编号 10258-7106(2010)05-0760-15

柴达木盆地南缘祁漫塔格—鄂拉山地区斑岩-矽卡岩矿床地质^{*}

吴健辉¹,丰成友²,张德全²,李进文²,佘宏全²

(1湖北国土资源职业学院,湖北荆州 434000;2中国地质科学院矿产资源研究所,北京 100037)

摘 要 柴达木盆地南缘祁漫塔格-鄂拉山地区发育斑岩-砂卡岩型铜多金属矿床,成矿主元素为 Cu、Mo、Pb、 Zn,大部分矿床伴生 Au、Ag。斑岩型和砂卡岩型矿(化)体共生于同一个矿区之中,是这类矿床的一个重要特点。与 成矿有关的侵入体是印支期的中酸性小岩体,它们具有浅成-超浅成和高侵位等特点。斑岩-砂卡岩矿床的成岩年龄 和成矿年龄一致,形成于中三叠世至晚三叠世。它们是东昆仑造山带晚碰撞造山阶段壳-幔作用(幔源岩浆底侵-岩 浆混合)的产物,与东昆仑地区这一时期的砂卡岩型铁多金属矿床、热液脉状多金属矿床,以及造山型金矿床共同构 成了一个矿床成矿系列。

关键词 地质学 ,斑岩矿床 ,砂卡岩矿床 ,柴达木盆地南缘 中图分类号 : P618.41 ; P618.65 文献标志码 ;A

Geology of porphyry and skarn type copper polymetallic deposits in southern margin of Qaidam Basin

WU JianHui¹, FENG ChengYou², ZHANG DeQuan², LI JinWen² and SHE HongQuan² (1 Hubei Geosciences Professional College, Jingzhou 434000, Hubei, China; 2 Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China)

Abstract

Copper polymetallic deposits of porphyry and skarn type are well developed in southern margin of the Qaidam Basin, whose ore-forming elements are mostly copper, molybdenum, lead and zinc with accompanying elements of gold and silver. A prominent feature of such ore deposits is that mineralizations of porphyry type and skarn type coexist in the same ore deposit. Intrusive rocks related to mineralization are Indosinian intermediate-acid small intrusive bodies assuming hypabyssal and high-level emplacement features. Rock-forming and ore-forming ages of these deposits are consistent, being Middle to Late Triassic. They were formed under the crust-mantle interaction during the late collision of East Kunlun orogeny, forming a metallogenic series with skarn-type iron polymetallic deposits and hydrothermal veinlike polymetallic deposits and orogenic gold deposits of this stage.

Key words: geology, porphyry deposit, skarn deposit, southern margin of the Qaidam Basin

青海省柴达木盆地南缘属于东昆仑山系的北 坡,自西向东分别是祁漫塔格山、布尔汉布达山和鄂 拉山。近年来,随着新一轮国土资源大调查的实施 和中国地质找矿战略西移,在柴达木盆地南缘的西

^{*} 本文得到中央级公益性科研院所基本科研业务费专项资金项目(编号:K0901),"十一五"国家科技支撑计划课题(编号: 2006BAB01A06)和国土资源部百名优秀青年科技人才计划的联合资助

第一作者简介 吴健辉,女,1963年生,讲师,硕士,从事地质矿产勘查、教学与研究。Email:Yangorwjh@yahoo.com.cn 收稿日期 2010-02-22;改回日期 2010-05-13。张绮玲编辑。

段 即祁漫塔格山,又称祁漫塔格地区),陆续发现并 勘查出多处斑岩和矽卡岩型铜多金属矿床 如乌兰 乌珠尔(佘宏全等,2007)、鸭子沟(李世金等, 2008b)、索拉吉尔(丰成友等,2009)、卡尔却卡(李世 金等 2008a 汪松等 2009)等(图 1)。 20世纪 70~ 80年代期间,在柴达木盆地南缘东段的鄂拉山地区, 发现并勘查出了赛什塘、铜峪沟、日龙沟、什多龙等 铜多金属矿床(宋治杰等,1995),在布尔汉布达山发 现了托克妥斑岩型铜-金矿床。上述矿床的发现和 对比研究表明,柴达木盆地南缘存在着一期与印支 期构造-岩浆作用有关的斑岩-矽卡岩型铜多金属成 矿作用,而且已经构成了一个NWW向的成矿带。 尽管目前这些矿床的勘查程度还比较低,其中柴达 木盆地南缘西段矿床的勘查工作程度特别低,因而 许多问题难以定论 但是从总结规律、指导找矿的需 要出发 初步总结出它们的地质特征和成因类型 是 十分必要的。

1 地质背景

柴达木盆地南缘位于青海省的西部,是中央造 山带的西部成员——秦祁昆造山系的一部分,经历 了早古生代和晚古生代—早中生代的复合造山作 用,发育多期(次)岩浆作用和成矿作用(张德全等, 2001 涨雪亭等 2007 潘桂棠等 2009)。区域上自北 向南可划分出 6 个次级构造岩浆带(图1): I、柴北 缘(\in_3 —S), II、柴达木地块(Pt₁)/盆地(J—N), III、 祁漫塔格-都兰(\in_3 —T), IV、东昆仑北坡(O—T), V、东昆仑南坡(O—T), VI、宗务隆山-鄂拉山(C— T₃)本文所讨论的矿床位于祁漫塔格-都兰、东昆仑 北坡和宗务隆山-鄂拉山 3 个构造岩浆带中。这 3 个 构造岩浆带的二级构造单元均属于东昆仑弧盆系 (也称东昆仑造山带)(潘桂棠等 2009), 它们均在前 寒武纪基底上, 经历了早古生代洋盆开合和加里东 期褶皱造山,以及晚古生代—早中生代特提斯洋盆 开合和晚华力西—印支褶皱造山作用。

1.1 祁漫塔格—都兰和东昆仑北坡构造岩浆带

古元古界金水口岩群,作为前寒武纪结晶基底, 呈零星块体常见于东昆仑北坡构造带,早古生代滩 间山群(晚寒武世—早奥陶世)岛弧型火山-沉积岩 系广泛出露于祁漫塔格—都兰构造岩浆带,而祁漫 塔格—都兰和东昆仑北坡构造带内,加里东期花岗 岩类(奥陶纪—中泥盆世)广泛出露。上述表明,祁 漫塔格—都兰和东昆仑北坡构造带曾经是早古生代 东昆仑多岛弧盆系的一部分,其中东昆仑北坡为微 陆块,祁漫塔格—都兰则是该微陆块北侧的岛弧带, 岛弧火山-沉积岩系中的大理岩,是砂卡岩型矿床的 有利成矿围岩。祁漫塔格—都兰和东昆仑北坡构造

图 1 柴达木盆地南缘斑岩-矽卡岩型铜多金属矿床分布图

1—构造岩浆带边界及其序号;2—早古生代缝合带主断裂;3—晚古生代—早中生代缝合带主断裂;4—矿床及其序号。构造岩浆带:Ⅰ— 柴北缘(∈₃—S);Ⅱ—柴达木地块(Pt₁)/盆地(J—N);Ⅲ—祁漫塔格—都兰(∈₃—T);Ⅳ—东昆仑北坡(O—T),Ⅴ—东昆仑南坡(O—T); Ⅵ—宗务隆山-鄂拉山(C—T₃)。矿床编号及矿床名称同表 1

Fig. 1 The distribution of copper polymetallic deposits of porphyry and skarn type in southern margin of the Qaidam Basin 1—Tectono-magmatic belts : I —Northern margin of the Qaidam Basin (\in_3 —S); II —Qaidam block (Pt₁ Ybasin (J—N); III —Qimantage-Dulan (\in_3 —T); IV—North of East Kunlun (O—T); V—South of East Kunlun (O—T); VI—Zongwulongshan-Elashan (C—T₃). Serial

number and names of the deposits as for Table 1

岩浆带内与加里东期造山有关花岗岩类(中奥陶世 ---泥盆纪)的大量出现,说明祁漫塔格-都兰构造岩 浆带是一个加里东期火山-侵入岩浆弧,而东昆仑北 坡构造岩浆带则是一个加里东期侵入岩浆弧。晚古 生代—早中生代期间,祁漫塔格-都兰和东昆仑北坡 构造岩浆带均受制于区域南侧的古特提斯洋盆的开 -合作用,从而出现大量石炭纪—三叠纪花岗岩类, 显示这两个构造带在这一时段的陆缘造山岩浆弧之 属性。晚三叠世陆相火山岩(鄂拉山组)常见于祁漫 塔格-都兰构造岩浆带西段(祁漫塔格山)和东昆仑 北坡构造岩浆带东端(鄂拉山),而晚三叠世花岗岩 类则广泛分布于祁漫塔格-都兰构造岩浆带和东昆 仑北坡构造岩浆带。这些晚三叠世火山岩和花岗岩 类为陆相高钾钙碱性—钾玄岩质或强过铝质火成 岩 它们是碰撞造山的产物(莫宣学等,2007),本文 所讨论的斑岩-矽卡岩型铜多金属矿床大多与这一 期的花岗岩类之岩浆期后热液作用有关。

上述 2 个构造岩浆带的局部发育 NWW 向和 NE 向断裂构造,前者通常是斑岩-矽卡岩型铜多金 属矿重要的控岩和控矿构造,后者则切穿 NWW 向 断裂、花岗岩类岩体以及矿体。

1.2 宗务隆山-鄂拉山构造岩浆带

这是中央造山系中东昆仑和西秦岭两造山带的 衔接转换部(孙延贵等,2004)。 与祁漫塔格-都兰构 造岩浆带和东昆仑北坡构造岩浆带不同的是 ,宗务 纪 时期 沿宗务隆山—同仁隆务峡及其以南的部分 地区 ,在碰撞后地壳伸展背景下形成裂陷盆地或小 洋盆 从而构成布青山——阿尼玛卿古特提斯洋的分 支洋(张智勇等,2004),并于中-晚二叠世闭合。早-中三叠世时期 宗务隆山-鄂拉山构造岩浆带的南部 (图1中的兴海一带)再一次拉张裂陷,形成了巨厚 陆源复理石沉积(宋志杰等,1995),其中的碳酸盐岩 和细碎屑岩分别成为本文所讨论的矽卡岩矿床和斑 岩矿床的有利成矿围岩。晚三叠世鄂拉山组陆相火 山岩不整合覆盖于早-中三叠世复理石沉积之上,同 期的花岗岩类侵入体沿区域近东西向、北西向断裂 侵入 其中的高位浅成侵入体(花岗闪长斑岩和花岗 斑岩等)是斑岩-矽卡岩矿床的主要成矿母岩。

2 典型矿床

柴达木盆地南缘主要斑岩-矽卡岩型铜多金属

矿床的基本特征概括于表 1,以下仅对 3个典型矿床 的主要特征作进一步补充描述。

2.1 卡尔却卡斑岩-矽卡岩型铜多金属矿床

卡尔却卡铜多金属矿床是柴达木盆地南缘西段 具有代表性的一个斑岩-矽卡岩型矿床,该矿床的基 本特征见表1,这里只进一步阐述它的蚀变和矿化分 带特征。

除少量第四纪浮土之外,卡尔却卡矿区地表出 露的岩石主要为二叠纪—三叠纪花岗岩类,少量早 古生代火山岩-碎屑岩-大理岩组合(滩间山群)呈捕 掳体或顶垂体分布于花岗岩体内。矿区内的矽卡岩 型矿(化)体全部产在滩间山群与花岗岩类接触带的 矽卡岩中斑岩型矿(化)体全部产于隐伏斑岩与花 岗岩接触带(图2)。

2.1.1 斑岩型矿化

卡尔却卡矿区目前所发现的斑岩型矿化集中于 矿区西北部,之所以如此,是因为只有这一带存在与 斑岩型矿化有关的隐伏斑岩体。

这一带地表共圈出蚀变带 3 条,它们呈长大于 1.5 km、宽 40~150 m、走向 NWW、倾向北东、倾角 70~80°的带状,分布在似斑状黑云母二长花岗岩内 的 NWW 向破碎带中(图 2)。蚀变以黄铁绢英岩化 为主,蚀变矿物主要有石英、绢云母、高岭石,并有较 多的细(网)脉浸染状黄铁矿(地表多氧化成褐铁 矿),偶见黄铜矿(地表多呈孔雀石)浸染于其中。

在上述蚀变带内 ,已经有个别钻孔打到了蚀变 斑岩 根据残留石英斑晶和残留的长石板状形态 初 步判断其原岩为花岗闪长斑岩或花岗斑岩 其与似 斑状黑云母二长花岗岩呈侵入接触关系。在 ZK3901 钻孔见到的花岗闪长斑岩或花岗斑岩厚度 达 200 m 在该钻孔中的斑岩中心部位数十米(孔深) 范围内,岩石钾长石化和硅化(统称钾-硅化)强烈, 钾-硅化上、下两侧的斑岩和似斑状黑云母二长花岗 岩 黄铁绢英岩化十分强烈。在钾-硅化蚀变的岩石 中 除见黄铁矿外 还有少量黄铜矿 偶见辉钼矿 其 Cu和 Mo含量均不够工业品位。钻孔中,黄铁绢英 岩化蚀变的岩石内,黄铜矿化普遍,其铜品位在 0.15%以上的地段累计达117m。除含铜之外,黄铁 绢英岩化岩石还含金,品位 w(Au)在 0.075×10⁻⁶ $\sim 0.2 \times 10^{-6}$ 之间,平均 $\geq 0.1 \times 10^{-6}$ 的钻孔进尺愈 350 m(李仕金等 2008a)。

由于该矿的工作程度还很低,加之地表露头较

表 1 柴达木盆地南缘主要的斑岩-矽卡岩型铜多金属矿床地质特征

 Table 1 Geological characteristics of the major copper polymetallic deposits of porphyry and skarn type in southern margin of the Oaidam Basin

		margin or the	Yuuuun Dubin	
序号*	矿床	矿区地质	蚀变、矿(化)体及矿石	参考文献
1	卡尔却卡,斑岩(Cu-Mo)	矿区地层为下古生界滩间山群	蚀变 ①斑岩型表现为以斑岩体为中心的钾化	李世金等 ,2008a ;
	矽卡岩型(Cu-Mo-Zn-	火山岩-碎屑岩-大理岩组合,	和硅化 向外侧为黄铁绢英岩化蚀变 :②矽	丰成友等 2009
		呈捕虎休或顶垂休分布王花		
	好利的 Cu 页际里区中	网石关石冲中。使八石石石	件市以用成市控制的砂下石化,C友现了东 山东东东东东东西	
	型规模	组合为晚华月四-印文期一代	北四四回宫间份卞石帝	
		花岗岩-花岗闪长岩。与成矿	矿(化)体:① 圾岩型:产于硅化和黄铁绢英岩	
		有关的侵入体 :矽卡岩型矿体	化蚀变带中。地表共圈出 10 条铜矿体(伴	
		与花岗闪长岩(锆石 SHRIMP	生钼、金),钻孔见铜品位在 0.1 % 左右的矿	
		U-Ph 年龄(237 ± 2) Ma .)岩	化厚度逾 140 m :② 矽卡岩型矿体呈透镜	
		株有关 斑岩型矿(化)体与花	状 似层状 产于已发现的 3 条铜多金属矿	11 :
		网内长城石和黑石母化冈城 出出版左关 华芬 WWW 白		
		和 NE 问 2 组断袋 ,則有走里	生金和银 汕 亏砂下右带主要为铜、钼 ,开件	
		要的控着机控机构造,NE问		
		断裂切穿 NWW 向断裂和花	矿石 斑岩型矿石具浸染状和细网脉浸染状构	
		岗岩类岩体	造 ,有用组分为 Cu ,伴生 Mo、Au ,矿石矿物	
			主要是黄铜矿和黄铁矿;矽卡岩型矿石呈块	
			状、浸染状和稠密浸染状构造,有用组分为	D.
			Cu Mo Fe Zn Pb Ag Au 矿石矿物主要有	
			黄铁矿 黄铜矿 斑铜矿 辉铜矿 黝铜矿 磁	
			华矿 闪锌矿 方铅矿 磁苦铁矿等	
		花区地口生工士生用滩门小群		
2				千成久守 2009
	Mo),止仕工作中,规模个	大理石和碎屑石 , 全拥房体改	母化冈内长石蚁羔云母 长化冈石与滩间	
	清	<u> </u>	山群大理岩接触带,其次产于滩间山群内部	
		中。侵入岩岩石组合为印支	大理岩与砂岩层间。主要有石榴石矽卡岩、	
		期花岗闪长岩-二长花岗岩。	透辉石钙铝榴石矽卡岩、透辉石符山石矽卡	
		与成矿有关的侵入体是中细	岩等	
		粒黑云母花岗闪长岩岩株 ,其	矿(化)体:铜钼矿化产于矽卡岩内,岩体与围	
		锆石 SHRIMP U-Pb 年龄为	岩接触带砂卡岩中矿化较强,已圈定2条主	
		(237 ± 2) Ma。矿区发育	要的似层状、层状矿体。其中 Mi 矿体长	
		NWW 向和 NF 向两组断裂构	600 m 均厚 11 11 m 平均品位 Cu 1 40%	
		造 其中 NWW 向为区内主要	Man 120 M 矿休长 200 m 内厚 7 22 m	
			平均面位 Cu 2.28%、Mo 0.095%	
			1 4 4 2 2 2 2 2 2 7 2 2 2 2 2 2 2 2 2 2 2	
		组成,吊板北东正问平移断层	物主要为黄铜矿、辉铜矿、辉钼矿、孔雀石、	
		切割,具多期活动特征	蓝铜矿等。脉石矿物有透辉石、石榴子石、	
			绿泥石、绿帘石、符山石、方解石等。 矿石中	
			的辉钼矿 Re-Os 年龄(238.8±1.3) Ma	
3	鸭子沟,斑岩(Cu-Mo)砂	矿区地层主要是上三叠统鄂拉	蚀变 :钾长花岗斑岩内外接触带发育钾化、绢	李世金等,2008b
č	去岩型(Cu-Ma-Zn-Ph)	山组陆相火山。沉积岩系其	云母化 青磐岩化 粘土化 岩体与滩间山群	· · · · · · · · · · · · · · · · · ·
		次为早古生界滩间山群碎屑	碳酸盐岩接触带发育极长岩化	
	0			
			現状 Cu-Mo 및 Pb-Zn 划 体,一 百时规模均木	
		化冈石-止长化冈石-钾长化冈		
		斑岩,发育花岗闪长斑岩、闪	矿石 斑岩型矿石具浸染状和细网脉浸染状构	
		长岩、闪长玢岩、辉绿岩及辉	造,矽卡岩型矿石呈块状和稠密浸染状构	
		长岩等脉岩 ,与成矿有关的侵	造,矿石矿物有黄铁矿、黄铜矿、辉钼矿、磁	
	1 A U	入体是钾长花岗斑岩岩株 ,地	黄铁矿、闪锌矿、方铅矿、斑铜矿等。 矿石的	
		表出露面积约 0.8 km ² ,侵入	辉钼矿 Re-Os 等时线年龄为(224.7±3.4)	
	11 12	干花岗闪长岩和二长花岗岩	Ma	
	>	中 結石 SHRIMP ILPL 年龄		
		B NWW 凹、NNW 凹 和 NE 白 2 4 年刻 - 坂 上 豆 井 、 マーマ		
		凹 5 组断表 冯为区域 NWW		
		回土十断裂时次级断裂 ,是成		
		√☆体运移和矿床就位的有		
		利部位		

续表 1-1

				Continued Table 1-1
序号*	矿床	矿区地质	蚀变、矿(化)体及矿石	参考文献
4	乌兰乌珠尔,斑岩型(Cu- Mo),小型规模	除第四系沉积外,矿区大部为晚 华力西期花岗岩类。侵入岩 岩石组合为晚华力西期斑状 斜长花岗岩-中细粒斜长花岗 岩。与成矿有关的侵入体是 北西西向花岗斑岩脉,其锆石 SHRIMP U-Pb 年龄为(215.1 ±4.5) Ma。矿区内见 NWW 向、NEE 向及 NE 向断裂。 NWW 向、NEE 向断裂构成区 内主干断裂,沿其常见花岗岩 脉、花岗斑岩脉及钾长花岗岩 脉侵入	蚀变 注要有钾化、绢英岩化和青磐岩化,其次 为碳酸盐化和高岭土化。自斑岩脉中心向 外,可以划分出3个主要的蚀变带:钾化-绢 英岩化带→绢英岩化带→青磐岩化带 矿(化)体?在接触带的绢英岩化带内圈定铜矿 (化)体9个,呈似层状、透镜状、脉状产出, 长100~660 m,平均厚1.02~39.84 m,平 均品位0.23%~2.66% 矿石 以浸染状和细(网)脉浸染状矿石为常 见,矿石矿物为黄铁矿、磁黄铁矿、黄铜矿、 斑铜矿、锡石等,深部出现辉钼矿	佘宏全等 2007
5	托克妥,斑岩型(Cu-Au), 小型规模	除少量金水口群(Ar ₃ Pt ₁ b)黑云 斜长片麻岩外,矿区主要是花 岗岩类侵入岩,包括晚华力西 期花岗闪长岩和印支期花岗 岩。与成矿有关的侵入体为 NW 向延长的椭圆状、面积约 1100×600 m ² 的辉石闪长玢 岩(中心相)闪长玢岩(外部 相)岩体,最外部环绕的是爆 破角砾岩,该岩体侵入于晚华 力西期花岗闪长岩,推断其为 印支期侵入体	闪长玢岩内部仅见微弱的钾长石化和绢云母 化、岩体边缘大部分仅见微弱的绢云母化, 岩体北部边缘的爆破角砾岩具强烈的硅化, 可能与该地宽几厘米至几十厘米的斑岩脉 有关,岩体外接触带的青磐岩化亦很微弱。 矿化仅见于斑岩体北部强烈硅化、绢云母化 的爆破角砾岩带内(角砾成分为花岗闪长 岩)形成一 NWW 向长约 500 m、宽约 100 m的矿化带。初步控制 2 条铜金矿体,其长 180~300 m,宽 5~20 m,铜品位 0.22%~ 2.56%,金含量 0.1~6.53 g/t。矿石矿物 主要是黄铁矿,其次为黄铜矿、斑铜矿、闪锌 矿、方铅矿等,硫化物呈细(网)脉浸染状、团 块状产于强绢英岩化、硅化的爆破角砾岩 中。推断该矿区剥蚀较深	张德全等.2002. 青海省东昆仑 地区综合找矿 预测与突破(科 研报告)
6	什多龙,砂卡岩型(Zn-Pb- Cu),辞铅达中型规模	矿区出露地层有前石炭系变质 岩和石炭系下统大干沟组浅 变质岩(碳酸盐岩、变细砂岩、 含砾粗砂岩,其中碳酸盐岩和 变细砂岩与成矿关系密切。) 矿区内主要见有印支期花岗 闪长岩、花岗斑岩,这两者与 成矿关系密切。发育近东西 向背、向斜,北部倾伏背斜,南 部向斜。近东西向断层具导 矿、容矿特征	蚀变 产于岩体外接触带碳酸盐岩和变细砂岩 层间破碎带中的砂卡岩化和硅化 矿(化)体 矿体呈似层状矿体-透镜状,已圈定 21个矿体,其中主矿体2个。矿体走向45 ~100°,倾向南。矿体上部为Pb、Zn,下部含 Cu 矿石 具浸染状构造-块状构造-网脉状构造-角 砾状构造,主要金属矿物有闪锌矿、方铅矿、 黄铜矿、黄铁矿,主矿体铅:4.84%,锌: 7.5%,伴生Ag,Au	宋志杰等,1995; 青海省有色地 勘局八队. 1995.青海省 兴海县什多龙 银铅锌矿床地 质勘探报告(内 部资料)
7	日龙沟,砂卡岩型(Sn-Cu- Zn-Pb),锡达大型规模	 矿区地层主要中-下三叠统变质 碎屑岩、碳酸盐局部夹火 山碎屑岩、碳酸盐局、中部岩性段为 主要含矿层。主矿体产于大 理岩与变质粉砂岩、黑云石英质粉砂岩与黑云母千枚岩的接触部位。矿区北侧有印支期 石英闪长岩岩株。矿区总体 呈一走向近南北、向东倾斜的 单斜构造,层间断裂发育,层 间构造破碎带控制着矿体的 产状 	蚀变 受层间(大理岩与粉砂岩、片岩、千枚岩 层间)构造破碎带控制的砂卡岩及其退化蚀 变。蚀变矿物有有透辉石、斧石、阳起石、绿 帘泥石、黑绢云母、斜长石、石英、方解石、绢 云母、绿泥石及少量石榴石、电气石等 矿(化)体:呈似层状-透镜状,已发现矿体23 个,平均品位Sn 0.378%,Cu 0.67%,Pb 2.18%,Zn 3.03%。主矿体2个,M2-1主矿 体地表断续延长在1000m,延深约350m, 厚 0.8~4.2 m。主矿体中矿头部分由铅锌 矿石组成,中部铜、锡含量较高,矿尾部分以 锡为主。主要矿体的中、上部局部可构成金 与银的表外矿体 矿石 主要为锡石-硫化物矿石,可细分为单组 分(锡或铜或铅锌)矿石和多组分锡-多金属 (铜、铅锌)矿石两大类,主要金属矿物有锡 石、黄铜矿、黄铁矿、磁黄铁矿、闪锌矿、方铅 矿,少量黄锡矿、毒砂、白铁矿、辉锑矿等	王杉生,1990;田 生玉,1999;青 海省地矿局第 三地质大队. 1988.青海省兴 海县日龙沟属矿 区锡-多金属矿 普查地质料)

续表 1-2

				Continued Table 1-2
序号∗	矿床	矿区地质	蚀变、矿(化)体及矿石	参考文献
8	铜 峪 沟 , 砂 卡 岩 型 (Cu-Zn-Pb) , 大 型 规模	矿区地层岩石为中-下三叠统浅 变质碎屑岩和碳酸盐岩组合, 主要岩石有大理岩、变粉砂 岩、变砂岩、变长石石英砂岩、 钙质千枚岩、千枚岩、黑云千 枚岩等,它们呈互层状或透镜 状叠覆。矿区内仅见闪长玢 岩、闪长岩脉,矿区外围有印 支期石英闪长杂岩体(岩株)。 控制主矿体的构造主要为铜 峪沟短轴背斜两翼的层间滑 脱带,背斜轴向北西-北北西, 西翼地层倾角 50 度左右。矿 区断裂发育,有 EW 向、NW 向、NNW 向、NE 向、NNE 向 等,其中以 NNW 向断裂与成 矿关系密切	 蚀变 以砂卡岩化及其退化蚀变为主,砂卡岩带受 褶皱翼部的层间(碎屑岩和碳酸盐岩层间)滑脱 带控制。以石榴石砂卡岩、辉石砂卡岩及其过渡 类型为最常见,砂卡岩中还叠加了硅化、碳酸盐 化,阳起石化、绿帘石化、绿泥石化、绢云母化等 水热蚀变 矿(化)体:矿体呈层状-似层状和透镜状,产于砂卡 岩带内,主矿体 12 个,矿体长 80~1 700 m,厚 1.5~4 m,元(Cu)连 0.46%~1.36%之间 矿石:以浸染状构造和块状构造为主,还见条带状 构造、网脉状构造等。主要矿石矿物为磁黄铁 矿,其次是黄铜矿和黄铁矿,还有方铅矿、闪锌 矿、辉钼矿、黄锡矿等,有用组分主要是 Cu,其次 为 Pb、Zn,伴生 Au、Ag、Mo 等 	宋治杰等,1995; 田生玉,1999; 张汉文,2000; 2001,清海省地 矿局第三地质 大队.1985. 青海省兴和矿区 详细音位的部资 报告(内部资料)
9	赛什塘,砂卡岩(Cu- Zn-Pb) 斑岩型 (Cu-Mo),中型规 模	矿 区地层为中-下三叠统千枚 岩、大理岩、灰岩及变质砂岩, 侵入岩岩石组合为印支期中 粒石英闪长岩-中细粒石英闪 长斑岩-花岗闪长斑岩或英云 闪长斑岩,与成矿有关的侵入 体是呈小岩株或小岩枝出现 的晚三叠世石英闪长斑岩,其 全岩 K-Ar 年龄变化于 234~ 218 Ma。矿区内发育一向北 西倾伏的背斜,轴向 315°,两 翼次级褶皱十分发育,褶皱翼 部层间滑脱带发育。成矿前 和成矿期断裂 NW 向,成矿 后断裂 NE 向和 EW 向	蚀变①砂卡岩型:受侵入接触构造和褶皱翼部的 层间滑脱带控制的砂卡岩化蚀变,砂卡岩带底部 偶见镁砂卡岩(由镁橄榄石、尖晶石、方镁石等组 成),向上为钙砂卡岩(石榴石砂卡岩、辉石砂卡 岩及其过渡类型),矿体多赋存在退化蚀变的石 榴石辉石砂卡岩中,砂卡岩中还叠加了阳起石、 透闪石、绿泥石、金云母及方解石等水热蚀变矿 物。②斑岩型:以斑岩体为中心,自内向外依次是 钾化带、黄铁绢英岩化带 矿(化)体:以砂卡岩型为主,分为铜(硫)矿体、硫铁 矿体、铅锌矿体及少量铁矿体,呈似层状、透镜 状、扁豆状,具分支复合现象。矿体最长达2400 m最大延深600m,厚为1~20m最厚可达30 m。在岩体与地层斜交侵入部位矿体最厚。斑 岩型矿(化)体主要表现在石英闪长斑岩内接触 带发育厚大的浸染状和细(网)脉浸染状含铜-硫 化物矿化, 流(Cu)在0.1%~0.4%之间 矿石:①砂卡岩型矿体的矿石最常见的有块状和浸 染状两种构造,局部有条纹状、细脉状等,偶见团 块状。矿石矿物主要为磁黄铁矿、黄铁矿、磁铁 矿及黄铜矿,还见有黝铜矿、方铅矿、闪锌矿、白 钨矿、毒砂、方黄铜矿、斑铜矿等。②斑岩型:以 浸染状和纸(网)脉浸染状矿石为主,矿石矿物主 要有黄铁矿、黄铜矿、磁黄铁矿、辉钼矿等	宋治杰等,1995; 田生玉,1999; 张汉文,2001; 李东生等, 2009
· × 名	矿床的序号同图 1			

差,目前尚无法在地质图上圈定该斑岩体以及围绕 它所形成的蚀变带。但是,从ZK3901钻孔可以初步 总结出卡尔却卡矿区斑岩型矿化的蚀变和矿化,空 间上是以花岗闪长斑岩或花岗斑岩岩体为中心,向 两侧(接触带)蚀变分带的模式。即中心是钾-硅化 +Cu(Mo)矿化,向两侧为黄铁绢英岩化+Cu(Au) 矿化。

2.1.2 矽卡岩型矿化

卡尔却卡矿区已经发现了 3 个矽卡岩带,它们 集中于矿区的中北部,分别编号为 SK-Ⅰ、SK-Ⅱ和 SK-Ⅲ(图 2)。由于矽卡岩产出部位、构造控制和被 交代原岩不同,导致这3个矽卡岩带的蚀变和矿化 分带差别较大。

规模和产状 SK-I和 SK-III 断续长大于 2.5 km,宽 10~150 m 不等,走向北西西或近东西,倾向 北北东,局部南南西,倾角一般大于 70°。SK-I分布 于似斑状黑云母二长花岗岩或花岗闪长岩外接触带 的滩间山群地层(地层岩石为火山岩-大理岩组合) 中,其通常距接触面数十米;SK-III分布于花岗闪长 岩或似斑状黑云母二长花岗岩与滩间山群(地层岩 石仅为大理岩)的接触带上,矽卡岩或矿体的顶板或 底板围岩是花岗岩类岩石。SK-II 断断续续,长大于

1—第四系;2—滩间山群火山岩-碎屑岩-大理岩组合;3—砂卡岩;4—似斑状黑云母二长花岗岩;5—花岗闪长岩;6—石英闪长岩; 7—闪长岩;8—闪长玢岩;9—花岗岩;10—破碎蚀变带;11—矿体;12—断层;13—斑岩型矿化区;14—砂卡岩型矿化区

Fig. 2 Geological sketch map of the Kaerqueka copper-polymetallic ore district 1—Quaternary ; 2—Volcanic-clastic-marble lithostratigraphic sequence of Tanjianshan Group ; 3—Skarn ; 4—Porphyritoid biotite monzonitic granite ; 5—Granodiorite ; 6—Quartz diorite ; 7—Diorite ; 8—Diorite porphyrite 9—Granite ; 10—Altered shatter zone ; 11—Ore body ; 12—Fault ; 13—Area of porphyry type mineralization ; 14—Area of skarn type mineralization

1 km,宽10~100 m不等,走向北北西-北西西,倾向 北北东,倾角近于直立,分布于似斑状黑云母二长花 岗岩或花岗闪长岩外接触带的滩间山群地层(地层) 岩石仅为大理岩)中,矽卡岩或矿体的顶板或底板通 常距接触面数十米。

构造控制 控制卡尔却卡矿区矽卡岩的构造有 2种:一是侵入接触构造;二是层间破碎带。

SK-III是主要受侵入接触构造控制的矽卡岩带, 其形态和产状主要受岩体顶界面的形态起伏控制 (图3)。SK-I和SK-II两个矽卡岩带受层间破碎带 或滑脱带构造控制,它们的形态和产状基本受制于 破碎带或滑脱带的形态和产状。其中,SK-I主要产 于滩间山群地层中的火山岩(安山玄武岩或安山岩 等)和大理岩层间破碎带中,产状与地层产状大体一 致(图3)SK-II产于滩间山群中大理岩内的破碎带 中 该破碎带有时大致顺层(NWW向),有时穿层 (NNW向),因而导致矽卡岩带在走向上的产状变化 较大(图2、图3)。

蚀变和矿化分带 3个矽卡岩带中的蚀变矿物 通常有 辉石(透辉石-次透辉石)石榴子石(钙铁榴) 石为主)、符山石、硅灰石、阳起石、透闪石、绿帘石、 斜长石、石英、方解石、绿泥石、绢云母。尽管3个砂 卡岩带中的蚀变矿物组成大体相似,但是不同矽卡 岩带中的蚀变矿物含量却相差较大,而且蚀变分带 也不同。这可能主要与被交代的原岩不同有关。

SK-I 砂卡岩带是产于外接触带,流体沿安山玄 武岩或安山岩和大理岩界面向两侧岩石扩散交代的 产物,该带的主要的砂卡岩矿物是辉石和石榴子石, 退化蚀变矿物以阳起石、绿帘石、石英、方解石为主, 其砂卡岩分带表现为安山玄武岩或安山岩一侧是以 辉石石榴石砂卡岩和石榴石辉石砂卡岩为主,到大 理岩一侧逐步过渡到以辉石砂卡岩为主。该砂卡岩 带内已发现透镜状-似层状矿体 20 多个,成矿主元 素以 Fe、Zn、Cu 为主。该带和祁漫塔格地区众多的 矽卡岩型铁多金属矿床比较类似,从接触带向外依 次出现 Fe(矿石矿物以磁铁矿为主)→Fe-Cu(矿石矿 物以磁铁矿和黄铁矿、磁黄铁矿、黄铜矿居多)→Fe-Zn(矿石矿物以磁铁矿和黄铁矿、闪锌矿为主)组合 (图 3)。

SK-Ⅲ矽卡岩带产于外接触带,是流体沿大理岩

1—大理岩;2—火山岩;3—花岗岩类;4—层间滑脱带;5—破碎带;6—石榴子石;7—斜长石;8—符山石;9—辉石;10—矿体
 Fig. 3 Sketch map showing zonation of skarn and mineralization of the Kaerqueka copper- polymetallic ore district
 1—Marble;2—Volcanic rocks;3—Granitoids;4—Interlayer detachment fault;5—Shatter zone;6—Gamet;7—Plagioclase;8—Vesuvianite;

9—Pyroxene; 10—Ore body

中的断裂构造交代的产物。该带的砂卡岩矿物主要 是辉石,石榴子石较少,退化蚀变矿物主要有透闪 石、方解石、石英等,砂卡岩分带大体为自构造中心 以辉石砂卡岩为主,向两侧逐步成为砂卡岩化碎裂 大理岩。该砂卡岩带主成矿元素是 Pb、Zn,伴生 Au、Ag,且局部有金工业矿体,目前已经圈出透镜状 铅锌矿体 5 个。该带的矿化分带表现为从构造中心 向外大体上为 Zn(辉石砂卡岩中,黄铁矿、磁黄铁 矿、闪锌矿为主)→Zn-Pl(辉石砂卡岩和砂卡岩化碎 裂大理岩中,黄铁矿、闪锌矿、方铅矿为主)→Pl(矽 卡岩化碎裂大理岩中,方铅矿为主)(图 3)。

SK-Ⅲ矽卡岩带产于花岗岩类岩体与大理岩接 触带,是流体沿花岗岩类与大理岩界面向两侧扩散 交代的产物,其矽卡岩矿物和退化蚀变矿物种类齐 全、分带性好。砂卡岩总体上的分带表现为从岩体 一侧的斜长石化,向大理岩一侧逐步变为符山石石 榴石砂卡岩→辉石石榴石砂卡岩→辉石砂卡岩→砂 卡岩化大理岩。该砂卡岩带主成矿元素以Cu、Mo 为主(图3),已圈定似层状-透镜状铜钼矿体3条。 矿体长290~600 m,平均厚12 m,平均含铜1.34% ~2.79%,铜矿体中钼品位变化大,最低者0.00 n× 10⁻²,最高可达59%(王松等2009)。铜钼矿体多产 于紧靠斜长石化花岗岩的辉石石榴石砂卡岩中。

2.2 托克妥斑岩型铜-金矿床

这是柴达木盆地南缘中段(布尔汗布达山)目前 唯一的斑岩型矿床。

除少量古元古宙金水口群片麻岩和和加里东期 超镁铁岩之外,托克妥矿区主要出露花岗岩类岩石, 并以二叠纪花岗闪长岩(K-Ar 年龄 280 Ma)为主、三 叠纪花岗岩为辅(图 4)。

2.2.1 与成矿有关的斑岩体

托克妥矿区与成矿有关的斑岩体,地表呈北西 向延长的椭圆状,面积约1100×600m²,沿北西向 断裂侵入于二叠纪花岗闪长岩中(图4)。该岩体分 异相带明显,岩体中心相是辉石闪长玢岩,外部相为 闪长玢岩,最外部环绕的是爆破角砾岩,其主体岩性 为闪长玢岩,各岩相带之间为渐变过渡关系,从中心 相的辉石闪长玢岩到外部相闪长玢岩,岩石结构逐 步变细。在该岩体的北部边缘,有多条宽几厘米至 数十厘米的斑岩脉伸入到爆破角砾岩中,并形成强 烈的绢云母化、硅化蚀变和 Cu、Au 矿化。

该岩体岩石的最大特点是普遍富含钙质角闪 石 表明岩浆具有富水的特点。同时 岩石斑状结构 清晰 ,显示其属于岩浆快速冷却的产物 ,边部的爆破 角砾岩更显典型的浅成-超浅成侵入岩的特征。爆 破角砾岩的原岩以围岩花岗闪长岩为主 ,胶结物是

图 4 托克妥矿区地质简图

1—古元古宙片麻岩;2—三叠纪花岗岩;3—二叠纪花岗闪长岩;
4—加里东期超镁铁岩;5—辉石闪长玢岩;6—闪长玢岩;7—爆
破角砾岩;8—断裂;9—Au(Cu)矿体;10—Cu(Au)矿体

Fig. 4 Geological sketch map of the Tuoketuo ore district 1—Paleoproterozoic gneiss; 2—Triassic granite; 3—Permian granodiorite; 4—Caledonian ultramafic rock; 5—Pyroxene diorite porphyry; 6—Diorite porphyry; 7—Explosive breccia; 8—Fault; 9—

Au(Cu) ore body ; 10—Cu (Au) ore body

闪长玢岩,但该岩体东部局部可见以闪长玢岩角砾 为主的爆破角砾岩,可见该闪长玢岩体具有脉动侵 位方式。

类似于托克妥矿区闪长玢岩的同时代浅成-超 浅成侵入体,在柴达木盆地南缘中段还有多处,如哈 图、石灰沟、五龙沟等(钱壮志等,2000;罗照华等, 2002)。据钱壮志等(2000)分析,托克妥岩体中的辉 石闪长玢岩 亚(SiO₂)在46%~51%之间,闪长玢岩 亚(SiO₂)在61%左右,均属高钾钙碱性系列,基本不 具 Eu负异常、轻稀土元素富集的特征。罗照华等 (2002)获得了角闪石 Ar-Ar 坪年龄为(226.4~0.4) Ma,等时线年龄为(222.2~3.3) Ma,证明其形成于 印支期。

2.2.1 蚀变矿化特征

托克妥矿区大多数岩石蚀变较弱,闪长玢岩内 部具钾长石化、辉石闪长玢岩中钾长石化比较普遍) 和绢云母化,闪长玢岩边缘具绢云母化,闪长玢岩岩 体外接触带的花岗闪长岩有较弱的青磐岩化。仅在 闪长玢岩岩体北部边缘的爆破角砾岩见强烈的硅化 和绢云母化,可能与该地宽几厘米至几十厘米的斑 岩脉有关。尽管围岩蚀变较弱,但自斑岩体中心到 边缘蚀变类型具明显的环状分带性:斑岩体中心为 钾长石化、绢云母化,边部为绢云母化、硅化,外接触 带为青磐岩化。

岩体边部的绢云母化蚀变带中,特别是绢云母 化的爆破角砾岩内,普遍含有浸染状黄铁矿,局部偶 见黄铜矿浸染于其中,但 Cu 含量大多不够工业品 位,仅在岩体北部边缘强烈硅化和绢云母化的爆破 角砾岩中,发现了较好的铜、金矿体。已初步控制矿 体2个,其中一个矿体以金为主,铜品位亦达工业要 求,另一个矿体以铜为主,共(伴)生金。二者均呈近 北西向展布,倾向北东、倾角40~50°,长180~300 m,宽5~20 m,铜品位0.22%~2.56%,金含量0.1 ~6.53 g/t。矿石矿物主要是黄铁矿,其次为黄铜 矿、斑铜矿、闪锌矿、方铅矿等;硫化物呈细(网)脉浸 染状、团块状产于强绢英岩化、硅化的爆破角砾岩 中。

需要指出的是,从目前已经掌握的资料推断,托 克妥矿区斑岩型铜矿不具备进一步找矿的前景,理 由是闪长玢岩岩体上部已经遭受了强烈的剥蚀。其 依据是爆破角砾岩只出露在岩体的周边,并且闪长 玢岩岩体中心部位的钾长石化蚀变已经广泛出露地 表 因此,岩体上部或顶部的爆破角砾岩以及硅化、 绢云母化和泥化蚀变已经被剥蚀殆尽,与之相伴的 斑岩铜矿的最好部分也就被剥蚀掉了。

2.3 赛什塘斑岩-矽卡岩型铜多金属矿床

这是柴达木盆地南缘东段(鄂拉山地区)最具有 代表性的一处斑岩-矽卡岩型铜多金属矿床。其主 要的矿床地质特征概括于表 1,李东生等(2009)也对 该矿床的地质特征进行了详细报道,这里仅对与成 矿有关的侵入岩以及蚀变和矿化特征作进一步阐 述。

2.3.1 与成矿有关的侵入体

一个中酸性岩浆杂岩体,分布于赛什塘矿区及 其外围(田生玉,1999;李东生等,2009)。该杂岩体 沿北西向褶皱轴部附近断裂侵入于中-下三叠统浅 变质碎屑岩和碳酸盐岩中,其主体呈北西向岩舌,出 露面积 6×(0.4~1.1)km²,由多次脉动侵位的中深 成相石英闪长岩、浅成和超浅成相的细粒石英闪长 岩及石英闪长斑岩、花岗斑岩、英云闪长斑岩、花岗 闪长斑岩、石英斑岩组成。其侵入序次从早到晚为 闪长岩→中粒石英闪长岩→细粒石英闪长(斑)岩→ 花岗闪长斑岩或英云闪长斑岩→花岗斑岩→石英斑 岩。

石英闪长斑岩和细粒石英闪长岩与成矿有关, 它们呈出露面积不大(0.09~0.8 km²),形态复杂的 小岩株、岩脉、分布干早期的中深成相石英闪长岩体 北西边部,或侵入于早期的石英闪长岩中。石英闪 长斑岩边部尚可见潜火山岩和爆破角砾岩(田生玉, 侵入岩体。岩石具细粒结构或斑状结构,主要矿物 为斜长石、石英、钾长石、黑云母、角闪石(12%~ 25%) 个别见极少量的辉石。斑晶占 $20\% \sim 50\%$, 主要为斜长石、其次为角闪石、黑云母、石英。副矿 物有磷灰石、锆石、榍石、褐帘石,常见黄铁矿和黄铜 矿。岩石的 u(SiO₂)57.86%~68.04%,u(K₂O) u(Na₂O)0.42~1.75 属于中钾-高钾钙碱性系列。 含矿斑岩体全岩蚀变(内接触带具强蚀变),且铜平 均含量大于 500×10⁻⁶ Pb、Zn、Ag、As、Sn、Bi、Mo 元 素亦偏高,含矿岩体中的黑云母含铜量(0.008%~ 0.032%) 他明显地高于不含矿岩体。实测剖面显 示,由含矿斑岩体中心向外,岩石含铜量递增,至接 触带最高 再向外又逐渐减少 表明铜含量的增高主 要与热液蚀变有关(李东生等,2009)。

1:25 万区域地质调查工作中在早期的石英闪长 岩中获得的 2 个锆石 U-Pb 年龄值为(205.7±0.9) Ma和(223±28)Ma,前人在中酸性岩浆杂岩体的中 粒石英闪长岩和石英闪长斑岩中获得的 5 个全岩 K-Ar 年龄值为 234~218 Ma(转引自詹发余等,2007)。 尽管上述年龄数据的精度不高,但总体上显示岩体 侵入时代主要为中-晚三叠世。

2.3.2 矿化类型

赛什塘矿区有 2 种主要的矿化类型 : 砂卡岩型 和斑岩型,并以砂卡岩型为主。

矽卡岩型 截止 1994 年一期勘探结束,赛什塘 矿区铜矿已经提交资源储量铜 23 万吨(Cu平均品 位为 1.23%),其绝大部分由矽卡岩型矿石构成。

矿体产于石英闪长岩或石英闪长斑岩与大理岩 之接触带砂卡岩中(图5),且主要产于外接触带千枚 岩与大理岩之层间砂卡岩内,走向 NW、倾向 SW(局 部 NE)。主矿体4个,呈似层状、透镜状、扁豆状,其 中2号矿体的规模最大,其长达2400m,最大延深 达600m,厚度一般为1~20m,最厚可达30m(参见 李东生等、2009之图5)。矿石主要有用元素是 Cu, 常伴生 Zn、Pb、W等,局部 Pb、Zn 可构成独立的工业 矿体。

矿石以条带状、浸染状和块状构造为主,常具粒 状结构和交代结构。金属矿物主要为磁黄铁矿、黄 铁矿、黄铜矿及磁铁矿,其次有方铅矿、闪锌矿、白钨

1—石英闪长斑岩;2—地质界线;3—蚀变带界线;4—断裂;5— 爆破角砾岩;6—砂卡岩型矿体;7—斑岩型矿(化)体;δ₀—石英 闪长岩;T₁₋₂—中-下三叠统砂岩、千枚岩夹大理岩;p—青磐岩 化带;sk—砂卡岩-角岩化带;ph—绢英岩化带;k—钾化带

Fig. 5 Sketch map showing alteration zonation of the Saishitang copper ore district

1—Quartz diorite porphyry; 2—Geological boundary; 3—Boundary of alteration zone; 4—Fault; 5—Explosive breccia; 6—Skarn type ore body; 7—Porphyry type mineralization; δo —Quartz diorite; T₁₋₂—Middle-Lower Triassic sandstone, phyllite and marble; p— Propylite; sk—Skarn-hornfels zone; ph—Phyllitic zone; k—Potassic alteration zone

矿及毒砂。磁铁矿主要分布在近岩体一侧的镁矽卡 岩或辉石石榴石矽卡岩内,且局部形成磁铁矿矿体。 黄铜矿和磁黄铁矿、黄铁矿一起常见于外侧的石榴 石辉石矽卡岩中,闪锌矿和方铅矿则趋向于在更外 侧的辉石矽卡岩内。因此,由岩体顶或底界向外,矽 卡岩中的矿化大致具 Fe→Cu→Pb-Zn 的分带趋势。

斑岩型 赛什塘矿区目前已见到的斑岩型铜矿 分布零星,且Cu品位较低,所以该类型铜矿在已提 交的资源储量中所占比例极低。这主要是由于前人 在矿区勘查中是以矽卡岩型矿(化)体为目标的,导 致多数钻孔没有打到成矿岩体(在完工的103个钻 孔中,仅46个钻孔打到了岩体),因而并不能说明赛 什塘矿区不具备斑岩铜矿的找矿潜力。

位于赛什塘中酸性岩浆杂岩体北段的Ⅱ号小岩 株中普遍见细(网)脉-浸染状黄铁矿化和黄铜矿化, 其中围岩蚀变强烈、微裂隙发育地段矿化增强,可以 构成工业铜矿体,这就是赛什塘矿区的斑岩型铜矿。 在已经打到岩体的钻孔中,有9个钻孔内的岩体中 赋存有斑岩型铜矿体(李东生等,2009)。这些钻孔 中见到的硫化物(黄铁矿和黄铜矿为主)矿化具有以 下特点:

(1)主要产于石英闪长斑岩体内接触带的强绢 英岩化蚀变带(图5),蚀变越强矿化越好,钾化带内 也有黄铁矿和黄铜矿化,但比绢英岩化蚀变带者差;

(2)金属硫化物(黄铁矿和黄铜矿以及少量磁黄 铁矿)常呈细(网)脉-浸染状散布于主要由石英细 (网)脉以及细鳞片状绢云母和粒状石英构成的绢英 岩化蚀变岩中;

(3)石英闪长斑岩全岩蚀变、全岩矿化,其矿化 面积和厚度大,但铜的品位低,大多未达工业要求。 例如,ZK2305钻孔中见细(网)脉-浸染状金属硫化 物矿化累计进尺85m,其中大部分样品的 元(Cu)在 0.04%~0.22%,工业铜矿体的累计进尺不足10m。 ZK2801是全矿区斑岩铜矿见矿厚度最大的钻孔,在 其见细(网)脉-浸染状金属硫化物矿化的100多米 进尺中,只有62.97m铜平均品位达0.41%,余者铜 品位都较低;

(4) 矿石以细(网)脉-浸染状构造为主,金属矿 物主要为黄铁矿、黄铜矿及少量磁黄铁矿,局部见辉 钼矿等。在岩体中上部的绢英岩化蚀变岩中的黄铜 矿含量通常要高于岩体中下部的钾化带中的黄铜矿 含量,而辉钼矿的含量变化趋势则相反,从而显示了 Cu(上部)→Cu-Mc(下部)的矿化分带趋势。

上述特点与斑岩铜矿是完全一致的。

2.3.3 蚀变分带

钾化带、绢英岩化带、矽卡岩-角岩化带和青磐 岩化带4个蚀变岩相带构成了赛什塘矿区的蚀变分 带(图5)。

钾化带仅见于与成矿有关的小岩株之中下部, 矿区地表极少见。热液蚀变矿物主要是钾长石(交 代斜长石)和少量石英,或多或少地含热液绢云母和 绿泥石,说明钾化带受到绢英岩化蚀变的叠加。见 少量金属硫化物,以黄铁矿为主,偶见辉钼矿成细 (网)脉-浸染状产于其中。

绢英岩化带位于钾化带之上(剖面上),平面上 绢英岩化带分布在钾化带的外侧,主要分布于小岩 体的上部及其外接触带,蚀变带宽达数百米。蚀变 矿物组合为绢云母+石英±绿泥石,细鳞片状绢云 母吞蚀、交代斜长石,石英呈糖粒状或细-网脉状产 出,细(网)脉-浸染状黄铁矿、黄铜矿和磁黄铁矿普 遍可见,黄铜矿含量较高处便构成斑岩型铜矿体。

砂卡岩-角岩化带产于岩体接触带或外接触带 数百米范围内的中-下三叠统砂岩、千枚岩夹大理岩 中。砂卡岩有2种产状 :一是受侵入接触构造控制, 产于大理岩与岩体接触带,有时这种产状的砂卡岩 底部偶见镁砂卡岩,向上过渡为钙砂卡岩(表1);二 是受层间构造控制、产于外接触带千枚岩与大理岩 层间的钙砂卡岩。角岩化主要发育在外接触带的硅 铝质岩石(砂岩、千枚岩)中,表现为石英重结晶、泥 质矿物受热蚀变为黑云母和红柱石。在砂卡岩-角 岩化带内,砂卡岩是局部的(因为大理岩是局部的), 角岩化是普遍的蚀变。本矿区的砂卡岩型矿体全部 赋存在该带中的砂卡岩内。

青磐岩化带位于最外侧的远接触带,蚀变矿物 为绿泥石、绿帘石和方解石等,有少量黄铁矿。青磐 岩化带内靠近岩体的一侧有时还穿插有矽卡岩-角 岩化蚀变带(图 5),这主要是那里的地层中有大理 岩,甚至有侵入岩枝。青磐岩化带内的外接触带层 间矽卡岩,通常赋存有似层状铜矿体。

总之,赛什塘矿区显示出以成矿岩体为中心,向 两侧的对称分带。成矿岩体自上往下是绢英岩化带 →钾化带,由成矿岩体中心向两侧则是绢英岩化带 →矽卡岩-角岩化带→青磐岩化带。

3 矿床地质特征

总结目前在柴达木盆地南缘发现的 10 多处斑 岩-矽卡岩型铜多金属矿床地质特征,发现这些矿床 具有如下特点:

(1)就目前已发现的矿床(点)产地而言,这类 斑岩-砂卡岩型铜多金属矿床主要集中于柴达木盆 地南缘的西段(祁漫塔格山一带)和东段(鄂拉山一 带),中段(布尔汗布达山一带)只有托克妥一处成型 矿床(图1)。这究竟是柴达木盆地南缘中段工作程 度低,这类矿床尚未发现,还是因为这一带成矿地质 条件不利,目前还不得而知。

(2)斑岩型和砂卡岩型矿(化)体共生于同一个 矿区之中,是这类矿床的一个重要特点,如卡尔却 卡、鸭子沟、赛什塘等矿床就是典型的例子,因此,本 文笼统地将它们的矿床类型称之为斑岩-矽卡岩型。 之所以如此,主要是与成矿斑岩所侵入的围岩性质 不同有关,当成矿斑岩侵入于细碎屑岩或花岗岩中 时,形成斑岩型矿(化)体,而当成矿斑岩侵入于灰岩 或大理岩时,则形成砂卡岩型矿(化)体。如果在一 个矿区内,围岩既有细碎屑岩或花岗岩,也有灰岩或 大理岩,那么斑岩型和砂卡岩型矿(化)体在同一个 矿区中共生。从这个意义上来说,那些目前只有矽 卡岩型矿(化)体而尚未见到斑岩型矿化体的矿区, 有找到斑岩型矿(化)体的可能性。

(3)不同地段的矿床(特别是矽卡岩型矿床)有 不同的有利岩石地层:柴达木盆地南缘西段通常是 下古生界滩间山群火山-沉积岩系(火山岩-碎屑岩-碳酸盐岩组合),柴达木盆地南缘东段通常是中-下 三叠统复理石沉积岩系(变质碎屑岩-碳酸盐岩组 合)。正是由于这一特点(即不同地区矿床受特定岩 石地层控制),使得人们对这些矿床的成矿作用提出 了"矿源层"或层控矿床的观点(宋治杰等,1995)。

(4)成矿主元素为 Cu、Mo、Pb、Zn,不少矿床伴 生 Au、Ag,有些矿床还可以形成独立的金矿体。是 否含金,取决于2个条件:一是成矿斑岩中幔源组分 的高低,例如托克妥矿区有独立的金矿体,其成矿斑 岩是闪长玢岩-辉石闪长玢岩(表1);二是矿体围岩 中是否有中基性火山岩,如卡尔却卡矿区矽卡岩矿 体围岩中常见滩间山群玄武-安山岩,因而这类矿体 中伴生金含量高。有些斑岩型和矽卡岩型矿床周边 还产有热液脉型铜多金属矿床(点),它们可能构成 一个成矿亚系列。

(5)具有比较典型的斑岩铜矿和矽卡岩型铜多 金属矿蚀变矿物组合和蚀变分带。

(6)与成矿有关的岩浆岩为浅成、高位的中酸 性或中基性小岩体,包括岩脉(如乌兰乌珠尔),小岩 株,其时代属于中-晚三叠世。

4 讨 论

4.1 成矿时代

印支期是柴达木盆地南缘地区岩浆活动和成矿 作用的主要时期之一(莫宣学等,2007;张德全等, 2001)。尽管已有的同位素测年数据不太多,但已经 表明柴达木盆地南缘的这些斑岩-矽卡岩型铜多金 属矿床形成于印支期,并与印支期的中酸性岩浆作 用有关。下面分别就该区矿床比较密集的西段和东 段已经获得的测年数据,来讨论矿床的成矿时代。

西段已有多个矿床获得了高精度的同位素测年数据,例如乌兰乌珠尔、鸭子沟、卡尔却卡、索拉吉尔。其中,乌兰乌珠尔与成矿有关的花岗斑岩中锆石 SHRIMP U-Pb 年龄(215.1±4.5) Ma(佘宏全等 2007);鸭子沟与成矿有关的钾长花岗斑岩的SHRIMP 锆石 U-Pb 年龄为(224.0±1.6) Ma,矿石

中辉钼矿 Re-Os 等时线年龄为(224.7±3.4) Ma,成 岩与成矿的时间一致,正好属于印支晚期东昆仑地 区发生强烈壳-幔相互作用并导致大量岩浆-热液活 动的时期(李世金等,2008b);王松等(2009)报道了 卡尔却卡铜多金属矿区花岗闪长岩锆石 SHRIMP U-Pb 年龄为(237±2) Ma;丰成友等(2009)获得的 索拉吉尔矿床矽卡岩型矿石中辉钼矿 Re-Os 加权平 均年龄(238.8±1.3) Ma、Re-Os 等时线年龄为(239 ±11) Ma。上述年龄数据说明,柴达木盆地南缘西 段的这些斑岩-矽卡岩矿床的成岩和成矿年龄一致, 形成于中三叠世至晚三叠世。

东段的矿床已经获得的成岩成矿年龄数据虽然 很少,但是从以下几个方面可以判断它们也形成于 中三叠世至晚三叠世。首先,这些矿床中与成矿有 关的地层围岩时代属于早-中三叠世,与成矿有关的 岩体侵入的最新地层时代也是早-中三叠世;其次是 赛什塘、铜峪沟矿区的石英闪长岩锆石 U-Pb 年龄值 为(205.7±0.9) Ma和(223±28) Ma,赛什塘矿区 的中粒石英闪长岩和石英闪长斑岩的 5 个全岩 K-Ar 年龄值为 234~218 Ma(李东生等,2009);第三, 东段有个别矿床,如近年来发现的鄂拉山口铅锌银 (伴生铜、金 矿床受控于晚三叠世火山机构,矿体赋 存于晚三叠世鄂拉山组陆相火山岩中(王晓云等, 2007)。

4.2 成矿地质背景

柴达木盆地南缘地区位于东昆仑弧盆系(潘桂 棠等,2009)或东昆仑造山带(张德全等,2001;莫宣 学等,2007)的北带。目前虽然在细节上还存在不少 争论,但大多数学者均认为,晚古生代—早中生代时 期,东昆仑卷入古特提斯构造体制,属于古特提斯造 山系统的北缘。

根据大多数学者的研究结果,对该区域晚古生 代—早中生代时期大地构造演化主要过程可以概述 为:晚泥盆世—石炭纪,东昆仑南侧的布青山-阿尼 玛卿洋盆及其 NEE 向的苦海-赛什塘分支洋开启; 晚二叠世—早三叠世洋壳由南向北俯冲消减,形成 类似于安底斯活动大陆边缘的弧火山岩类和弧花岗 岩类;中三叠世进入碰撞造山期,晚三叠世进入碰撞 -后碰撞造山阶段,早侏罗世发生后造山崩塌-隆升 (张智勇等,2004;孙延贵等,2004;杨经绥等,2005; 莫宣学等,2007)。

杨经绥等(2005)根据缝合带及其北部形成了多 条巨大的三叠纪左旋走滑断裂系和同构造花岗岩 类,例如东昆仑南缘左旋走滑断裂(200~220 Ma), 阿尔金断裂的早期走滑剪切断裂系(220~230 Ma) 以及柴北缘巨型左旋走滑断裂等,认为它们是三叠 纪时期板块由南西向北东斜向碰撞的产物。巨型左 旋走滑剪切、同构造花岗岩、后碰撞火山岩的同时出现,说明这些火山岩和侵入岩均是在俯冲后的松弛 阶段形成,该阶段可以看作是俯冲板块折返阶段或 逆冲地块的抬升阶段。

柴达木盆地南缘地区的斑岩-矽卡岩型矿床形 成于中三叠至晚三叠世,亦即碰撞向后碰撞转换的 地质构造背景之下,也相当于一些学者所称的"晚碰 撞'环境(如侯增谦等,2006)。这一环境下的地质事 件包括陆内斜向碰撞所导致的地壳缩短、加厚,大规 模的逆冲、走滑和剪切,以及相应的岩浆和金属成矿 作用。

东昆仑地区三叠纪花岗岩类非常发育 ,据统计 , 三叠纪花岗岩类占东昆仑造山带花岗岩类总面积的 42%(莫宣学等 2007)。近年来,通过对多个岩体解 剖和区域综合研究,显示这一地区的三叠纪花岗岩 类形成与底侵的幔源岩浆和壳源岩浆混合作用有 关 这些被解剖岩体的年龄介于 222~242 Ma 之间 (罗照华等,2002;谌宏伟等,2006;莫宣学等,2007), 与该地区的斑岩-矽卡岩型矿床的成岩成矿年龄相 当。谌宏伟等(2006)还用板片断离-岩浆底侵-岩浆 混合-拆沉作用的模型揭示了东昆仑在三叠纪加厚 陆壳背景下大规模的花岗岩类的岩浆作用过程,亦 即持续的俯冲-碰撞使得板片断离,导致软流圈减压 熔融 玄武质岩浆底侵至下地壳底部 引起下地壳物 质部分熔融产生长英质岩浆,两种岩浆混合形成壳 幔混合成因花岗岩。随着下地壳底部冷却,基性岩 逐渐形成榴辉岩相物质,较大的密度差导致榴辉岩 相物质发生拆沉作用,软流圈物质上涌,直接与下地 壳接触 再次引起下地壳物质的部分熔融 发生岩浆 混合作用以及大规模的岩浆活动。尽管已经获得的 数据不多 但这些数据支持该地区与斑岩-矽卡岩型 矿床有关的花岗岩类属于壳幔混合成因这一结论 (佘宏全等 2007; 王松等 2009; 李东生等 2009) 甚 至有学者认为其具有埃达克岩的特征(詹发余等, 2007)表明有部分成矿物质来源于地幔。

岩浆底侵过程中的岩浆混合作用,很好地解释 了该地区中-晚三叠世斑岩-矽卡岩矿床成矿岩浆岩 壳幔混合的成因机制。尽管目前研究程度还很低, 有关这些矿床的成岩-成矿机制问题还不是十分清 楚,但是可以与青藏高原其他不同时期造山带内的 碰撞造山成矿作用的成矿机制(侯增谦等,2006;杨 志明等,2009)进行类比。

总之,柴达木盆地南缘祁漫塔格-鄂拉山地区的 斑岩-矽卡岩型矿床形成于东昆仑弧盆系/造山带内 的晚碰撞造山期,是岩浆底侵过程中形成的壳幔混 合成因花岗岩类成矿作用的产物。

5 结 论

(1)柴达木盆地南缘祁漫塔格-鄂拉山地区发育 斑岩-矽卡岩型铜多金属矿床,成矿主元素为Cu、 Mo、Pb、Zn,大部分矿床伴生Au、Ag。斑岩型和矽卡 岩型矿(化)体共生于同一个矿区之中,是这类矿床 的一个重要特点,与成矿有关的侵入体是中-晚三叠 世小岩体,具有浅成-超浅成和高侵位特点。

(2)不同地段的矿床(特别是砂卡岩型矿床)有 不同的有利岩石地层:柴达木盆地南缘西段通常是 下古生界滩间山群火山-沉积岩系(火山岩-碎屑岩-碳酸盐岩组合),柴达木盆地南缘东段通常是中-下 三叠统复理石沉积岩系(变质碎屑岩-碳酸盐岩组 合)。当成矿斑岩侵入于细碎屑岩或花岗岩中时,形 成斑岩型矿(化)体,而当成矿斑岩侵入于灰岩或大 理岩时则形成砂卡岩型矿(化)体。如果在一个矿 区内,成矿斑岩所侵入的围岩既有细碎屑岩或花岗 岩,也有灰岩或大理岩,则斑岩型和砂卡岩型矿(化) 体在同一个矿区中共生。

(3)斑岩-砂卡岩矿床的成岩年龄和成矿年龄一 致形成于中三叠世至晚三叠世。这些矿床是晚碰 撞造山阶段壳-幔作用(幔源岩浆底侵-岩浆混合)的 产物,它们与东昆仑地区同一时期的矽卡岩型铁-多 金属矿床、热液脉状多金属矿床,以及造山型金矿床 构成一个矿床成矿系列。

References

- Chen H W, Luo Z H, Mo X X, Liu C D and Ke S. 2006. Underplating mechanism of Traissic granite of magma mixing origin in the East Kunlun orogenic belt J. Geology in China, 32(3): 386-395(in Chinese with English abstract).
- Feng C Y , Li D S , Qu W J , Du A D , Shu S S , Wang S and Jiang J H. 2009. Molybdenite Re-Os isotopic dating of the Suolajier skarntype Cu-Mo deposit in the Qimantage mountain , Qinghai Province , and its geological implication[J]. Rock and Mineral Analysis , 28

(3):223-237(in Chinese with English abstract).

- Hou Z Q, Pan G T, Wang A J, Mo X X, Tian S H, Sun X M, Ding L, Wang E Q, Gao Y F, Xie Y L, Zeng P S, Qin K Z, Xu J F, Qu X M, Yang Z M, Zang Z S, Fei H C, Meng X J and Li Z Q. 2006. Metallogenesis in Tibetan collisional orogenic belt : []. Mineralization in late-collisional transformation setting J]. Mineral Deposits, 25(5):521-543(in Chinese with English abstract).
- Li D S , Kui M J , Gu F B , Wang J J , Bai H X , Zhang F Y , Wang F M and Ma Y Q. 2009. Geological characteristics and genesis of the Saishitang copper deposit in Qinghai Province[J]. Acta Geologica Sinica , 83(5):719-730(in Chinese with English abstract).
- Li S J , Sun F Y , Wang L , Li Y C , Liu Z H , Su S S and Wang S. 2008a. Fluid inclusion studies of porphyry copper mineralization in Kaerqueka polymetallic ore district , East Kunlun Mountains , Qinghai Province[J]. Mineral Deposits , 27(3): 399-406(in Chinese with English abstract).
- Li S J , Sun F Y , Feng C Y , Liu Z H , Zhao J W , Li Y C and Wang S. 2008b. Geochronological study on Yazigou polymetallic deposit in Eastern Kunlun , Qinhai Province[J]. Acta Geologica Sinica , 20 (7):949-955(in Chinese with English abstract).
- Luo Z H, Ke S, Cao Y Q, Deng J F and Chen H W. 2002. Late Indosinian mantle-derived magmatism in the East Kunlun[J]. Geological Bulletin of China , 21 (6): 292-297 in Chinese with English abstract).
- Mo X X , Luo Z H , Deng J F , Yu X H , Liu C D , Chen H W , Yuan W M and Liu Y H. 2007. Granitoids and crustal growth in the East-Kunlun orogenic bel[J]. Geological Journal of China Universities , 13(3):403-414(in Chinese with English abstract).
- Pan G T , Xiao Q H , Lu S N , Den J F , Feng Y M , Zhang K X , Zhang Z Y , Wang F G , Xing G F , Hao G J and Feng Y F. 2009. Subdivision of tectonic units in China[J]. Geology in China , 36 (1):1-28(in Chinese with English abstract).
- Qian Z Z , Hu Z G and Li H M. 2000. Petrology and tectonic environment of Indosinian hypabyssal rock in the middle belt of East Kulun Mountains[J]. J. Mineral Petrol. , 20 (2): 14-18(in Chinese with English abstract).
- She H Q, Zhang D Q, Jing X Y, Tian S C, Zhu H P and Feng C Y. 2007. Characteristics and metallogenesis of Wulanwuzhuer porphyry copper deposit in Qinghai Province[J]. Geology in China, 34(2): 306-314(in Chinese with English abstract).
- Song Z J , Zhang H W and Li W M. 1995. Metallogenic conditions and model of copper-multi-metal deposits in Ngola Shan region , Qinghai Province J J. Northwest Geoscience ,16(1): 134-144(in Chinese with English abstract).
- Sun Y G , Zhang G W , Guo A L and Wang J. 2004. Qinling-Kunlun triple junction and isotope chronological evidence of its tectonic process J J. Geology in China , 31(4) 372-378 in Chinese with English abstract).
- Tian S Y. 1999. Relations between magmatic rocks and metallization of the Saishitang-Rilonggou ore field in Qingha[J]. Geological Exploration for Non-Ferrous Metals ,8(6):383-387(in Chinese with

English abstract).

- Wang S, Feng C Y, Li S J, Jiang J H, Li D S and Su S S. 2009. Zircon SHRIMP U-Pb dating of granodiorite Kaerqueka polymetallic ore deposit, Qimantage mountain, Qinghai Province, and its geological implications J]. Geology in China, 36(1):74-84(in Chinese with English abstract).
- Wang X Y, Yang B R, Huo H Q and Yang X B. 2007. Accommodating ore condition and mineralization rule research of Ag-Pb-Zn deposit in Ela mountain pass Qinghai Provinc J]. Gold Science and Technology, 15(1):41-44(in Chinese with English abstract).
- Wang Y S. 1990. Geology and mineralization of the Rilonggou tin-polymetallic deposit, Qinha[J]. Northwestern Geology, 21(2):43-48 (in Chinese with English abstract).
- Yang J S , Xu Z Q , Li H B and Shi R D. 2005. The paleo-Tethyan volcanism and plate tectonic regime in the A 'nyemaqen region of East Kunlun , northern Tibet Plateat J]. Acta Petrologica et Mineralogica , 24(5) 369-380(in Chinese with English abstract).
- Yang Z M and Hou Z Q. 2009. Porphyry Cu deposits in collisional orogen setting : A preliminary genetic mode[J]. Mineral Deposits , 28 (5):515-538(in Chinese with English abstract).
- Zhan F Y , Gu F B , Li D S , Cao L Q and Kui M J. 2007. Tectonic environment of adakite in Eastern Kunlun Area , Qinghai , and its oreforming significance[J]. Acta Geologica Sinica , 81(10):1353-1377 (in Chinese with English abstract).
- Zhang D Q, Feng C Y, Li D X, Xu W Y, Yan S H, She H Q, Dong Y J and Cui Y H. 2001. Orogenic gold deposits in the North Qaidam and East Kunlun orogen ,West China[J]. Mineral Deposits , 20 (2):137-146(in Chinese with English abstract).
- Zhang H W. 2000. On the hydrothermal sedimentary laws and tectonic environment of Tongyugou deposit and the relationship between hydrothermal and volcanic activity[J]. Northwestern Geology, 21 (2):46-55(in Chinese with English abstract).
- Zhang H W. 2001. Mineralized feature, tectonic setting and metallogenic type of Tongyugou cupper deposit, Qinghai Province[J]. Northwestern Geology, 34(4): 30-42(in Chinese with English abstract).
- Zhang X T , Yang S D and Yang Z J. 2007. The plate tectonics of Qinghai Provincehai Province- A guide to the geotectonic map of Qinghai Province [M]. Beijing : Geol. Pub. House. 1-211(in Chinese with English abstract).
- Zhang Z Y , Yin H F , Wang B Z , Wang J and Zhang K X. 2004. Presence and evidence of Kuhai-Saishitang branching ocean in copulae between Kunlun-Qinling Mountains[J]. Earth Science , 29(6): 691-696(in Chinese with English abstract).

附中文参考文献

- 谌宏伟,罗照华,莫宣学,刘成东,柯 珊. 2006. 东昆仑造山带三叠 纪岩浆混合成因花岗岩的岩浆底侵作用机制[J]. 中国地质,32 (3):386-395.
- 丰成友 ,李东生 ,屈文俊 ,杜安道 ,王 松 ,苏生顺 ,江军华. 2009. 青 海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿 Re-Os 同位素定

年及其意义[J]. 岩矿测试 28(3):223-237.

- 侯增谦 潘桂棠,王安建,莫宣学,田世洪,孙晓明,丁林,王二七,高 永丰,谢玉玲,曾普胜,秦克章,许继峰,曲晓明,杨志明,杨竹森, 费红彩,孟祥金,李振清. 2006. 青藏高原碰撞造山带:[]. 晚碰 撞转换成矿作用[]]. 矿床地质 25(5)521-543.
- 李东生, 奎明娟, 古凤宝, 王建军, 柏红喜, 詹发余, 王发明, 马彦青. 2009. 青海赛什塘铜矿床的地质特征及成因探讨[_]. 地质学报 83(5):719-730.
- 李世金,孙丰月,王 力,李玉春,刘振宏,苏生顺,王 松. 2008a. 青 海东昆仑卡尔却卡多金属矿区斑岩型铜矿的流体包裹体研究 [J]. 矿床地质,27(3):399-406.
- 李世金,孙丰月,丰成友,刘振宏,赵俊伟,李玉春,王 松. 2008b. 青 海东昆仑鸭子沟多金属的成矿年代学研究[J]. 地质学报,20 (7)949-955.
- 罗照华 柯 珊 ,曹永清 ,邓晋福 ,谌宏伟. 2002. 东昆仑印支晚期幔 源岩浆活动 J]. 地质通报 21(6):292-297.
- 莫宣学,罗照华,邓晋福,喻学惠,刘成东,谌宏伟,袁万明,刘云华. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报,13 (3):403-414.
- 潘桂棠,肖庆辉,陆松年,邓晋福,冯益民,张克信,张智勇,王方国,邢 光福,郝国杰,冯艳芳, 2009. 中国大地构造单元划分[J]. 中国 地质,36(1):1-28.
- 钱壮志 胡正国 李厚民. 2000. 东昆仑中带印支期浅成-超浅成岩浆 岩及其构造环境 J]. 矿物岩石 20(2):14-18.
- 佘宏全 涨德全 景向阳 ,关 军 ,朱华平 ,丰成友 ,李大新. 2007. 青 海省乌兰乌珠尔斑岩铜矿床地质特征与成因[J]. 中国地质 ,34 (2) 306-314.
- 宋治杰 涨汉文 /李文明, 涨心广, 王 维. 1995. 青海鄂拉山地区铜 多金属矿床的成矿条件及成矿模式[J]. 西北地质科学, 16(1): 134-144.

- 孙延贵 张国伟 郭安林 ,王 瑾. 2004. 秦一昆三向联结构造及其构造过程的同位素年代学证据 J]. 中国地质 31(4) 372-378.
- 田生玉. 1999. 青海赛什塘-日龙沟矿田岩浆岩与成矿的关系探讨 [J]. 有色金属矿产与勘查 & 6) 383-387.
- 王 松,丰成友 李世金 江军华 李东生 苏生顺. 2009. 青海祁漫塔 格卡尔却卡铜多金属矿区花岗闪长岩锆石 SHRIMP U-Pb 测年 及其地质意义[J]. 中国地质 36(1):74-84.
- 王晓云 杨宝荣 霍海清 杨小斌. 2007. 青海省鄂拉山口银铅锌矿的 赋矿条件和成矿规律研究 J]. 黄金科学技术 ,15(1):41-44.
- 王杉生.1990.青海日龙沟锡-多金属矿床地质特征及成矿作用[J]. 西北地质 21(2) 43-48.
- 杨经绥,许志琴,李海兵,史仁灯.2005.东昆仑阿尼玛卿地区古特提 斯火山作用和板块构造体系[J].岩石矿物学杂志,24(5):369-380.
- 杨志明,侯增谦. 2009. 初论碰撞造山环境斑岩铜矿成矿模型[J]. 矿 床地质 28(5):515-538.
- 詹发余,古凤宝,李东生,曹连强,奎明娟. 2007.青海东昆仑埃达克 岩的构造环境及成矿意义[J].地质学报,81(10):1353-1377.
- 张德全,丰成友,李大新,徐文艺,阎升好,佘宏全,董英君,崔艳合. 2001. 柴北缘-东昆仑地区的造山型金矿床[J]. 矿床地质,20 (2):137-146.
- 张汉文. 2000. 青海铜峪沟铜矿床的热水沉积规律及形成环境---兼论 热水作用与火山活动的关系[]]. 西北地质科学 21(2):46-55.
- 张汉文. 2001. 青海铜峪沟铜矿床的矿化特征、形成环境和矿床类型 [J]. 西北地质 34(4) 30-42.
- 张雪亭 杨生德 杨站君. 2007. 青海省板块构造研究——1:100 万青 海省大地构造图说明书[M]. 北京 地质出版社. 1-221.
- 张智勇 殷鸿福,王秉璋,王瑾,张克信.2004. 昆秦接合部海西期苦 海.赛什塘分支洋的存在及其证据[J].地球科学,29(6):691-696.