remains very active. The extent of its activity is rarely-seen in China. The quantity of cesium in this deposit has reached the reserves of a superlarge deposit. This paper has studied the Si, O, C, Sr and Nd isotopic characteristics of the sinter. The results indicate that δ^{30} Si values of the sinter are $-0.7\% \sim -1.5\%$ with an average of -0.9%, δ^{18} O are $0.4\% \sim 19.5\%$ with an average of 8.4%, $\delta^{13}C_{PDB}$ are $-5.9\% \sim -0.1\%$ with an average of -2.8%, 87 Sr/ 86 Sr = $0.71062 \sim 0.71247$, $\varepsilon(Sr) = 85.9 \sim 112.1$, 143 Nd/ 144 Nd = $0.51214 \sim 0.51225$, and $\varepsilon(Nd) = -9.7 \sim -7.6$. These isotopic data suggest that the material of the deposit was derived from the melted magma of the upper crust. The key factor controlling the ore-forming process should be the collision of the Indus-Asian continent. Factor analysis of the ore-forming process indicates that Cs was strongly related to the material carried by hot water under an oxidation condition. Cs and SiO₂ do not show obvious correlation, which implies that Cs and SiO₂ did not have strong genetic relationship. The main factors governing the ore-forming

* 本文得到国家科技部 973 项目 2002CB412606 课题资助

第一作者简介 起元艺 ,男 ,1966 年生 ,研究员 ,从事矿床学、地球化学研究。E-mail :yuanyizhao2@sina.com。 收稿日期 2006-01-23 ; 改回日期 2006-05-19。张绮玲编辑。 process of this deposit seemed to be CO_2 degassing, rising of $f(O_2)$, and sudden temperature-pressure falling of the thermal fluids, with the reaction of Cs and SiO₂ possessing the second importance.

质

Key words: geochemistry, hot spring type cesuim deposit; geochemistry of mineral deposit; geyserite; Targejia in Tibet

搭格架热泉型硅华铯矿位于西藏自治区日喀则 地区昂仁县桑桑区境内,海拔5000m左右。该矿区 为现今仍在活动的间歇喷泉,其主喷泉活动规模之 大为国内所罕见,且矿床铯的资源量达到超大型矿 床的规模 郑绵平等 ,1995)。从空间上看,搭格架铯 矿位于南北向的打加错-打加芒错-搭格架构造带(赵 元艺等 2006a 之图 1)。在矿区,流经泉区的长马曲 河流将泉区分为东、西2部分 其中东部硅华分布面 积较大 约占整个泉区的 70% 现今仍在活动的喷泉 较少 洒部硅华分布面积相对东部较小 但拥有现今 仍在活动的喷泉,其中规模最大的喷泉就位于西部 的硅华台地上。根据搭格架热泉野外分布的地貌特 征 將其划分为 6 套泉华,第一套泉华主要为钙华, 第二套至第六套泉华均为硅华,分布于长马曲河两 岸 其矿物成分主要为胶状与粒状蛋白石。根据形 成年龄的不同 將这6套泉华分为5个成矿阶段(赵 元艺等 2006a 之图 3)。

总体来看,前人对搭格架铯该矿床的地质与地 球化学的研究甚为薄弱,鉴定其为现代典型的热水 成因,而其主要的赋矿岩石硅华为硅质岩的一种。 因此系统查明搭格架铯矿床产出的区域地质背景、 不同形成阶段泉华的矿物组合、各阶段的成矿年龄、 地球化学及同位素组成等特征,无论对研究现今热 水成矿作用还是以将今论古原则探讨古代有关硅质 岩矿床成因均有参考价值。在查明该矿床地质特征 及成矿时代(赵元艺等,2006a;2006b)与地球化学特 征[•]的基础上,本文系统探讨了该矿床泉华的同位素 特征及形成过程。

1 泉华的同位素特征

1.1 测试方法及精度

搭格架泉华(钙华和硅华)的 Si、O、C 同位素组 成如表 1 所示, Sr、Nd 同位素组成如表 2 所示。Si 同位素的分析方法为 SiF₄法,质谱计型号: MAT251EM 分析精度:±0.1‰;C、O 同位素的分 析方法:100%磷酸法,质谱计型号:MAT251EM,分 析精度:±0.2‰。Sr 与 Nd 同位素由中国科学院广 州质谱中心 ISO PROBE MC-ICPMS 实验室分析, 分析方法见文献(梁细荣等,2002;韦刚健等,2002)。 1.2 硅同位素

一般地, 硅华的 δ^{30} Si 为 -3.4% $\sim 0.2\%$, 并且 同一地区硅华的 δ^{30} Si 也有相当大的变化, 例如美国 内华达州汽艇泉硅华的 δ^{30} Si 0.1% $\sim -1.2\%$, 而怀 俄明州黄石公园硅华的 δ^{30} Si -0.7% $\sim -1.9\%$, 中 国云南腾冲热海硅华的 δ^{30} Si -0.6% $\sim 0.7\%$ (丁悌 平等, 1994)。从搭格架硅华的硅同位素组成(表1) 可以看出,不同套次的硅华的 δ^{30} Si 不相同,其中第 II套的 δ^{30} Si 为 -1.0% $\sim -0.7\%$, 第III套 δ^{30} Si 为 -0.8% 第IV套的 δ^{30} Si 为 -1.5% $\sim -0.7\%$ 。 硅华 的形成年龄 ka B. P.)由 201.9 ± 36.0 \rightarrow 39.4 ± 1.9 \rightarrow 29.9 ± 3.4 \rightarrow 25.0 ± 3.9 \rightarrow 现代(赵元艺等, 2006a; 2006b)相应地, δ^{30} Si ∞)呈现 $-1.0 \rightarrow -0.8 \rightarrow -0.7$ $\rightarrow -0.8 \rightarrow -1.5 \rightarrow -0.7$ 的变化趋势。可以看出,搭 格架硅华 δ^{30} Si $= -0.7 \sim -1.5\%$, 平均值为 -0.9%。 1.3 氧、碳同位素

由搭格架硅华的 δ¹⁸O_{SMOW}值(表 1)可以看出, 按硅华形成时代由早到晚,即从第 [] 阶段的(99.1± 12.3)ka B. P. (样号: 8-3-5-1)到第Ⅲ阶段早期的 (39.4±1.9)ka B. P. (样号 8-3-4-2)再到第V阶段 中晚期(样号:8-3-2-4),δ¹⁸O_{SMOW}变化为 0.4‰→ 5.3‰→19.5‰,显示出由小到大变化的趋势,表明 愈到晚期 硅华中 O¹⁸含量愈高 相应的 ,早期的泉华 所形成的温度高于晚期,这种温度特征与云南腾冲 的热泉系统硅华的温度变化是一致的(张天乐等, 1997)。从碳同位素组成(表1)可以看出,泉华 δ¹³C_{PDB}的变化范围为 – 5.9‰ ~ – 0.1‰,介于沉积 碳酸盐与岩浆碳酸盐之间 推测应为热水在活动过 程中溶解了地层中的沉积碳酸盐所致。其中2件钙 华样品的 δ^{13} C_{PDB}的变化范围为 -0.2‰ ~ -0.1 ‰, 与沉积碳酸盐的更为接近。因此 总体看来 在泉华 形成过程中 地层中的沉积碳酸盐应为其主要来源。

Table 1 Si C and O isotopic composition of Targejia sinter												
序号	点号	样号	泉华 类型	套次	成矿阶段	泉华年代 /ka B. P.	$\delta^{30} Si_{NBS}$ -28/‰	$\delta^{18}O_{V-SMOW}$ /‰	$\delta^{13}C_{V-PDB}$ /‰			
1	8-2-4	8-2-4-2-2	硅华	VI	V	现代	-0.7	_	—			
2	8-3-2	8-3-2-4	硅华	VI	V	现代	-1.5	19.5	-5.9			
3	8-3-4	8-3-4-1	硅华	Ш	Ш	25.0 ± 3.9	-0.8	_	—			
4	8-3-4	8-3-4-2	硅华	Ш	Ш	39.4 ± 1.9	-0.8	5.3	-2.6			
5	8-3-5	8-3-5-1	硅华	Π	П	99.1 ± 12.3	/	0.4	-3.4			
6	8-3-5	8-3-5-2	硅华	П	П	29.9 ± 3.4	-0.7	/	/			
7	8-3-10	8-3-10-2	硅华	П	Ι	201.9 ± 36.0	-1.0	_	—			
8	8-3-7	8-3-7-1	钙华	Ι	Ш	36.7 ± 3.1	/	-4.7	-2.0			
9	8-3-6	8-3-6-1	钙华	Ι	Ш	/	/	-5.0	-0.1			

表 1 搭格架泉华 Si、C、O 同位素组成

"—"为含量少、未测出", / "为未测。套次指据野外地貌的不同而划分的泉华堆积体;成矿阶段为据测年结果所划分的不同形成阶段。

另外 $\delta^{13}C_{PDB}$ 在成矿的第 II 阶段为 – 3.4‰,第 III 阶 段为 – 2.6‰ (钙华为 – 2.0‰ ~ – 0.1‰),而至第 V阶段为 – 5.9‰。因而总体来看,泉华的 $\delta^{13}C_{PDB}$ 呈现 出小→大→小的变化。

1.4 锶-钕同位素

锶、钕同位素在火山岩、岩浆岩与变质岩的物质 来源的研究中发挥了重要作用,在海相硅质岩的研 究中已有较多的数据发表(吕志成等,2004;黄思静 等 (1999)。但在热水成因泉华的研究中至今尚未见 报道。本文测定了打格架硅华的4件样品的锶、钕 同位素组成(表2)。可以看出搭格架硅华样品的 ∉ Sr 的变化范围为 85.9~112.1 ∉ Nd 的变化范围 为 $-9.7 \sim -7.6$ 。⁸⁷Sr/⁸⁶Sr(0.71062 \sim 0.71247)与 上地壳⁸⁷Sr/⁸⁶Sr(0.714)的相近。对¹⁴³Nd/¹⁴⁴Nd 仅 样品 8-3-4-2 的(¹⁴³ Nd/¹⁴⁴ Nd = 0.51214) 与下地壳 (¹⁴³Nd/¹⁴⁴Nd=0.5121)的相近,其余均与上地壳的 (¹⁴³Nd/¹⁴⁴Nd=0.5123)相近。4 件样品间的 € Sr) 和 (Nd)较为相近,在 (Sr) (Nd)图中的位置(图 1) 也显示出它们位于上地壳与下地壳之间并与上地 壳的特征更为相近。因此,总体看来,搭格架硅华的 锶、钕同位素反映出其物质来源以上地壳为主的特 征。

2 矿床的形成过程

2.1 铯的成矿时限

在综合搭格架等冈底斯热泉华热水活动特征的

基础上,侯增谦等(2001)曾指出 0.5 Ma 以来,青藏 高原有 2 次[(0.37 ± 0.05) Ma 和 0.1 Ma 以来]较 大规模的快速隆升,该认识在青藏高原相关沉积地 区得到了印证。经与搭格架铯矿成矿年代学的对比 (赵元艺等 2006a 2006b),可以认为 0.1 Ma 以来高 原的快速隆升是搭格架铯矿成矿作用的大背景。搭 格架 硅 华 形 成 于 5 个 阶 段(赵元艺等,2006a; 2006b),并且在第 [] 阶段晚期和第 []] 阶段早期有一 期钙华活动。从各阶段硅华中 Cs 的含量^①可以看 出,以第 []、V 阶段的 Cs 含量最高。反映出由第 [] 阶段向后,Cs 的成矿作用变强的特征。

青藏高原古大湖的存在是不争的事实,古大湖 的消失是青藏高原表面的重要事件,其必然引起地 球内部的响应。根据西藏古大湖的研究成果,晚更

Table 2 Sr and Nd isotope compositions of Targejia geyserite												
8-3-1-1	V	272	17.7	0.71120	94.1	0.51225	-7.7					
8-3-1-5	V	87.1	8.49	0.71186	103.5	0.51225	-7.6					
8-3-4-2	Ш	114	14.8	0.71247	112.1	0.51214	-9.7					
8-3-10-3	Ι	120	9.49	0.71062	85.9	0.51221	-8.3					
上地売*				0.714	133.8	0.5123	-7.2					
下地売*				0.706	20.3	0.5121	-10.3					
売下岩石圏*				0.7041	-6.7	0.5128	3					
地幔≛				0.7028	-25.1	0.5131	9.8					

- 两藏塔格如硅化 Sr ⊑ Nd 同位表组成

*上地壳、下地壳、壳下岩石圈和地幔等据赵伦山等,1988。(Sr)与(Nd)计算中(⁸⁷Sr/⁸⁶Sr)_{HUR}=0.70457(¹⁴³Nd/¹⁴⁴Nd)_{HUR}=0.512638。

新世的(12.5~9.6)×10⁴ a B.P. 期间西藏发育有面 积达近 15 万 km² 的古大湖,在纳木错最高湖相沉 积高出现代湖面 139.2 m(赵希涛等,2002),因纳 木错是藏北海拔最高的湖泊,故按纳木错可计算出 该大湖解体时 损失的最小水量为 2.25×10¹³ t,该 巨量水从西藏流失后,必然会造成地球的"弹性回 返"使地壳深处或地幔物质的上涌。将该水量折算 成岩石(按比重 2.5 t/m³ 计)则其上涌量为(300~ 350 ¥2.5,即120~140 m。

该事件的发生将引起地表热泉发育。因而据此 时段推测,搭格架硅华发育的第2阶段(99.1± 12.3)ka B.P.及以后应为铯的最大规模的成矿期, 该时限得到 0.1 Ma 青藏高原快速隆升证据(侯增 谦等 2001)的支持。

2.2 热水与铯的来源

关于硅华中铯的最初源区 综合西藏的其他硅 华铯矿的研究成果 前人认为铯属壳层 并与青藏高 原多次碰撞幕的壳源重熔岩浆-热水流体有关(郑绵 平等 .1995)。对搭格架铯矿 从空间上看其位于南 北向的打加错—打加芒错—搭格架构造带和东西向 的雅鲁藏布构造带交汇部位 其中打加错—打加芒 错---搭格架构造带于更新世开始活动 :而雅鲁藏布 构造带是在燕山晚期—喜马拉雅早期缝合带基础上 继承性活动的结果。在这种不同方向构造复合部位 深处 因南北印度—欧亚两大板块碰撞作用 形成壳 内熔融层 成为地热田初始热源 岩浆上侵形成壳内 串珠状岩浆囊 其中距地表较近的岩浆囊是地热田 的主要热能来源(靳宝福,1996),具体来说,应为深 15 km 的岩浆房或部分熔融层驱动了热水流体的对 流循环(侯增谦等 2004)。

搭格架位于地热活动的高温背景上(李振清等 , 2005),该认识与泉水的实测温度、Cl/F比值[●]及高 达 7.7 的氧同位素漂移(郑绵平等,1995)所显示的 高温特征是一致的。地热田气体为典型的 CO₂ 型, 热水为 Cl-Na 型。这种 Cl-Na 型热水释放 CO2 型气 体的例子在普兰的曲普、萨迦的卡乌、措美的古堆均 有出现(侯增谦等,2001)。该事实表明,搭格架矿 区热水与岩浆活动有关(李振清 2002) 其源区为岩 浆源或深循环成因。一般认为 Rb、Cl 是从岩浆期 后热液中析出的特征元素 因此 ,Rb、CI 的高含量热 流体源自深部 ,而低含量源自浅部。 据包括搭格架 在内的西藏热水中 Cs 与这两种元素的相关图(图 2)可以看出 Cs 与 Rb、Cl 均呈正相关性。因此可以 推断这种高含量的铯源自深部热储 ,而低含量的源 自浅部热储 成矿流体中的铯主要为深部热储与浅 部热储混合作用所形成 ,但围岩淋滤作用所提供铯 的量是很少的。这种深部热储与浅部热储流体混合 作用的现象也得到矿区泉水的 bD 与 b¹⁸O 同位素 (郑绵平等,1995)的支持。

搭格架矿床 Fe-Mn-Al 图解等表明其以热水沉 积作用为主,生物作用为辅的形成方式,而 Al/Fe、 Si/Al, ΣREE , $\Sigma LREE / \Sigma HREE$, La/Ce, Eu/Eu* π U/Th 比值均反映出第Ⅱ、V 阶段与其余阶段的不 同• 并且以热水物质所起的作用更大,相对而言围 岩作用较小。热泉气体的 He 同位素显示为壳源(李 振清 2002 侯增谦等 2004) , 硅同位素(表1) 显示为 典型的热水沉积 氧和碳同位素显示其壳源及生物特 点(表1), 硅华的 Sr-Nd 同位素显示为上地壳源(表 2、图1)。因此 总体看来铯主要由热水从深部的上地 売内熔融层带来 而围岩提供的铯数量很少。

图 2 西藏热水中 Cs-Cl及 Cs-Rb 相关图(侯增谦,未刊资料) ★--侯增谦等(2000~2002年)采样结果,●--侯增谦等 据佟伟(1981)资料

Fig. 2 Correlation of Cs-Cl and Cs-Rb in Targejia geyserite (by Hou Zengqian)

★—Data from Hou Zengqian ,●—After Tong Wel(1981)

2.3 铯的成矿环境

将搭格架铯矿的样品分析结果进行因子分析, 获得6个因子解如下(元素符号具下划线者,其因子 载荷为负值):

- F1: \underline{Ce} -<u>Nd</u>-<u>Zr</u>-<u>Co</u>-<u>La</u>-<u>CaO</u>-Be-Fe₂O₃
- F2 : \underline{Y} - \underline{Gd} - \underline{Sr} - \underline{Pr} - \underline{Zn} - \underline{TiO}_2 - \underline{Cr} - $\underline{Na}_2\underline{O}$ -CaO
- F3: \underline{MgO} - \underline{Sm} - \underline{FeO} - \underline{Er} - \underline{Th} - $\underline{Na_2O}$
- F4: $Fe_2O_3-\underline{Nd}-\underline{Cs}-\underline{MnO}-\underline{Er}-\underline{Cr}-\underline{Sb}-\underline{Dy}-U$
- F5: 烧失量-Hf-Li-Pb-Cu-SiO₂-Eu-<u>Na₂O-V-Gd</u>
- F6 : $P_2O_5-\underline{K_2O}-\underline{Yb}-\underline{Ta}-Cr-B-Ga-Al_2O_3-SiO_2$

可以看出,在F4因子中,Cs与Fe₂O₃、MnO等 呈正相关和与Cr、U呈负相关,由于Cr与U主要沉 积在环原性的热水沉积物中,表明Cs的成矿与热水 携带物质及氧化作用关系密切。可以推断,只 有在具备氧化条件的地方才能找到该类型矿床,而 在海底及地表之下的还原环境,这类矿床存在的可 能性是非常小的。SiO₂ 出现在 F5 与 F6 因子中,与 Cs 之间没有明显的相关性,反映 Cs 与 SiO₂ 没有密 切来源关系,但呈硅华铯矿,为"殊途同归"。

2.4 铯的成矿动力学

上述各部分所指示的信息表明,搭格架铯矿的 成矿作用可概括如下 晚更新世,在印度—亚洲大陆 碰撞的背景下,加上西藏古大湖的泄水所引起地壳 减负回弹,使幔源或壳源物质上涌和侵位,从而形成 壳内熔融层(李振清等,2005),其中搭格架泉华的第 I阶段为其前奏。此后,由于壳内熔融层的多次活 动,开始了较大规模的热水活动和成矿作用。在 (3.6~3.9)×10⁴a B.P.期间有一次强烈的熔融层 的脱气(CO₂)作用,形成钙华,该脱气过程中并无 Cs 的富集。硅华中的 Cs 来自深部地壳熔融层,Si 主要 来自围岩,热水由大气降水下渗后受壳内熔融层改 造后携 Cs 上升。

一般地,热水中富含 K、Na、Ca 等元素,它们的存在以及浓度的增加会破坏带负电荷的 SiO₂ 的稳定性,促使 SiO₂ 易于沉淀(佟伟等,1981)。但对搭格架铯矿床,Cs 与 SiO₂ 之间没有正相关关系,表明这种正负电荷中和作用较小。因此,成矿过程中热泉水的脱气(CO₂), $f(O_2$)升高、温度和压力的骤然降低应为 Cs 富积成矿的主要原因。成矿作用以(9.9~3.0)×10⁴a B.P.和现代 2 个阶段为最强,并且成矿作用以热水作用为主,生物作用为辅[●]。

3 结 论

(1)泉华的 Si 同位素显示搭格架铯矿床为典型 的热水沉积成因 ,O、C 同位素显示它的物质来源为 壳源(沉积碳酸盐为主,生物作用为次)特征;Sr、Nd 同位素表明它为上地壳特征。因而搭格架铯矿床成 矿物源为上地壳源。

(2) 矿床的成矿作用主要发生于第二阶段段 (99.1±12.3) ka B.P. 及以后, 绝主要由上地壳内熔 融层提供。这种矿床仅能形成于地表等具备氧化条 件的地方, 而在海底与地表之下形成的可能性是很 小的。

(3) 热泉水的脱气(CO₂), f(O₂) 升高及温度和压

赵元艺等. 西藏搭格架热泉型铯矿床地球化学. 待刊.

力的骤然降低应为 Cs 富积成矿的主要原因;而正负 电性中和当属次要原因。

致 谢 本文工作得到郑绵平院士的指导;野 外样品采集期间得到王卫东同志的帮助;论文完成 过程中得到杨岳清研究员的鼓励与支持,论文承蒙 《矿床地质》审稿专家审核并提出建设性的修改意 见,特致谢意。

References

- Ding T P , Jiang S Y , Wan D F , Li Y H , Li J C , Song H B , Liu Z J and Yao X M. 1994. Geochemistry of the silicon isotopes M] Beijing : Geol. Pub. House. 1~102 (in Chinese).
- Hou Z Q, Li Z Q, Qu X M, Gao Y F, Hua L C, Zheng M P, Li S R and Yuan W M. 2001. The uplifting procdrses of the Tiketan plateau since 0.5 Ma. B. P: Evidence from hydrothermal activity in the Gangdise Bel [J]. Science in China (Series D), 44 (Supp.): 35~44 (in Chinese).
- Hou Z Q and Li Z Q. 2004. Possible location for underthrusting front of the Indus continent : constraints Tibet and eastern Tibet J]. Acta Geologica Sinica , 78(4): 482~493 (in Chinese with English abstract).
- Huang S J , Ma J M and Len D X. 1999. The strontium isotopes of deep sea siliceous rocks from earlier carboniferous to earlier Permian , Qinzhou , Guangx[J]. Acta Sedimentologica Sinica , 17(4):540~ 546 (in Chinese with English abstract).
- Jin B F. 1996. Forming mechanism and geophysical exploration prospects for geothermal field in Tibet ,China[J]. Xizang(Tibet) Geology ,(1) 50~58(in Chinese with English abstract).
- Li Z Q. 2002. Present hydrothermal activities during collisional orogenics of the Tibetan Plateau D I Ph. D thesis). Tutor : Hou Z Q. Beijing : Institute of Mineral Resources , CAGS. 19–20 (in Chinese with English abstract)
- Li Z Q, Hou Z Q, Nie F J and Meng X J. 2005. Characteristic and distribution of the partial melating layers in the upper crust evidence from active hydrothermal fluid in the south Tibe[J]. Acta Geologica Sinica, 79(1):68~76 (in Chinese with English abstract).
- Liang X R , Wei G J , Li X H and Liu Y. 2002. Rapid and precise measurement for ¹⁴³Nd/¹⁴⁴Nd isotopic ratios using a multi-collector inductively coupled plasma mass spectrometer[J]. Rock and Mineral Analysis , 21(4) 247~251(in Chinese with English abstract).
- Lv Z C , Liu C Q , Liu J J and Wu F C. 2004. Geochemical studies on the lower Cambrian witherite-bearing cherts in the northern Daba mountains J]. Acta Geologica sinica , 78 (3): $390 \sim 406$ (in Chinese with English abstract).
- Tong W, Zhang M T, Zhang Z F, Liao Z J, You M Z, Zhu M X, Guo G Y and Liu S B. 1981. Geothermics in Tibet [M]. Beijing : Science Press. 46p (in Chinese).
- Wei G J , Liang X R , Li X H , Liu Y. 2002. Precise measurement of sr

isotopic composition of liquid and solid base using LP)MC-ICPMS [J]. Geochemistry , 31(3) 295~299(in Chinese with English abstract).

- Zhang T L , Wang Z L and Hu Y Z. 1997. Mineralogy of geyserite from the Tengchong active hot spring system and its geological implications J J. Acta Petrologica et Minerologica , $16(2): 170 \sim 178$ (in China with English abstract).
- Zhao L S and Zhang B R. 1988. Geochemistry[M]. Beijing : Geol. Pub. House. 187p (in Chinese).
- Zhao P , Xie EJ , Dor J , Jin J , Hu X C , Du S P and Yao Z H. 2002. Geochemical characteristics of geothermal gasses and their geological implication in Tibe[J]. Acta Petrologica Sinica , 18(4):539~550 (in Chinese with English abstract)
- Zhao X T , Wu Z H , Zhu D G and Hu D G. 2002. The Quaternary Glaciation in west part of Nyainqentanglha Mountains J]. Quaternary Research , 22 :424~433 (in Chinese with English abstract).
- Zhao Y Y , Nie F J , Hou Z Q , Li Z Q , Zhao X T and Ma Z B. 2006a. Geological characteristics and forming age of hot spring cesium deposit in Targejia area , Tibe[J]. Mineral Deposits , 25(3): 281 ~ 291(in China with English abstract).
- Zhao Y Y , Zhao X T and Ma Z B. 2006b. A study on chronology for hot spring typed Cs-deposit of Targjia ,Tibe[J]. Acta Petrologica Sinica , 22(3), $717 \sim 724$ (in China with English abstract)
- Zheng M P , Wang Q X , Duo J , Liu J , PingCuo W J and Zhang S C. 1995. A new type of hydrothermal deposit-cesium-bearing geyserite in Tibet[M]. Beijing : Geol. Pub. House. 1~110 (in Chinese with English abstract).

附中文参考文献

- 丁悌平 蔣少涌 ,万德芳 ,李延河 ,李金城 ,宋鹤彬 ,刘志坚 ,姚晓梅. 1994. 硅同位素地球化学[M]. 北京 地质出版社. 1~102.
- 侯增谦,李振清,曲晓明,高永峰,华力臣,郑绵平,李胜荣,袁万明. 2001.0.5 Ma以来的青藏高原隆升过程——来自冈底斯带热水 活动的证据[J].中国科学(D辑),31(增刊)27~33.
- 侯增谦,李振清.2004.印度大陆俯冲前缘的可能位置:来自藏南和 藏东活动热泉气体 He 同位素约束[J].地质学报,(4):482~ 493.
- 黄思静,麻建明,冷德勋.1999.广西钦州石炭-二叠纪深海硅质岩 的锶同位素组成及其地质意义[J].沉积学报,17(4):540~ 546.
- 靳宝福. 1996. 中国西藏地热田的形成机制及地球物理勘查前景[J]. 西藏地质(1)50~58.
- 李振清,侯增谦,聂凤军,孟祥金.2005.藏南上地壳低速高导层的性 质与分布:来自热水流体活动的证据[J].地质学报,79(1):68~ 76.
- 李振清. 2002. 青藏高原碰撞造山过程中的现代热水活动[D【博士 学位论文). 导师 侯增谦. 北京 :中国地质科学院矿产资源研究 所. 1~81.
- 梁细荣,韦刚健,李献华,刘 颖.2002.多收集器等离子体质谱快 速精确测定钕同位素比值[]]岩矿测试,21(4)247~251.
- 吕志成,刘丛强,刘家军,吴丰昌.2004.北大巴山下寒武统重晶石

矿床赋矿硅质岩地球化学研究 J]. 地质学报, 78(3) 390~406
佟 伟,章明陶,张知非,廖志杰,由懋正,朱梅香,过帼颖,刘时彬.
1981. 西藏地热[M]. 北京,科学出版社. 46页.

- 韦刚健,梁细荣,李献华,刘颖. 2002. (LP)MC-ICPMS方法精确测 定液体和固体样品的 Sr 同位素组成[J]. 地球化学,31(3):295 ~299.
- 张天乐,王宗良,胡云中.1997. 腾冲现代热泉系统硅华的矿物学特 征及其地质意义[J]. 岩石矿物学杂志,16(2):170~178.

赵伦山,张本仁. 1988. 地球化学[M]. 北京 地质出版社. 187页.

赵 平,谢鄂军,多 吉,金 建,胡先才,杜少平,姚中华.2002.西 藏地热气体的地球化学特征及其地质意义[J].岩石学报,18 (4) 539~550.

- 赵希涛,吴中海,朱大岗胡道功.2002,念青唐古拉山脉西段第四纪 冰川作用[j].第四纪研究,22(5):424~433.
- 赵元艺,聂凤军,侯增谦,李振清,赵希涛,马志邦. 2006a. 西藏搭格 架热泉型铯矿床地之特征及形成时代[J]. 矿床地质,25(3)281 ~291.
- 赵元艺,赵希涛,马志邦. 2006b. 西藏搭格架热泉型铯矿床形成时代 [J]. 岩石学报,22(3):717~724.
- 郑绵平,王秋霞,多吉,刘杰,平措旺杰,张苏春.1995. 水热成 矿新类型——西藏铯硅华矿床[M]. 北京:地质出版社.1~ 110.

《中国学术期刊文摘》中文版和英文版

2007年征订启事

《中国学术期刊文摘》分中文版(简称 CSAC)和英文版(简称 CSAE)两种,各自收录了我国高水平学术期 刊中基础科学、医学、农业科学和工程技术领域约 40 个学科的论文文摘,全景展现我国的科研成果与进展。

作为综合性科技类检索刊物《中国学术期刊文摘》致力于将我国科学技术各领域的原创性学术成果全面、快速地向科技工作者交流、传播,其中 CSAE 是我国第一份综合性英文版科技类学术检索刊物。

《中国学术期刊文摘》由中国科学技术协会主管 科技导报社主办并负责编辑、出版、发行,对科研单位、 高等院校、图书馆以及广大科技工作者检索和了解我国的科技研究成果、学术研究动向具有重要的参考价 值。

《中国学术期刊文摘(中文版)》刊号为 CN 11-3501/N, JSSN 1005-8923, 2007 年为半月刊,大 16 开,国内 定价 38.00 元/册,全年定价 912 元,邮发代号 82-707。

《中国学术期刊文摘(英文版)》刊号为 CN 11-5411/N ,ISSN 1673-4084 ,2007 年改为月刊,大 16 开,国内 定价 15.00 元/册,全年定价 180 元 邮发代号 80-487。

欢迎广大科技工作者、科研单位、高等院校、图书馆订阅。

通讯地址:北京市海淀区学院南路 86 号科技导报社(邮编 100081)联系电话:010-62103122联系人:姚玉琴征订信箱:yaoyuqin@cast.org.cn单位主页:http 1/www.csac.org.cn户名:科技导报社账牙户银行:工商银行百万庄支行