文章编号 10258-7106(2009)04-0473-08

北祁连天鹿铜矿床砂岩型铜矿石特征

李金春

(甘肃省地质矿产局第四地质矿产勘查院,甘肃 酒泉 735009)

摘 要 天鹿铜矿床是古生代海相砂页岩型铜矿。其铜矿石主要为粉砂岩型,包括斑铜矿矿石、辉铜矿矿石、 辉铜矿斑铜矿矿石、黄铜矿斑铜矿矿石、黄铜矿矿石、黄铁矿黄铜矿矿石等6种自然类型。矿石结构主要为结晶结构 和交代结构,矿石构造以浸染状为主。主矿层中的矿化沿岩层垂向具有明显的分带性,从底部到顶板为:斑铜矿→ 辉铜矿→黄铜矿→黄铁矿,具有典型的化学沉积成因铜的硫化物排列组合特征。这些特点与中国及国外海相砂页 岩型铜矿相一致。

关键词 地质学 ,矿石特征 ,矿物分带 粉砂岩型铜矿石 ,海相砂页岩型铜矿 ,天鹿 中图分类号: P618.41 文献标志码 :A

Characteristics of sandstone copper ores in Tianlu copper deposit

LI JinChun

(No. 4 Geological Party for Mineral Exploration, Gansu Bureau of Geology and Mineral Exploration, Jiuquan 735000, Gansu, China)

Abstract

The Tianlu copper deposit formed in Paleozoic foreland basin is a marine sandshale copper deposit, whose copper ores are mainly of the siltstone type and comprise six kinds of ore species, namely chalcocite ore, chalcocite-bornite ore, bornite ore, chalcopyrite-bornite ore, chalcopyrite ore and pyrite-chalcopynite ore. Ore textures are mainly composed of crystallization texture and metasomatic texture. Ore structures are dominated by disseminations. Along the thickness of strata, mineralization of the major ore bed assumes obvious vertical zonality in the upward order of bornite chalcocite chalcopyrite pyrite, indicating a typical sulfide arrangement and association of sedimentary copper ores. These characteristics are consistent with features of marine sandshale copper deposits both in China and abroad.

Key words: geology, characteristics of ore, mineral zoning, siltstone copper ore, marine sandshale copper deposit, Tianlu

天鹿海相砂页岩型铜矿床位于甘肃省肃南裕固 族自治县境内。该矿床地处塔里木-中朝板块南缘 早古生代中期活动陆缘走廊弧后盆地(冯益民等, 1997),北邻敦煌地块,南邻北祁连山早古生代中期 缝合带,赋存于张掖—昌马一带的志留纪地层中。 对天鹿铜矿床的基本地质特征已有文章进行了描述 (李大民等 2006),在此不再重复。

该矿区内,出露的地层主要为志留系旱峡组、泉脑沟山组、肮脏沟组(李金春,2000,李金春等,2005)。 含矿地层为杂色陆源细碎屑岩夹内源碳酸盐岩建造

^{*} 本文得到中国地质调查局地质调查项目(项目编号:199910200242)的资助

第一作者简介 李金春,男,1954年生,高级工程师,主要从事地质研究及预测找矿工作。Email:lijinchun888@tom.com 收稿日期 2008-10-06;改回日期 2009-05-22。许德焕编辑。

表 1 天鹿铜矿床矿石矿物组成

Table 1	Ore mineral consist of Tianlu copper deposit
矿物分类	矿物名称
硫化物	斑铜矿、辉铜矿、黄铜矿、黄铁矿、闪锌矿、锌黝铜 矿、硫铜银矿、含银斑铜矿、铜蓝
氧化物	石英、粉砂屑石英、磁铁矿、褐铁矿、赤铁矿
硅酸盐	斜长石、电气石、白云母、绢云母
碳酸盐	孔雀石、蓝铜矿、方解石
硫酸盐	重晶石
其他	钙岩屑、泥质

的旱峡组,构成一个不完整的向斜构造。矿层主要 分布在旱峡组上段灰绿色岩层的底部与紫红色铁质 钙屑粉砂岩的接触带附近。主矿层呈层状,延伸稳 定,并随地层同步褶皱。此外,在石英闪长岩脉的内 外接触带,局部也有矿体存在。本文仅论述与沉积 有关的粉砂岩型铜矿石的特征。

1 矿石特征

天鹿铜矿床自 1996 年开始评价至今,共采集 光、薄片 88 块,对其中的 5 块光片进行了电子探针 分析,样品具有一定的代表性。

1.1 矿石矿物组成

通过显微镜下光片和薄片鉴定及电子探针分 析,在天鹿铜矿床内共鉴定出20余种矿物(表1),其 中,金属矿物有13种。

1.2 主要金属矿物特征

斑铜矿 多以他形粒状集合体出现,粒度 0.01 ~0.5 mm,呈微细星散浸染状、不规则状、细小斑点 团块状、脉状等顺层理浸染产出(图 1A、B、C、D),略 具条带状特征,主要集中在粉砂纹层内(图 1E、F); 在石英细脉、方解石脉中或脉壁上与黄铜矿、辉铜矿 共生连晶,形成似共结结构。在细小斑点或团块状 斑铜矿中,含有密集的微细碎块状浅色斑铜矿(X-斑 铜矿)包体(图 2a)。个别斑铜矿被铜蓝、辉铜矿交 代。由电子探针分析(表 2)可见,主体斑铜矿的成分 主要为 Cu 60.155 %、Fe 11.20 %、S 25.45 %,其他 混入元素有 As、Pb、Zn、Ag 及微量的 Ni、Co、Sb、Se、 Ti、Te 等。X-斑铜矿的成分主要为 Cu 59.76 %、Fe 12.46 %、S 25.13 %,其他混入元素 Ag、Sb、Se 的含 量明显较高,而不含 Co、Pb、Te。

辉铜矿 多呈他形-半自形粒状,粒度一般为 0.01~0.07 mm,个别达0.5~0.8 mm,呈较均匀浸 染状产出。 黄铜矿 在黄铜矿矿石及黄铁矿黄铜矿矿石 中,黄铜矿多为他形粒状,个别出现自形-半自形晶, 粒度 0.01~1.4 mm,以 0.03~0.08 mm 者居多,呈 条痕状、串珠状、脉状沿层理分布,粉砂层内粒大量 多,泥质纹层内则粒小量少,极个别被孔雀石、辉铜 矿交代。在黄铜矿斑铜矿矿石和斑铜矿矿石中,黄 铜矿的产出状态大致有 3 种:① 与斑铜矿共生连晶, 形成互边结构、文象结构及格状、结状、乳滴状结构, 在中粗粒斑铜矿的边部呈薄板状页片、透镜状或纺 锤状产出(图 1G、H);② 呈独立矿物产于碳酸盐脉 中及其边部(图 2b);③ 与斑铜矿、锌黝铜矿共生产 于碳酸盐细小斑点团块中(图 2c)。这 3 种黄铜矿的 As、Se 含量稍高,还含微量的 Au、Ag、Sb、Te、Ti等, 但不含 Ni、Pb。

黄铁矿 主要为他形粒状,极个别为自形晶,粒 度0.02~0.1 mm,呈破碎状集合体或微粒状较均匀 浸染产出,自形黄铁矿包含于黄铜矿中,形成包含结构。

锌黝铜矿 见于斑铜矿矿石中有斑点状碳酸盐 脉或团块产出的部位,在碳酸盐中与黄铜矿或斑铜 矿、黄铜矿共生(图 2c)。伴生元素以 Sb 为主,As 含 量相对较少,还含微量的 Co、Ni,不含 Pb、Au、Ag。

硫铜银矿 与主体斑铜矿伴生(图 2d),呈细-中 粒不规则状集合体沿层理浸染产出,含量很少。镜 下可见该矿物与斑铜矿构成不混溶连晶。其电子探 针分析数据与其理论成分相比,S 含量略高,Cu、Ag 含量稍低,而 Fe 含量明显较高,这可能与斑铜矿连 晶有关,其他混入元素不多,其中有少量的 As、Co、 Ti,不含 Ni、Zn、Se、Pb、Sb、Te。

含银斑铜矿 与硫铜银矿连生。其 S、Fe、Cu 含量明显高于硫铜银矿但低于斑铜矿,而银含量则远高于斑铜矿。其他混入元素 Co、Ni、Zn、As、Se、Ti 的含量与主体斑铜矿相似,但不含 Pb、Sb、Te。

铜蓝 呈他形。个别沿边缘交代斑铜矿,通常
 中部为铜蓝,周边围绕辉铜矿。具明显的斑铜矿→
 铜蓝→辉铜矿生成顺序。

孔雀石 为粉末状、胶状集合体,沿裂隙面呈薄 膜状不均匀微脉—细脉产出。

重晶石 呈显微粒状镶嵌的断续微-细脉局部 产出。

1.3 矿石组构

1.3.1 矿石结构

粉砂岩型铜矿石的结构较为简单,主要为半自

图 1 天鹿铜矿床内铜矿物产出状态

A—原生斑铜矿呈微细粒浸染状构造产于粉砂质泥岩中,光片×33;B—随基质粒度的变化而分别呈细粒和中粗粒浸染状构造产于粉砂岩 中的原生斑铜矿,光片×33;C—粉砂岩中的原生斑铜矿呈星散状和中粒浸染状构造,光片×33;D—原生斑铜矿呈不连续定向浸染状构 造,光片×33;E,F—斑铜矿呈不规则浸染状构造产于粉砂岩中,光片×33;G—脉状斑铜矿(Bn)边部的板状黄铜矿(Cp)出溶体,光片× 210;H—黄铜矿(白色)在斑铜矿(黑色)中呈页片产出,光片×210;I—黄铜矿(Cp)与斑铜矿(Bn)呈共生连晶,光片×64;J—斑铜矿(Bn)与 黄铜矿(Cp)呈文象结构,光片×64;K—早生成的自形黄铁矿(Py)包含于晚生成的黄铜矿(Cp)中,光片×64;L—辉铜矿(Cc)沿黄铜矿 (Cp)边缘交代,光片×256;M—铜蓝(Cov)交代黄铜矿(Cp)呈残余或假象结构,光片×256;N—铜蓝(Cov)沿黄铜矿(Cp)边缘交代,光片× 256;O—黄铜矿(Cp)在斑铜矿(Bn)中呈格子状出溶体,光片×256;P—黄铜矿(Cp)在斑铜矿(Bn)中呈乳滴状出溶体,光片×256

Fig. 1 Modes of occurrence of copper minerals in the Tielu copper deposit

A—Micro-fine grained disseminated primary bornite in silty mudstone, polished section, × 33; B—Fine and medium-coarse grained disseminated primary bornite in siltstone, with the granularity of bornite varying with that of matrix, polished section, × 33; C—Scattered and medium-grained disseminated primary bornite in siltstone, polished section, × 33; D—Discontinuous oriented disseminated primary bornite, polished section, × 33; C—Scattered and medium-grained disseminated primary bornite in siltstone, polished section, × 33; G—Veinlike bornite (Bn), marginal platy chacopyrite (Cp) exsolution body, polished section, × 210; H—Flaky chacopyrite in bornite (black), polished section, × 210; I—Chacopyrite (Cp) and bornite (Bn) assuming interlocking crystals, polished section, × 64; J—Bornite (Bn) and chalcopyrite (Cp) assuming graphic texture, polished section, × 64; K—Early euhedral pyrite(Py) enclosed in late chacopyrite(Cp), polished section, × 64; L—Chacocite(Cc) replacement along the margin of chalcopyrite (Cp), polished section, × 256; N—Covellite (Cov) replacement along the margin of chacopyrite (Cp), polished section, × 256; O—Chacopyrite (Cp) assuming milky exsolution in bornite (Bn), polished section, × 256; P—Chacopyrite (Cp) assuming milky exsolution in bornite (Bn),

idded exsolution in bornite (Bn), polished section, \times 256; P—Chacopyrite (Cp) assuming milky exsolution in bornite (Bn), polished section , \times 256; P—Chacopyrite (Cp) assuming milky exsolution in bornite (Cp) assuming milky exsolution (Cp) assuming milky exsolution (Cp) assumin

polished section , imes 256

图 2 天鹿铜矿床砂岩铜矿石显微照片

a. 斑铜矿(Bn)中呈稠密星点状的 X-斑铜矿(x-Bn)包体(色黑者),光片; b. 黄铜矿(Cp)_碳酸盐脉状构造,光片; c. 黄铜矿(Cp)_斑铜矿 (Bn),锌黝铜矿(Zn-Thr)组合,光片; d. 斑铜矿(Bn)、硫铜银矿(Str)呈不规则浸染状构造,光片

Fig. 2 Microphotographs of copper ores in sandstone from Tianlu copper deposit

a. Densely scattered X-type bornite inclusion in bornite, polished section; b. Chalcopyrite-carbonite with veinlike structure, polished section; c. Assembly of chalcopyrite (Cp), bornite (Bn) and medziankite (Zn-Thr), polished section; d. Bornite (Bn) and cuprargyrite (Str) with irregular dissemination structure, polished section

表 2 天鹿铜矿床主要矿石矿物的电子探针分析(wwww)

Fable 2	Electron micropro	be analyses of mai	n ore minerals in	Tianlu copper deposi	$t(w_{W} \%)$
	Electron micropro	or analysis of ma	in ore minerals in	rianu copper ucposi	UWB /0'

矿物名称	样品数	Fe	Co	Ni	Cu	Zn	Pb	Au	Ag	As	Sb	S	Se	Te	Ti	总和
黄铜矿	4	29.94	0.03	0.01	34.42	0.04	0.00	0.15	0.02	0.57	0.08	34.47	0.17	0.15	0.03	100.08
锌黝铜矿	2	0.72	0.07	0.005	37.61	6.52	0.00	0.00	0.00	2.49	26.31	24.32	0.42	0.83	0.12	99.42
斑铜矿(主体)	6	11.20	0.05	0.09	60.16	0.30	0.38	0.005	0.24	1.12	0.03	25.41	0.40	0.08	0.26	99.73
X-斑铜矿	2	12.46	0.00	0.09	59.76	0.20	0.00	0.12	0.40	1.15	0.11	25.13	0.48	0.00	0.12	100.02
硫铜银矿	2	4.04	0.06		30.16			0.08	48.81	0.34		16.29		-	0.18	99.96
含银斑铜矿	1	7.86	0.31	0.26	40.85	0.24	-	0.08	26.61	0.60	_	22.45	0.30		0.40	99.96

测试单位:中国地质大学(北京)电子探针室。"一"为未检出。

形_他形晶粒状结构,与局部可见的互边结构、共结 文象结构、似共结结构、包含结构等同属结晶结构; 还可见到属交代结构的边缘交代结构、交代残余结 构、假象、骸晶结构,以及属固溶体分解结构的结状 结构、叶片状结构、格子状结构、乳滴状结构。

结晶结构

(1)半自形_他形晶粒状结构 金属矿物主要呈 半自形_他形晶,少数为自形晶,均匀或不均匀散布 于脉石矿物间,或充填在石英_方解石细脉中呈脉状 产出。前者粒度细,一般为0.01~0.07 mm;后者粒 度粗,可达0.07~1.4 mm。

(2)互边结构 黄铜矿与斑铜矿、斑铜矿与辉 铜矿、辉铜矿与铜蓝,分别形成共生连晶,互不相溶, 相互间以直边或弧形边连接,形成互边结构(图11)。

(3)共结文象结构 斑铜矿穿插于黄铜矿中, 与黄铜矿共生形成共结文象结构(图1)。

(4) 似共结结构 在碳酸盐脉及其斑点状小团块 中斑铜矿、黄铜矿、锌黝铜矿之间具有似共结边现 象 其结晶时间大致相当而形成似共结结构 图 2 c)。

(5)包含结构 颗粒较大的黄铜矿中包含有晶 形完好的黄铁矿晶体 较大颗粒的辉铜矿、斑铜矿中 包含有微晶黄铜矿 均形成包含结构(图 1K)。

固溶体分解结构

在斑铜矿与黄铜矿的连晶中,黄铜矿呈薄板状 页片、透镜状或纺锤状产在斑铜矿中或其集合体的 边部,形成似固溶体出溶结构(图1G、H)。在斑铜矿 的裂隙或解理中呈细叶片状出溶物的黄铜矿形成叶 片状结构(图1H)或格子状结构(图1O)。在连晶边 部形成结状结构,若在中部孤立存在,则形成乳滴状 结构(图1P)。

固溶体分解结构在一定程度上反映出成矿时的 温度变化。当冷却比较缓慢时,析出的客晶(黄铜 矿)沿主晶(斑铜矿)一个或数个解理方向形成片状 或格子状结构;当冷却较快而分离不充分时,客晶 (黄铜矿)沿主晶矿物的一定结晶方位析出,形成蠕 虫状、文象、粒状结构;当分离充分时,析出的客晶力 图分布到主晶的边缘,形成结状结构。

交代结构

(1)不规则状交代结构 以斑铜矿为主体的金属硫化物多沿脉石矿物间的胶结物发生广泛的充填 交代作用,形成不规则状交代结构(图1F)。

(2)边缘交代结构 铜蓝沿斑铜矿、辉铜矿、黄 铜矿的边缘进行交代(图1N),辉铜矿沿黄铜矿边缘 进行交代(图1L)。

(3)交代残余结构 铜蓝交代斑铜矿、黄铜矿, 黄铜矿、褐铁矿交代黄铁矿,仅残留少量被交代矿物 (图 1M)。

(4) 假象 铜蓝完全交代辉铜矿、黄铜矿,形成 辉铜矿、黄铜矿假象(图1M);褐铁矿完全交代黄铁 矿 形成黄铁矿假象。

(5)骸晶结构 铜蓝从辉铜矿中部进行交代, 形成骸晶结构。

1.3.2 矿石构造

在岩石及矿石的光片上,可见明显的层理,由粉 砂质与泥质组成的脉石成分呈逐渐过渡关系,形成 层理构造。总体来看,金属矿物基本上沿层理方向 形成粒度和形态各不相同的浸染状构造及脉状、斑 点团块状构造等。

(1)浸染状构造 金属矿物在粉砂质泥岩中呈 微细粒的星点状或稀疏浸染状构造(图 1A,图 3a); 在粉砂岩中呈细-中粒稀疏或密集浸染状构造(图 1B 图 3b)。其浸染颗粒集合体的大小随原岩中脉 石矿物的粒度增大而加大(图 1C)。还可形成顺层 浸染及呈不连续定向浸染构造的条带(图 1D)或粗 晶集合体的不规则浸染状构造(图 1E 图 3c)。

(2)脉状构造 矿石中含有顺层理、节理、裂隙 方向分布的碳酸盐脉,金属矿物呈不规则状集合体 产于其内,形成金属硫化物-碳酸盐组合的脉状构造 (图 2b 图 3d)。

(3)斑点团块状构造 重结晶的碳酸盐矿物呈 不规则斑点团块状,其大小一般为0.1~1.0cm,金 属硫化物以斑铜矿为主体沿其周边充填交代,共同 形成不规则的斑点团块状构造。

1.3.3 矿物赋存形式、生成顺序及成矿关系

通过观察光片发现,在天鹿砂岩铜矿内,含铜矿 物主要呈浸染状分布在碎屑物中,并且,其粒度与碎 屑物的粒度呈正消长关系。同时,也有含铜矿物以 细脉状形式存在。

矿物生成顺序为:原生浸染状斑铜矿→微脉浸 染状黄铁矿→脉状、团块状斑铜矿、出溶黄铜矿→铜 蓝、辉铜矿→孔雀石、褐铁矿。

早期(原生的)呈较均匀浸染状分布的斑铜矿, 在泥质偏多的纹层中,其粒度细小,分布量少;在粉 砂纹层中,其粒度则偏大,分布量相对偏多。相对于 泥质纹层 粉砂纹层中的围岩蚀变较强。在这2种纹 层的过渡区,靠近粉砂纹层一侧,斑铜矿明显增多。 由此可判断,成矿物质在泥质粉砂岩成岩过程中结晶 形成,且与围岩遭受的后期蚀变作用的强弱有关。

1.3.4 矿石化学特征(李金春等,2005)

主要成矿元素 天鹿铜矿区矿石的主要成矿元 素为 Cu。粉砂岩型铜矿石的 Cu 含量较稳定,为 0.30 %~3.66 %,一般品位为 0.20 %~1.14 %, 平均品位 0.37 %;闪长岩型铜矿石的铜含量为 0.2 %~2.21 %,一般品位为 0.22 %~1.66 %,平 均品位 0.87 %。

图 3 天鹿铜矿床砂岩铜矿石显微照片

a. 斑铜矿呈微细浸染状构造,光片; b. 斑铜矿呈微细粒和中粗粒浸染状构造,光片; c. 岩屑边部的不规则浸染状构造,光片; d. 孔雀石_重晶石呈细脉状构造,光片

- Fig. 3 Microphotographs of copper ores in sandstone from Tianlu copper deposit
- a. Bornite with micro-fine grained dissemination structure, polished section;
 b. Bornite with micro-fine and medium-coarse grained dissemination structure, polished section;
 c. Irregular dissemination structure on the margin of lithoclast, polished section;

d. Malachite-barite with veinlet structure, polished section

									WB 10									
Table 3Trace element content of ores from Tianlu copper deposit $(w_B \cdot 10^{-6})$																		
矿石 名称	样品 数量	Pb	Zn	Ag	Mo	Со	As	Sb	Ga	Ge	Ti	Mn	Ba	Sr	Zr	V	Ni	Au
粉砂岩型 铜矿石	64	32.9	124.4	14.2	60~100	18.2	16.0	8.9	30.8	1.14	1250	148.3	309.1	237.5	42.5	138.3	81.7	0.1~ 0.2
闪长岩型 铜矿石	6	40.4	116.0	33.0	1.7	21.0	15.0	10.0			1300	100.0	250.0	250.0	40.0	210.0	23.4	0.1

○表3 天鹿铜矿矿石微量元素含量(wg 10-6)

伴生元素 由表 3 可见, 矿石中有益组分 Au、 Ag、Mo 明显富集, Au 为(0.10~0.20)×10⁻⁶, Ag 为 (14.2~33.0)×10⁻⁶, Mo 为(1.7~100)×10⁻⁶, 其 中, 对 Au、Ag 已求得伴生资源量。

有害组分 MgO 仅在粉砂岩型铜矿石中含量偏高,为5.17%~6.31%。

1.4 矿石类型及其分布特征

粉砂岩型铜矿石是天鹿矿区最重要的矿石类型,主要由粉砂屑石英、斜长石、钙岩屑、白云母、电 气石及泥质组成。矿石中的金属矿物以斑铜矿、辉 铜矿、黄铜矿、黄铁矿为主,其次有铜蓝、孔雀石、褐 铁矿、蓝铜矿、磁铁矿,还有微量的锌黝铜矿、硫铜银 矿、含银斑铜矿等,偶见闪锌矿。按矿石矿物组合特 征,可将其划分为6种自然类型。

辉铜矿矿石 主要分布在主矿层的底部及不具 分带性的矿体内,所含金属矿物主要为辉铜矿,尚含 少量斑铜矿、黄铜矿、黄铁矿、铜蓝。辉铜矿呈半自 形-他形粒状,粒度0.01~0.03 mm,散布于碎屑粒 间。

辉铜矿斑铜矿矿石 主要分布在主矿层的中部 或中下部,铜品位一般可达1%~2%。金属矿物以 斑铜矿为主,辉铜矿次之,含少量黄铜矿、黄铁矿、铜 蓝、孔雀石等。斑铜矿为他形粒状,粒度0.05~ 0.074 mm;辉铜矿为半自形晶,粒度0.01~0.04 mm。

斑铜矿矿石 主要分布在主矿层的中部,是该 矿区内较富的矿石类型。金属矿物以斑铜矿为主, 呈他形粒状,粒度0.01~0.5 mm,一般0.03 mm 左 右。矿石中还含有少量黄铜矿、黄铁矿、褐铁矿,以 及微量的锌黝铜矿、硫铜银矿、含银斑铜矿、辉铜矿 及铜蓝、孔雀石等。

黄铜矿斑铜矿矿石 主要分布在主矿层的中部 或中上部,也是该矿区内较富的矿石类型。金属矿 物以斑铜矿为主,黄铜矿次之,含有少量辉铜矿、黄 铁矿、铜蓝、闪锌矿。斑铜矿和黄铜矿均呈他形粒 状 粒度一般为 0.01~0.08 mm。

黄铜矿矿石 在主矿层的顶部局部产出,一般 较贫。金属矿物以黄铜矿为主,含少量斑铜矿、黄铁 矿、辉铜矿、闪锌矿、赤铁矿、褐铁矿、磁铁矿等。黄 铜矿呈半自形-他形粒状,粒度0.01~0.1 mm 0.03 mm 左右者居多,其中细者呈他形 粗者具半自形。

黄铁矿黄铜矿矿石 分布于主矿层的顶部。金 属矿物主要为黄铜矿、黄铁矿。黄铜矿呈他形粒状, 粒度一般为 0.01~0.07 mm,部分为 0.07~1.4 mm,黄铁矿多呈他形粒状,少数为半自形-自形,粒 度 0.02~0.2 mm,具褐铁矿化。该类矿石中一般不 含其他铜矿物,但偶尔可见辉铜矿、斑铜矿。

上述 6 种自然类型在主矿层中由底部至顶部依 次出现,呈渐变关系,无截然界线,虽不一定全部出 现,但一般至少出现分别以辉铜矿、斑铜矿、黄铜矿 为主要金属矿物的3种矿石类型。

2 金属矿物分带特征

矿体中的原生金属矿物均为硫化物,具有明显 的分带性。尤其是主矿体 Cu7,矿层的底部以辉铜 矿为主,中部以斑铜矿为主,顶部以黄铜矿、黄铁矿 为主,依次出现辉铜矿、斑铜矿、黄铜矿和黄铁矿,先 出现的矿物逐渐递减,后出现的矿物则逐渐递增,形 成了顶、底层内矿物成分单一,而中部所有矿物都出 现的特征。矿物的生成顺序为斑铜矿→辉铜矿→黄 铜矿→黄铁矿,这些矿物随着沉积环境还原性的增 强而依次沉积。

3 结 论

天鹿铜矿床的铜矿石主要为粉砂岩型,包括斑铜矿矿石、辉铜矿矿石、辉铜矿矿石、辉铜矿矿石、黄铜矿矿石、黄铜矿矿石、黄铜矿矿石等6种 自然类型。矿石结构有结晶结构、交代结构、固溶体 分解结构,矿石构造主要是浸染状构造,还有脉状构 造、斑点团块状构造。

金属矿物沿岩石的层理分布。且随脉石矿物粒 度、成分的变化而变化 其粒度与载体碎屑物的粒度 相当 在同一纹层中均匀分布。矿体中的原生金属 矿物均为铜、铁硫化物,具有明显的分带性,为典型 的化学沉积成因铜的硫化物排列组合特征(李金春, 2000 云南省冶金局地质勘探公司,1997)。矿石中 除基本组分 Cu、Fe、S外,还含有微量元素 Ag、Au、 Zn、Sb、Co、Ni、Pb、As、Se、Te、Ti 等 其中的 Ag 已达 伴生品位 ,为(4.5~10.5)×10⁻⁶。天鹿铜矿与中国 及国外❶的海相砂页岩型铜矿均具下列特征 :① 金 属硫化物主要呈浸染状 ;② 金属硫化物具有明显的 分带性 ③ 在含矿岩层下部出现红色层。天鹿铜矿 的成矿环境为志留纪残留海盆 ,在潮坪沉积环境向 泻湖环境转变时形成工业矿体。其成矿元素组合与 奥陶纪火山岩型铜矿的成矿元素组合具有明显的继 承性 其物质来源可能是志留纪地层之南的奥陶纪 中基性火山-沉积岩系。据资料 北祁连海槽在志留纪 中-晚期有2个沉降中心,即玉门以南的青石岩-石

油河一带及马营河-梨园河一带(天鹿铜矿)。青石 岩-石油河一带的岩性组合与天鹿砂岩铜矿的相似, 因此,该带是北祁连西段寻找砂岩铜矿的又一有利 地段。

海相砂页岩型铜矿是世界上主要铜矿类型之 一,全球该类超大型铜矿的数目和储量仅次于斑岩 型铜矿而居第二位(李朝阳,2000)。在中国,云南东 川-易门(云南省冶金局地质勘探公司,1997),山西中 条山、内蒙古狼山是此类型铜矿床的主要产地,但都 产在元古宙海相盆地中 ;而产于古生代海相盆地中的 海相砂页岩型铜矿床则至今甚少发现。 据报道 在青 海省鄂拉山地区发现了产于二叠系细碎屑岩-碳酸盐 岩建造中的此类型铜矿床,但其铜矿石的成分较简 单,以黄铜矿、磁黄铁矿为主。因此,天鹿铜矿矿石特 征的研究对于在祁连成矿区寻找该类型矿床 以及与 国内外典型矿床进行对比 具有一定的借鉴意义。

References

- Li C Y. 2000. The dominating types and ore potential of copper deposits in China[M]. Beijing : Geol. Pub. House (in Chinese).
- Feng Y M and He S P. 1997. Geotectonics and orogeny of the Qilian Mountains , China M]. Beijing : Geol. Pub. House (in Chinese).
- Li D M, Sun Y J and Xu W J. 2006. Geological characteristics and metallogenetic model of Tianlu sandstone copper deposit in Gansu

Province J]. Mineral Deposits , 25(3): 312-320 (in Chinese with English abstract).

- Li J C. 2000. Features of sedimentary copper deposits of Silurian system in North Qilian area, Gansu Province J]. Acta Geologica Gansu, 9 (2): 19-27 (in Chinese with English abstract).
- Li J C , Liu B C and Ding S H. 2005. Metallogenic characteristics of sandston-type copper deposit of Tianlu, North Qilian Mountains [J] Northwestern Geol., 38(1):47-54 (in Chinese with English abstract).
- Geological Exploration Company of Yunnan Metallurgical Bureau. 1977. Geology of sandstone hosted copper deposits : Practices and cognitions of sandstone hosted copper deposits in Central Yunnan[M]. Beijing : Metallurgical Industry Press (in Chinese).

附中文参考文献

- 李朝阳. 2000. 中国铜矿主要类型特征及其成矿远景[M]. 北京:地 质出版社.
- 冯益民,何世平. 1997. 祁连山大地构造与造山作用[M]. 北京 地质 出版社
- 李大民,孙永君,许文进. 2006. 甘肃天鹿砂岩型铜矿床地质特征及 成矿模型[]]. 矿床地质, 25(3): 312~320.
- 李金春. 2000. 甘肃北祁连山志留系沉积岩铜矿特征[]]. 甘肃地质 学报 (2):19-27.
- 李金春,刘伯崇,丁书宏. 2005. 北祁连天鹿砂岩铜矿床成矿特征 [J]. 西北地质 38(1):47-54.
- 云南省冶金局地质勘探公司. 1977. 砂岩铜矿地质——滇中砂岩铜 矿床的实践与认识 M]. 北京:冶金工业出版社.