文章编号:0258-7106(2012)06-1211-16

海南省后万岭铅锌矿床控矿因素、矿床成因 及成矿模式探讨^{*}

付王伟^{1,2},许德如^{1**},傅杨荣³,杨昌松³,周迎春³,杨东生¹,吴传军^{1,2},王智琳^{1,2}

(1 中国科学院广州地球化学研究所 矿物学与成矿学重点实验室,广东广州 510640;

2 中国科学院研究生院,北京 100049;3 海南省地质综合勘查院,海南 海口 570206)

摘 要 后万岭铅锌矿床是近年来海南省找矿的一项重要进展 探明的铅锌金属量大于 29 万吨 Pb 4.4 万吨, Zn 24.6 万吨),平均品位为锌 2.23%、铅 0.95%。该矿床产于千家超单元岩体内,后者是中。晚侏罗世在后造山期地 壳大面积伸展减薄的构造背景下 .由壳-幔混源岩浆间歇性多期侵入的产物。千家岩体各单元花岗岩属于壳-幔混合 型的高钾钙碱性岩石或钾玄岩 ,具有明显的成分及结构演化的连续性。其稀土元素总量较高 ,但变化范围较大 [SREE = (122.61~410.58)×10⁻⁶] 具有显著至中等的负铕异常(dEu = 0.13~0.69) 其稀土元素配分曲线呈右 倾型(LREE/HREE = 6.74~16.32),并强烈亏损 Ba、Nb、Ta、Sr、P、Ti 相对富集 Rb、K、Pb 等。千家岩体花岗质岩浆 演化过程中存在大量的热液流体,同时,其造岩矿物中 Pb、Zn 的含量远高于地壳丰度值,深部热能及浅部放射性生 热元素的高含量促使浅部热液对流循环,在较长时间内不断萃取成矿物质。有利于在断裂带内富集成矿。后万岭铅 锌矿床严格受到千家岩体及发育于其内的 NNW 向-近 SN 向扭张性断裂的控制,矿体以充填、交代的方式就位于 NNW 向-近 SN 向扭张性断裂带内及附近。矿相学分析和矿区地质资料揭示出该矿床至少经历了 4 期热液成矿作 用 ① 成矿早期 ,为粗粒黄铁矿形成阶段 ;② 成矿中期 ,是闪锌矿主要成矿阶段 ;③ 成矿中.后期 ,是黄铜矿主要形成 阶段 (④ 成矿后期 是方铅矿主要成矿阶段 其成矿热液可能受到斑岩岩浆的控制。矿区内的 NNW 向-近 SN 向断 裂活动过程对应了后万岭铅锌矿的成矿过程,成矿早期与成矿中期归入左旋张扭性断裂活动阶段,成矿中-后期和成 矿后期归入右旋压扭性断裂活动阶段。 据此笔者认为 后万岭铅锌矿属于燕山晚期后造山环境下严格受 NNW 向-近 SN 向扭张性断裂约束的热液脉型矿床 就位于千家岩体斑岩成矿系统的顶端或远端 最终归纳总结出了后万岭 铅锌矿床成矿模式图。

关键词 地质学 地球化学 控矿因素 热液脉型矿床 后万岭铅锌矿 汗家超单元岩体 海南省 中图分类号 : P618.42 ; P618.43 文献标志码 :A

A tentative discussion on ore-controlling factors, ore genesis and metallogenic model of Houwanling Pb-Zn deposit in Hainan Province

FU WangWei^{1,2}, XU DeRu¹, FU YangRong³, YANG ChangSong³, ZHOU YingChun³, YANG DongSheng¹, WU ChuanJun^{1,2} and WANG ZhiLin^{1,2}

(1 Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,

Guangzhou 510640, Guangdong, China; 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China;

3 Institute of Geology and Exploitation of Hainan, Haikou 570206, Hainan, China)

Abstract

The discovery of the Houwanling Pb-Zn deposit in Ledong County of Hainan Province has been a very im-

** 通讯作者 许德如,男,1966年生,博士,研究员,主要从事大陆构造边缘构造与成矿学研究。Email:xuderu@gigac.cn 收稿日期 2011-12-18;改回日期 2012-09-16。许德焕编辑。

^{*} 本文得到海南省资源潜力评价项目(编号:1212010881625)资助

第一作者简介 付王伟,男,1985年生,在读博士研究生,矿物学、岩石学、矿床学专业。Email:msog090@163.com

portant achievement in ore exploration of Hainan Province in recent years. The Houwanling deposit contains proved Pb + Zn metal reserves of 290 thousand tons with average grades of Zn 2.23% and Pb 0.95%. The deposit is hosted by the Cretaceous Qianjia pluton which had a crust mantle mixed origin due to intermittent magmatic intrusion and was produced in a post-collisional extensional environment in middle-late Jurassic period. This calc-alkaline-dominated pluton, which is extremely depleted in Ba, Nb, Ta, Sr, P and Ti and relatively enriched in Rb, K and Pb, shows a shift from high-K to shoshonite association and is characterized by obvious succession in composition and structure. The Qianjia pluton comprises the monzogranite-granodiorite-syenogranite association and is geochemically characterized by high REE content (ranging from 122×10^{-6} to $411 \times$ 10^{-6}), moderate to high negative Eu anomalies ($\delta Eu = 0.13 \sim 0.69$) and relatively high LREE/HREE ratios $(6.74 \sim 16.32)$. There existed lots of hydrothermal fluids during the evolution of granitic magmas. Furthermore, the abundances of Pb and Zn in rock-forming minerals of the Qianjia pluton's granites are much higher than those in the earth's crust. Deep heat and high content of radioactive heat-producing elements (such as K, Rb) in the shallow part caused convective circulation of hydrothermal fluids in the shallow part, which continuously extracted metallogenic material in a fairly long time. At last, sphalerite and galena were deposited. The deposit is strictly controlled by both the Qianjia pluton and the NNW-nearly SN trending transtensional faults, whereas the ore bodies are largely hosted in the NNW-nearly SN transtensional fault zones or distributed adjacent to the fault zones. Based on thin section observation, the authors obtained abundant important information: course-grained pyrite and fractured pyrite were filled with chalcopyrite, indicating that some of the coursegrained pyrite underwent faulting activities, and course-grained pyrite was generated earlier than chalcopyrite with mesh texture at a temperature of $300 \sim 400$ °C; skeletal texture resulted from replacement of course-grained pyrite by sphalerite, indicating that sphalerite was generated after course-grained pyrite; corona texture resulted from replacement of chalcopyrite by covellite, indicating that covellite was generated in the shallow part at a low temperature below 300° ; emulsion texture and grating texture resulted from the separation of chalcopyrite from sphalerite, indicating that chalcopyrite - sphalerite solid solution had a initial temperature of about 550° C. Geological data reveal that the Houwanling Pb-Zn ore deposit probably underwent multistage mineralization and experienced at least more than four main stages of hydrothermal mineralization: ① the generation of course-grained pyrite at early stage of mineralization; 2 the deposition of sphalerite mainly at the middle stage of mineralization; ③ the formation of chalcopyrite mainly at the middle or late stage of mineralization; ④ the generation of galena mainly at the late stage of mineralization. The ore-forming fluid might have been released from fractionating porphyry magma. The authors thus consider that the Houwanling Pb-Zn deposit is a hydrothermal vein-type deposit in peripheral or supergene location of the porphyry system, strictly controlled by NNW-nearly SN transtensional faults and formed in an extensional environment of post-collision in late Cretaceous. On such a basis, a metallogenic model to explain ore genesis of the Houwanling Pb-Zn ore deposit is put forward in this paper.

Key words: geology, geochemistry, ore-controlling factor, hydrothermal vein-type deposit, Houwanling Pb-Zn deposit, Qianjia pluton, Hainan Province

近年来,随着海南省乐东县境内石门山钼多金 属矿、看树岭银矿、后万岭铅锌矿等一系列中-小型 矿床及矿点的发现,国内有关人员和部门对与之成 因有密切关系的千家岩体的岩石学和矿物学特征、 地球化学和同位素特征、岩体形成时代、岩浆成因和 深部地质背景及岩体中主要含矿断裂性质和蚀变带 特征等,开展了多方面的研究,取得了一些重要认 识,如认为千家岩体是成矿母岩(陈沐龙等,2008), 形成于燕山晚期后造山伸展构造环境(唐立梅, 2010),属于壳幔混合型侵入体,具有深源、高温、浅 侵位的特征(云平等,2003;2004);含矿断裂以近 SN 向和 NNW 向为主(李孙雄等,2004)等等。但对矿 床的控矿因素及矿床成因仍缺乏系统的理解。本文 以控矿因素分析为主线,结合矿相学和千家岩体地 球化学特征,进一步探讨了后万岭铅锌矿的矿床成 因及成矿机理。

1 区域地质背景

千家岩体位于海南岛的西南端、近 EW 向九所-陵水深大断裂与尖峰-吊罗深大断裂间的西段、琼西 SN 向断裂构造带的南端。该岩体的北西部以 NE 向白沙断裂与白垩纪白沙断陷盆地相连,东部出露 印支期中-酸性岩体。该区经历了印支期-燕山期强 烈的构造-岩浆活化,出露大面积中-酸性岩体,断裂 构造十分发育。与强烈的构造-岩浆作用相伴,千家 岩体及其附近出现大面积的多金属矿化,广泛分布 有钼矿床(点)、铅锌矿床(点)、银矿床(点),后万岭 铅锌矿即赋存于该岩体内。

在研究区北西方向的毫岗岭-峨文岭一带出露 有少量中元古界长城系戈枕村组(Chg)黑云斜长片 麻岩或混合质黑云斜长片麻岩和长城系顶部峨文岭 组(Che)云母石英片岩、石英云母片岩;其西南沿海 地区分布有第四系沉积物;其南侧为白垩纪火山岩 分布区;东侧有二叠纪二长花岗岩;北东方向为白沙 盆地西南端(图1)。

2 矿床地质特征

后万岭铅锌矿目前已探明铅锌储量大于 29 万 吨, α(Pb), α(Zn)分别平均为 0.95%、2.23%,其 规模预计可达大型,甚至超大型。

矿区内未见地层出露。区内断裂发育,以 NNW 向-近 SN 向扭张性断裂、NNE 向压扭性断裂和近 EW 向压扭性断裂为主(图 2)。其中,NNW 向-近 SN 向断裂为主要控矿断裂。矿体产于千家岩体中 部的保亭单元角闪黑云二长花岗岩和吊罗山单元正 长花岗岩中。矿体主要由含矿石英脉、含矿绢英岩 和含矿绢云母化碎裂岩组成,走向为近 SN 向或 NNW 向,倾向东或北东东,矿体总体呈向北散开、向 南收敛的帚状分布于以后万岭为中心的狭长山脊 上。

矿区内的围岩蚀变主要有硅化、绢云母化、绿泥 石化和碳酸盐化,其特点是以矿化石英脉为中心,向 两侧依次出现绢英岩、绢云母化碎裂岩、硅化-绢云 母化二长花岗岩或绢云母化正长花岗岩,其中,硅 化、绢云母化与铅锌矿化关系密切。矿石矿物以方 铅矿、闪锌矿为主,次为黄铁矿,有少量黄铜矿,还有 微量辉银矿、磁铁矿、钛铁矿等;脉石矿物主要为石 英,次为绢云母、绿泥石及残留的长石等;在近地表 处,原生矿石矿物大部分被氧化成褐铁矿、白铅矿、 铅钒、钼铅矿、磷酸氯铅矿等。矿石具有他形-自形 晶粒状、交代残余、乳滴状、碎裂和不等粒镶嵌等结 构,具块状、脉状、细脉浸染状和浸染状等构造。

3 控矿因素

3.1 赋矿岩浆岩

后万岭矿区内主要出露晚白垩世侵位的千家岩 体超单元花岗岩,其锆石 U-Pb 年龄为 81.5~87 Ma Rb-Sr 等时线年龄为(93.3±0.3)~(94.4± 0.2) Ma(陈沐龙等 2008)。该岩体各单元的侵位顺 序由早至晚依次为阜石斗单元二长花岗岩、加茂单 元花岗闪长岩、保亭单元二长花岗岩、吊罗山单元二 长-正长花岗岩、大小岭单元正长花岗岩(表1)。

矿体附近出露有吊罗山正长花岗岩、大小岭正 长花岗岩岩瘤以及花岗斑岩脉。吊罗山正长花岗岩 和保亭二长花岗岩为容矿岩体,而加茂花岗闪长岩、 阜石斗二长花岗岩、大小岭正长花岗岩及各种岩脉 多分布于千家岩体边缘(图1)。岩石类型主要为角 闪黑云二长花岗岩和黑云正长花岗岩。角闪黑云二 长花岗岩是容纳矿体最多的岩石 ,大面积分布于矿 区的北部及东部 岩石呈肉红色带灰白色 似斑状结 构 基质为中粒结构 ;斑晶粒径以 1~2 cm 为主 ,成 分为肉红色板状微纹长石和灰白色板柱状斜长石; 基质成分为微纹长石、斜长石、石英、黑云母和角闪 石 副矿物为微量的磁铁矿、榍石、金红石等 次生矿 物为微量的绢云母、绿泥石、高岭土。也有少量矿体 赋存于黑云正长花岗岩内,该类岩石主要出露在矿 区的中部和西南部,岩石呈浅肉红色-灰白色,中粒 花岗结构,主要矿物成分为斜长石、钾长石、石英、黑 云母 副矿物为微量的榍石、磁铁矿、磷灰石等 次生 矿物为微量的绢云母、绿泥石、高岭土。

3.2 控矿断裂

后万岭矿区内的构造主要表现为千家岩体固结 后发育的多组断裂,按其走向和性质可划分为 NNW向-近 SN 向扭张性断裂及 NE 向压扭性断裂 (图 2)。

图 1 海南省千家岩体地质简图

1—第四系;2—白垩系;3—长城系峨文岭组片岩;4—长城系戈枕村组片麻岩;5—下古生界;6—晚白垩世大小岭单元正长花岗岩;7—晚 白垩世吊罗山单元二长-正长花岗岩;8—晚白垩世保亭单元二长花岗岩;9—晚白垩世加茂单元花岗闪长岩;10—早白垩世阜石斗单元二 长花岗岩;11—早白垩世花岗闪长玢岩;12—早白垩世花岗闪长斑岩;13—早白垩世花岗斑岩;14—晚白垩世花岗斑岩脉;15—三叠纪花岗岩; 16—二叠纪花岗岩;17—长城纪花岗岩;18—白垩纪火山岩;19—矿床(点)位置及编号:① 石门山钼铅锌多金属矿床;② 石门水库钼矿; ③ 盗公村铅锌铜铀矿;④ 看树岭银矿;⑤ 后万岭铅锌矿;⑥ 胜洪铅矿;⑦ 南寡铅矿;⑧ 报告村钼矿;20—地球化学采样点;

21—同位素采样点与分析方法;22—断裂;23—地质界线

Fig. 1 Geological schematic map of Qianjia batholith, Hainan Province

1—Quaternary ; 2—Cretaceous 33—Schist of Ewenling Formation in Changcheng System ; 4—Gneiss of Gezhencun Formation in Changcheng System ; 5—Lower Paleozoic ; 6—Late Cretaceous Daxiaoling unit syenogranite ; 7—Late Cretaceous Diaoluoshan unit monzo-syenogranite ; 8—Late Cretaceous Baoting unit monzogranite ; 9—Late Cretaceous Jiamao unit granodiorite ; 10—Early Cretaceous Fushidou unit monzogranite ; 11—Early Cretaceous grano- diorite porphyrite ; 12—Early Cretaceous granodiorite porphyry ; 13—Early Cretaceous granite porphyry vein ; 15—Triassic granite ; 16—Permian granite ; 17—Granite of Changcheng Period ; 18—Cretaceous volcanic rocks ; 19—Deposit (ore spot) and its serial number : ① Shimenshan Mo-Pb-Zn polymetallic deposit ; ② Shimenshuiku Mo deposit ; ③ Daogongcun Pb-Zn-Cu-U deposit ; ④ Kanshuling Ag deposit ; ⑤ Houwanling Pb-Zn deposit ; ⑥ Shenghong Pb deposit ; ⑦ Nanzhai Pb deposit ; ⑧ Baogaocun Mo deposit ; 20—Geochemical sampling location ; 21—Isotopic sampling location and analytical method ; 22—Fault ; 23—Geological boundary

NNW 向-近 SN 向扭张性断裂 为南球-中岭断裂的南段,由数条规模较大的 NNW 向-近 SN 向的 富含石英脉的绢云母化破碎带组成,曾多次活动,活动强度由强变弱。该组断裂的南段即为近SN向的 宝翠山断裂。李孙雄等(2004)认为,宝翠山断裂由 数条走向近 SN 向的石英脉破碎带组成,脉体略向北 撒开而向南收敛,膨缩变化大,局部见追踪弯曲、分 支、左列等现象。破碎石英脉被晚期网脉状细小石英

图 2 后万岭铅锌矿矿区地质简图 1—晚白垩世大小岭单元正长花岗岩;2—晚白垩世吊罗山单元二 长-正长花岗岩;3—晚白垩世保亭单元二长花岗岩;4—花岗斑岩 脉;5—石英-绢云母化构造破碎带;6—断裂;7—地质界线 Fig. 2 Geological schematic map of the Houwanling Pb-Zn deposit

1—Late Cretaceous Daxiaoling Unit syenogranite; 2—Late Cretaceous Diaoluoshan Unit monzo-syenogranite; 3—Late Cretaceous Baoting Unit monzogranite; 4—Granite porphyry vein; 5—Quartzsericitized stuctural fracture zone; 6—Fault; 7—Geological boundary

脉充填,脉体呈右行雁列状分布。反映出该断裂经 历过2次活动,早期为左旋张扭性,晚期为右旋压扭 性,表现为碎裂化、裂隙化脆性变形,蚀变类型主要 为硅化、绢云母化、绿泥石化、黄铁矿化和碳酸盐化。 经详查论证,后万岭铅锌矿矿体的产状与其一致,且 矿体主要赋存于该破碎带及其与围岩的接触部位。 断裂带微量元素地球化学特征显示出,Au、Cu、Pb、 Ag等成矿元素主要富集于 NNW 向-近 SN 向的次 级断裂中(李孙雄等,2004)。因此,该组断裂是后万 岭铅锌矿床最重要的控矿因素,不仅为成矿流体提 供了导矿空间,而且,其本身又容矿,严格控制了后 万岭铅锌矿的产出。

NE 向压扭性断裂 主要为大安水库断裂和牛 角山断裂(图2),位于矿区中部,走向约30~50°,倾 向南东,其性质以扭张为主,错断了NNW向-近SN 向具铅锌矿化石英脉带,应形成于成矿期之后。

由此,NNW 向-近 SN 向扭张性断裂不仅是导矿 构造,而且是容矿构造,对成矿元素的运移、沉淀起 到关键作用,而 NE 向压扭性断裂则形成于成矿期 后,与成矿关系不密切,但对先期形成的矿体可能造 成一定的破坏。

4 千家岩体地球化学特征

4.1 主量元素特征

千家岩体中各单元未蚀变花岗岩的主量元素分 析结果及主要地球化学参数见表 2。由表 2 可见 这 些花岗岩 w(SiO2)全碱 w(K2O + Na2O)及 u(KO) 較高,分别为64.32%~74.82%、7.11%~ 8.58%、3.81%~5.96%;K2O/Na2O值也比较高, 为1.12~2.27 属于钾质岩系 ;Al₂O₃ 的饱和度 ASI 为 0.87~1.27 多数为偏铝质或弱过铝质 岩石的里 特曼指数(σ)为1.92~2.43,小于3.3,整体上属于 弱过铝质的高钾钙碱性岩石系列或钾玄岩系列(图 3a)。 $w(Al_2O_3)$ 、 $w(TiO_2)$ 、 $w(P_2O_5)$ 较低,与 τι(SiO₂) 呈显著的负相关关系(图 4); MgO 也表现 为相似的演化趋势,保亭单元(GX\119-1)和加茂单元 (GX 1 3-1 和 QV4-1)样品的 w(MgO)较高(图 4)。 u(K2O)随 u(SiO2) 增加而增加, u(Na2O)则具有 随 w(SiO₂) 增加而减少的趋势(图 4)。固结指数 SI (2.7~17.1)与 w(SiO2)呈显著的负相关关系,表 明千家岩体各单元花岗岩的分异程度逐步升高。

4.2 微量元素特征

千家岩体花岗岩的 $u(\sum REE) 较高,变化范围$ 较大[(122.61~410.58)×10⁻⁶],具有显著到中等 $的负铕异常(<math>\delta Eu = 0.13 \sim 0.69$),且铕负异常与 $u(SiO_2)$ 呈显著的正相关关系(图 3b)。轻、重稀土 元素($\sum LREE/\sum HREE$)之比为 6.74~16.32,轻稀 土元素富集、重稀土元素亏损,其球粒陨石标准化稀 土元素配分曲线呈右倾模式[(La/Yb)_N = 6.78~ 24.55)(图 5a)。 表 1 千家岩体各单元同位素年龄

Table 1 Isotopic ages of Qianjia pluton

	保亭单元		大小岭单元	吊罗山单元	加茂单元	
	YD1312	YD1308	YD1090	YD959	D3125	122-1
同位素年龄/Ma	94 ± 1	87	83	82	88 ± 1	100.9 ± 1.3
年龄性质	原岩年龄	原岩年龄	原岩年龄	原岩年龄	原岩年龄	原岩年龄
测试方法	Rb-Sr	U-Pb	U-Pb	U-Pb	Rb-Sr	U-Pb
测试单位	宜昌所	宜昌所	海南地矿局	宜昌所	海南地矿局	天津地矿所
测试时间	2003-11-20	2003-11-20	2003-11-20	2003-11-20	2003-11-20	2000
资料来源	1	1	1	1	2	3

注:①1:25万乐东县幅区域地质调查报告;②1:25万乐东县陵水县幅区域地质调查报告;③1:5万黎母岭、枫木市、琼中县、白马岭幅区 域地质调查料。

图 3 千家岩体花岗岩类 SiO₂-K₂O 图解 a Morrison, 1980 和 dEu-SiO₂ 图解 b) Fig. 3 SiO₂-K₂O diagram(a)(Morrison, 1980) and dEu-SiO₂ diagram(b) for granitoids of Qianjia pluton

在原始地幔标准化蛛网图中,花岗岩强烈亏损 Ba、Nb、Ta、Sr、P、Ti 相对富集 Rb、K、Pb 等(图 5b)。 其中 Sr、Ba 亏损指示了钾长石、斜长石的分离结晶, 因为 Ba²⁺、Sr²⁺容易被斜长石、钾长石所容纳 ;P 亏 损指示了磷灰石的分离结晶 :Ti 亏损指示了钛铁矿 的分离结晶 ,也暗示出岩浆物质可能来源于地壳 ,因 为 Ti 不易进入熔体而残留于源区。Rb/Sr 值为 0.41~3.11 ,并且与 w(SiO2)呈正相关关系 ,显示出 岩浆演化过程中幔源组分逐渐减少,壳源组分快速 增加 ;K/Rb 值>141 ,Nb/Ta 值(8.26~35.20)平均 为 18.50 ,略高于球粒陨石值(17.5);Zr/Hf值(27.1 ~36.8) 与其西北侧尖峰岩体的相应值接近(谢才富 等 2006),明显低于正常花岗岩的相应值(36~39) (Taylor et al., 1985 Dostal et al. 2000)。Rb/Nb 值 (11.3~20.4) 略高于尖峰岩体的相应值(谢才富等, 2006),明显高于地壳平均值(5.36) Rudnick et al., 1995) 及铝质 A 型花岗岩 而与世界上 S 型花岗岩的

值(Whalen et al., 1987)相近,显示出有大量地壳物 质参与岩浆的形成(Hildreth et al., 1991)。

5 讨 论

5.1 岩体与成矿关系

5.1.1 千家岩体侵位构造环境

Jahn 等(1976)最早提出中国东部的晚侏罗世— 早白垩世岩浆活动与太平洋俯冲有关;之后,国内外 学者对中生代古太平洋板块对华南地区的影响做了 大量阐述(郭令智等,1983;Gilder et al.,1996; Lapierre et al.,1997;谢才富等,2005;周新民,2003; 2007;Li et al.,2007;吴福元等,2007;毛景文等, 2004,2007)。周新民(2003;2007)发现,华南印支期 花岗岩呈面状大面积出露并为块状构造,未见有明 显的大规模构造痕迹,因此,它们不会是地壳挤压推 覆的产物,而是地壳伸展-减薄和减压熔融的产物,并

表 2 千家岩体各单元花岗岩的主、微量元素 Table 2 Major and trace elements of Qianjia pluton

	加万		保亭单元	阜石斗单元	吊罗山单元	大小山	令单元
组分	花岗闪长岩	花岗闪长岩	二长花岗岩	二长花岗岩	钾长花岗岩	钾长花岗岩	钾长花岗岩
	样品号	GX\.3-1	QV4-1	GX∭9-1	QV10-1	QV13-2	QV8-1
				w(B)/%			
SiO ₂	64.32	68.21	66.92	70.33	74.82	71.67	74.58
TiO ₂	0.70	0.48	0.55	0.35	0.15	0.25	0.12
Al_2O_3	14.88	14.41	14.28	13.99	12.96	13.52	13.12
Fe ₂ O ₃	2.36	1.11	2.56	1.70	1.12	2.06	0.89
MnO	0.07	0.06	0.06	0.06	0.04	0.06	0.03
MgO	2.41	1.88	1.90	0.9	0.31	0.63	0.29
CaO	4.04	3.05	3.23	1.97	0.11	1.22	0.35
Na ₂ O	3.39	2.98	3.35	2.65	2.76	2.62	2.62
K ₂ O	3.81	4.13	4.01	4.65	5.05	5.71	5.96
P_2O_5	0.20	0.14	0.10	0.09	0.04	0.06	0.05
CO_2	0.03	0.08	0.03	0.27	0	0.04	0.02
LOI	3.66	3.38	1.75	2.92	2.21	1.98	1.81
总和	99.87	99.91	98.74	99.88	99.57	99.82	99.84
				π (B)/10 ⁻⁶			
Ba	500	640	470	294	253	452	124
Rh	154	170	174	131	198	292	351
Sr	380	370	370	211	71	102	113
Zr	140	133	122	163	40	195	136
Nh	12.0	10.7	11.5	11.6	12.3	14 3	18.0
V	18.0	14.2	15.9	19/6	16.7	42.9	56.0
V	78.0	67.3	59.0	34.0	13.3	17	7 9
Č	10.0	7 9	17.0	4.6	1 7	5 4	1.0
Ni	12.0	10.6	21.0		1.7	5.2	0.8
Cu	5.0	2.8	9.0	1.5	2	23 5	8.4
Zn	50	37 4	172 0	18 5	23.7	73.0	20.6
Lo	47.6	37.4 44 1	66 1	30.5	23.7	101 4	20.0
La	47.0	44.1	83 1	62.6	23.1 58.1	101.4	49.4
Da	0.5	/4.5	05.1	02.0	50.1	141.2	103.0
LL M	9.5	25.0	9.5	29.1	0.2	23.1	15.1
Nu Sm	7.0	23.9	6.2	20.1	19.7	90.7 16.2	45.1
Sm	1.24	4.4	0.5	5.7	4.1	10.2	9.1
Eu	1.34	0.64	1.08	0.87	0.41	1.20	0.50
Gu Th	4.29	0.43	3.55	4.55	3.08 0.47	11.31	0.13
TD Du	0.78	2.58	0.04	0.08	0.47	1.78	0.63
Dy LL-	4.74	2.30	4.00	4.01	2.95	9.32	9.03
П0 En	0.85	0.32	0.70	0.70	0.38	1.09	1.62
Er Tm	2.12	0.22	2.01	0.20	1.05	4.37	0.86
1 m Vh	2.08	0.23	1.04	0.29	0.27	0.09	5.22
ID Lu	2.08	0.22	0.30	0.24	0.26	4.40	0.76
Lu	0.32	0.22	0.30	0.24	0.20	0.70	0.76
	5.1	4.0	4.3	5.5	5.8	0.2	4.5
Ta Dh	0.80	0.70	0.00 38.0	0.55	0.5	0.8	2.10
FD Ph/Sm	24.0	17.5	38.0	20.1	19.3	2.86	2 11
ND Sr	0.41	0.40	0.47	0.02	2.79	2.80	5.11
	12.0	13.9	13.1	11.5	10.1	20.4	19.5
Nh/Ta	203	202	191	295	212	102	141 8 26
$7_{\mu}/H$	13.00	14.10	27 1	33.20	24.00	21.5	8.20 20.2
$(1_0/Vh)$	27.J 16.AD	21.1	21.1	JU. 0 14 20	JU. 0 0 41	JI.J 16 21	50.2
	10.42	20.40	24.00	14.30	9.41	10.31	0.78
0 %E	2.43	2.01	2.20	0.51	0.24	2.42	2.33
ACI	0.09	0.03	0.04	1 00	0.54	1.06	0.15
ASI	0.0/	0.97	0.91	1.00	1.27	1.00	1.15
OI Videe	17.10	15.20	14.00	1.03	3.03	J. 54	2.70
∠ KEE	197.34	108.20	215.75	149.42	122.01	410.58	233.40

注:阜石斗单元主、微量元素数据引自陈沐龙等,2008。

16.32

15.38

9.88

10.39

11.05

6.74

 Σ LREE/ Σ HREE 11.98

Fig. 4 Harker diagrams showing chemical variations of granitoids in Qianjia pluton

认为 .燕山早期(J₂-J₃)属于板内伸展造山、燕山晚期 (K₁-K₂)为岛弧型伸展造山,白垩纪沿海地区活动陆 缘的火山岩和侵入岩是燕山期古太平洋板块以中等 大小角度向华南俯冲的产物。一些学者(郭峰等, 1997 注洋等,2003;谢才富等,2004;2005;2006)在 综合分析了海南、湘南、湘东北等多处出现拉斑质镁 铁-超镁铁质岩的特点之后,认为当时华南岩石圈仅 厚约 50 km,发生了明显的减薄,是由岩石圈拆沉、 热软流圈上涌引起的后造山期岩石圈及地壳的伸展 减薄,致使下地壳大规模熔融形成了各类花岗岩。 毛景文等(2004;2007)认为,中-晚侏罗世及白垩纪 太平洋板块向华南俯冲及向NNE方向走滑造成了 武夷山以东的NE向壳幔相互作用的强烈伸展带以 及大面积花岗岩出露。

上述观点表明,对华南三叠纪以来后造山花岗 岩形成的动力学机制虽然存在分歧,但普遍赞同在 中-晚侏罗世时期已进入后造山期板内伸展造山阶 段,地壳拉张减薄,壳幔相互作用强烈。在 Maniar 等(1989)提出的构造环境判别图上,千家岩体各单 元花岗岩几乎全都落入后造山花岗岩区域,图6)。在

图 5 千家岩体花岗岩稀土元素球粒陨石标准化图解(a)和原始地幔标准化蛛网图(b)(标准化数值依据 Sun et al. ,1989) Fig. 5 REE patterns(a) and incompatible element spidergrams(b) of granitoids in Qianjia pluton

(normalized data after Sun et al., 1989)

Fig. 6 Tectonic discrimination diagrams of granitoids in Qianjia pluton (Maniar et al. , 1989)

POG—Post-orogenic granitoids ; RRG—Rift-related granitoids ; CEUG—Continental epeirogenic uplift granitoids ; CAG—Continental arc granitoids ; CCG—Continental collision granitoids ; IAG—Island arc granitoids

Pearce(1996)的微量元素构造环境判别图上,千家岩体各单元花岗岩均位于火山弧花岗岩与板内花岗岩的相邻处(图7b),与后造山期已开始进入板内的认识(Liogeoiset et al.,1998)相一致。图7a表明,千家岩体花岗岩的源区包含了亏损的 MORB 地幔及整个地壳,具有显著的壳-幔相互作用的特点,同时,可能存在俯冲带流体。因此,千家岩体应形成于后

the tectonic setting (b) of Qianjia plutor(modified after Pearce , 1996) 造山期岩石向圈伸展减薄的构造背景,后万岭铅锌 矿区内 NNW-近 SN 向扭张性断裂极有可能亦形成 于此阶段。

5.1.2 千家岩体与成矿关系

千家岩体各单元的主、微量元素特征表明,该岩体是后造山期地壳伸展减薄背景下壳-幔混合型岩浆间歇性多次侵入的产物,具有明显的成分与结构演化的连续性。其 Nb/Ta 值变化范围非常大(8.26~35.20),说明在岩浆演化过程中,Nb、Ta 发生了强烈分馏。正常情况下,硅酸盐岩浆系统中,元素的行为主要受控于元素的电荷和离子半径,Nb、Ta 一般不发生分馏。然而,岩浆演化过程中热液流体的作用可能会导致 Nb、Ta 发生分馏,Ta 逐渐富集,Nb/Ta 值逐渐降低。千家岩体的 Nb、Ta 强烈分馏,表明岩浆演化过程中存在大量热液流体。Pearce(1996)的微量元素岩浆源区判别图(图7b)也表明后造山环境花岗质岩浆演化过程中流体的存在。

千家岩体中的造岩矿物均含有一定量的成矿元 素(表3)。围岩的微纹长石、斜长石中, π (Pb)分别为 25×10⁻⁶、20×10⁻⁶,远高于其地壳丰度(12×10⁻⁶)、黎形,1976)、围岩的黑云母中, π (Zn)为 150⁻⁶×10⁻⁶,也远高于其地壳丰度(95×10⁻⁶)、黎彤,

表 3 千家岩体(矿体围岩)造岩矿物的元素含量 Table 3 Element content of rock-forming minerals in Qianjia

pluton (wall-rock of orebody)						
	微纹长石	斜长石	石英	黑云母		
		τ ι(Β)/ 1	0-6	<u> </u>		
Sn	<10	< 10	<10	<10		
Mo	< 0.5	<0.5	< 0.5	<0.5		
Cu	<10	< 10	<10	<10		
Pb	25	20	<10	~ 10		
Zn	<100	<100	<100	150		
Ag	< 0.2	< 0.2	< 0.2	×		
Mn	<100	100	250	1500		
Co	<10	< 10	<10	15		
Ni	<10	< 10	<10	20		
Be	$\times \sim < 10$	≪1	×	×		
Li	$\times \sim < 100$	<100	<100	100		
Ga	~ 10	20	<10	20		
Ce	<10	< 10	<10	<10		
Cr	<10	< 10	<10	20		
Ti	$<\!1000\!\sim\!2000$	<1000	2000	5000		
Р	×	×	×	1500		
分析样数	2	2	2	2		

注:×为未检出。资料引自 2011 年 5 月《海南省铅锌矿潜 力评价报告》。 1976)。千家岩体各单元岩石的 w(Pb) w(Zn)分 别平均为 28.5×10⁻⁶、60.7×10⁻⁶(表 2),其中, w(Pb)远高于其地壳丰度(12×10⁻⁶),而 w(Zn)则 低于地壳丰度(94×10⁻⁶) 黎形,1976)。 w(Zn)低 于地壳丰度的原因可能是岩浆期后热液多期循环不 断萃取围岩中的 Zn,而在有利部位富集成矿,这为 后万岭铅锌矿中锌的储量远高于铅所证实。因此, 千家岩体随岩浆演化程度的增高,K、Rb等放射性生 热元素的含量逐步升高(表 2)。在地壳伸展减薄、深 部壳幔混源岩浆不断上侵的背景下,浅部放射性生 热元素的高含量将促使浅部热液对流循环在较长时 间内不断萃取成矿物质,直到富集成矿。这种浅部 热液对流循环对 Pb、Zn等低温成矿元素的富集起到 至关重要的作用。

5.2 矿床成因

5.2.1 成因矿物学信息

为进一步约束后万岭铅锌矿床的成因,本研究 通过矿相学特征开展了矿床成矿阶段的分析。光片 鉴定表明,后万岭铅锌矿主要矿石矿物方铅矿、闪锌 矿、黄铜矿均为多世代,各世代的特征具有较为显著 的差别。根据光片鉴定,结合后万岭铅锌矿的地质 特征,将其成矿过程划分为4期:①成矿早期,为粗 粒黄铁矿形成阶段;②成矿中期,是闪锌矿主要形 成阶段;③成矿中-后期,是黄铜矿主要形成阶段;④ 成矿后期,是方铅矿主要形成阶段。矿区内 NNW 向-近 SN 向断裂活动过程对应了后万岭铅锌矿的成 矿过程,依据矿相学特征和矿区地质特征,将成矿早 期和成矿中期归入左旋张扭性断裂活动阶段;将成 矿中-后期和成矿后期归入右旋压扭性断裂活动阶 段。后万岭铅锌矿成矿过程具体论述如下:

燕山晚期,伴随强烈的地壳减薄活动及火山喷 发,千家岩体加茂单元花岗闪长岩首先侵入,为该岩 体以后的发展奠定了基础(后期侵入岩多叠加其 上),其锆石 U-Pb 年龄为(100.9±1.3) Ma(表1)。 岩浆演化晚期,岩浆期后热液沿新华夏系构造带南 缘先形成的 NNW 向-近 SN 向断裂运移,主要以充 填作用为主,形成了早世代粗粒黄铁矿(图 8a),显示 出流体温度为 300~400℃(寇大明等,2010)。该期 黄铁矿呈自形-半自形粒状,主要为立方体晶型,粒 径0.2~1 mm,最大可达 3 mm 左右,显示了黄铁矿 的结晶环境良好,热液演化体系处于封闭状态。

图 8 千家岩体的显微照片(1) (a)早世代粗粒黄铁矿(b)交代骸晶结构(c)闪锌矿交代早期粗粒黄铁矿(d)黄铜矿在闪锌矿中的固溶体分解结构; (e)黄铜矿格子状构造(f)早世代碎裂黄铁矿中黄铜矿网脉 铜蓝交代黄铜矿的反应边结构 Py—黄铁矿 Gal—方铅矿 Sph—闪锌矿 Cp—黄铜矿 Cv—铜蓝

Fig. 8 Microphotographs of Qianjia pluton (1)

(a) Early stage course-grained pyrite ;(b) Skeletal texture resulting from replacement of pyrite by sphalerite ;(c) Sphalerite replacing early stage course-grained pyrite ;(d) Emulsion texture ;(e) Grating texture ;(f) Mesh texture resulting from crushed pyrite , and corona texture resulting from replacement of chalcopyrite by covellite

Py-Pyrite ; Gal-Galena ; Sph-Sphalerite ; Cp-Chalcopyrite ; Cv-Covellite

第二期热液以富含 Zn、Pb、Cu、S 等成矿元素为 特征,是闪锌矿的重要成矿阶段。此次热液活动与 吊罗山单元正长花岗岩的侵入关系密切。在深部热 源的驱动下,富含成矿元素的流体充填于先存的裂 隙,并交代早期形成的粗粒黄铁矿,光片下可见黄铁 矿熔蚀边、交代残余结构和交代骸晶结构(图 8b、c)。 在热动力和构造应力的驱使下,热液由深部上升至 浅部,热液体系由封闭转为半开放(由构造活动引 起),有天水混入,大量金属硫化物富集成矿。当热 液体系突变、温度骤降时,黄铜矿与闪锌矿固溶体迅 速分解,形成了乳浊状结构(图 8d);同时,当温度下 降至一定程度时保持稳定状态,先分离的黄铜矿乳 滴沿闪锌矿解理薄弱部位定向排列,形成了定向乳 浊状结构(图 8e)。光片中多见闪锌矿中黄铜矿乳 滴,或散乱状,或定向排列,也可见黄铜矿的格子状 构造(图 8e),显示出该期热液的初始温度为550℃ 左右(陈正海等,1990)。因此可推测,在断裂深部可 见高温蚀变,如云英岩化、强硅化等,同时,有可能伴 生Cu、Mo等元素。

第二期热液演化的后期,受 SN 向应力场的作用 以及深部岩浆的持续上侵,先形成的 NNW 向-近 SN 向断裂再度活化,致使早世代粗粒黄铁矿呈碎裂状 (图 8f),刚结晶的方铅矿发生了褶曲(图 9b),赤铁矿 弯曲碎裂(图9a),此后的热液系统中多有天水加

图 9 千家岩体的显微照片(2)

(a).赤铁矿呈弯曲状,被闪锌矿交代(b).构造应力致使方铅矿褶曲(c).闪锌矿星状结构(d).黄铜矿交代闪锌矿;

(e). 黄铜矿交代赤铁矿 (f). 方铅矿交代闪锌矿形成"黑三角"

Py—黄铁矿;Gal—方铅矿;Sph—闪锌矿;Cp—黄铜矿;Hm—赤铁矿

Fig. 9 Microphotographs of Qianjia pluton (2)

(a). Sphalerite replacing curved hematite ;(b). Tectonic stress curved galena ;(c). Stellated texture ;(d). Chalcopyrite replacing sphalerite ;

(e). Chalcopyrite replacing hematite ;(f). "Black triangle" resulting from replacement of sphalerite by galena Py—Pyrite ; Gal—Galena ; Sph—Sphalerite ; Cp—Chalcopyrite ; Hm—Hematite 入。随后,保亭单元岩浆大规模上侵,同时伴随第三 期热液活动。

第三期热液流体同样以黄铜矿、方铅矿、闪锌矿 为主要金属硫化物,但以黄铜矿为主体,闪锌矿与黄 铜矿呈固溶体状态。该期流体以充填和交代的形式 沿断裂破碎带及裂隙运移,充填于早世代碎裂黄铁 矿的裂隙间,同时交代闪锌矿和赤铁矿。光片中可 见,黄铜矿内闪锌矿的星状结构(图9c),显示出流体 的初始温度为450℃左右(陈正海等,1990);黄铜矿 强烈交代先形成的闪锌矿呈熔蚀边结构和黄铜矿颗 粒中的闪锌矿包体(图9d);黄铜矿交代弯曲变形的 早期针状赤铁矿(图9e);黄铜矿以细脉网脉状填充 于碎裂黄铁矿的裂隙中(图8f)。

保亭单元的岩浆活动规模最大,持续时间最长, 其 U-Pb 年龄为 87 Ma 和 83 Ma(表1),基本上形成 了目前千家岩体各单元的分布格局。

大小岭单元黑云母钾长花岗岩的岩浆侵入活动 减弱,断裂系统打开,整个岩浆热液系统在天水的参 与下演变为浅成低温成矿系统。第四期成矿热液中 金属硫化物以方铅矿、闪锌矿为主,方铅矿占主导地 位,是后万岭铅锌矿铅的最重要成矿期,成矿温度可 能在 300℃以下(陈正海等,1990),方铅矿强烈交代 闪锌矿和黄铜矿。光片中多见:黄铜矿、闪锌矿颗粒 中有方铅矿3组解理形成的黑三角(图 9f);方铅矿 (白色)沿闪锌矿(灰色)的短小交叉状裂隙交代呈尖 角状或多角状(图 10a);方铅矿结晶成颗粒粗大的晶 体(图 10d);同时,可见晚世代细粒黄铁矿以脉状充 填于闪锌矿裂隙中(图 10b),早期碎裂的粗粒黄铁矿 裂隙中及周围(图 10c);先形成的黄铜矿多被铜蓝交 代,呈反应边结构(图8f),其交代过程可能为;CuFeS₂

图 10 千家岩体的显微照片(3) (a)方铅矿交代闪锌矿形成尖角或多角状(b)闪锌矿内晚期细粒黄铁矿细脉(c)晚期细粒黄铁矿呈细脉充填于早期粗粒碎裂黄铁矿中; (d)晚阶段结晶颗粒粗大的方铅矿 Py—黄铁矿 Gal—方铅矿 Sph—闪锌矿 ;Po—磁黄铁矿

Fig. 10 Microphotographs of Qianjia pluton (3)

(a) Tip-horn metasomatic texture resulting from replacement of sphalerite by galena ; (b) Late stage fine-grained pyrite in sphalerite ; (c) Late stage

fine-grained pyrite vein filled in early stage Cataclastic course-grained pyrite ;(d) Late stage course-grained galena

Py-Pyrite ; Gal-Galena ; Sph-Sphalerite ; Po-Pyrrhotite

(黄铜矿)+CuSO₄→2CuS(铜蓝)+FeSO₄。 5.2.2 矿床成因与成矿模式

千家岩体形成于燕山晚期后造山期地壳大面积 伸展减薄的构造背景下,成矿作用强烈,其内产出一 系列的钼、银、铅锌矿床(矿化点),大致以石门山斑 岩型钼多金属矿为中心向东,依次分布有看树岭银 矿、后万岭铅锌矿、盗公村铅锌铜铀矿(图1)构成明 显的由中-高温到低温矿化的水平分带性(李孙雄 等 2004;陈沐龙等,2008)。千家岩体北约5 km 处 为抱伦大型金矿(丁式江等,2001;谢才富等,2006), 矿体多呈脉状、似透镜状、透镜状赋存于下志留统陀 烈组下段绢云母石英千枚岩、绢云母粉砂岩中,可能 是该成矿系统远接触带浅成低温热液型金矿(许德 如等 2011)。因此,千家岩体以钼为中心,周边依次 分布有银、铅锌、金矿化,极可能构成一个完整的斑 岩成矿系统(Sillitoe 2010)。

由此可推测,后万岭铅锌矿应位于斑岩成矿系 统的顶端或者远端,其流体可能来自斑岩岩浆的结 晶分异。成矿流体在千家岩体各单元花岗岩不断上 侵的动力作用及岩浆高热的驱动下沿断裂破碎带运 移,在迁移过程中不断与围岩发生水-岩反应,致使 流体中铅、锌等元素不断富集,随着温度的降低以及 天水的参与,铅、锌等成矿元素最终就位于破碎带。 其成矿模式示意图如图 11 所示。

图 11 后万岭铅锌矿成矿模式示意图

1—前泥盆系沉积变质岩(戈枕村组和陀烈组);2—晚白垩世二长花岗岩;3—晚白垩世正长花岗岩;4—晚白垩世花岗斑岩; 5—构造破碎带;6—绢云母化蚀变带;7—云英岩化蚀变带;8—铅锌矿体(伴生铜银矿);9—钼矿体;10—银矿体;11—混合热液; 12—岩浆热液;13—大气降水

Fig. 11 Schematic diagram of metallogenetic model for the Houwanling Pb-Zn deposit

1—Pre-Devonian metasedimentary rocks (Gezhencun Formation and Tuolie Formation); 2—Late Cretaceous monzogranite; 3—Late Cretaceous syenogranite; 4—Late Cretaceous granite popphyry; 5—Structural fracture zone; 6—Sericitized zone; 7—Greisenized zone; 8—Pb-Zn orebody; 9—Mo orebody; 10—Ag orebody; 11—Mixed hydrothermal solution; 12—Magmatic hydrothermal solution; 13—Atmospheric water

6 结 论

(1)千家岩体形成于燕山晚期中-晚侏罗世后造 山期地壳大面积伸展减薄的构造背景下,各单元花 岗岩属于壳-幔混合型的高钾钙碱性岩石或钾玄岩。

(2)后万岭铅锌矿至少经历了4次热液成矿作 用,并以充填、交代的方式就位于NNW向-近SN向 扭张性断裂中及附近,成矿流体的温度变化于550℃ 至小于300℃。

(3)后万岭铅锌矿可能属于千家岩体以石门山 斑岩型钼多金属矿为中心,周边分布有银、铅锌、金 等矿床(点)的斑岩成矿系统,该矿床位于该成矿系 统的远端或者顶端。

(4)后万岭铅锌矿属于燕山晚期后造山环境下 严格受 NNW 向-近 SN 向扭张性断裂约束的热液脉 型矿床 形成时代为晚白垩世。

参考文献/References

- 陈沐龙,李孙雄,曾雁玲,周进波.2008.海南岛白垩纪千家岩体岩石 地球化学特征及其成矿作用分析[J].矿产与地质,22(1):36-42.
- 陈正海,王大伟. 1990. 闪锌矿-黄铜矿密切交生体的实验研究和成 因判别[J]. 中南矿冶学院学报,21(6):567-571.
- 郭 峰,范蔚茗林 舸,林源贤. 1997. 湘南道县中生代辉长岩包体
 的 Sm-Nd 定年和岩石成因[J]. 科学通报 42(17):1661-1663.
- 郭令智 施央申,马瑞士. 1983. 西太平洋中、新生代活动大陆边缘和 岛弧构造的形成及演化[J]. 地质学报 57(1):11-21.
- 寇大明,黄 菲 杨大勇,李光禄,王岳松,谭 伟,郭耀宇.2010.热 硫化条件下温度对黄铁矿结晶生长的影响[J].吉林大学学报 (地球科学版)(1):104-108.
- 丁式江,黄香定,李中坚,傅杨荣,董法先,舒 斌,张小文. 2001.海 南抱伦金矿地质特征及其成矿作用[J].中国地质,28(5):28-34.
- 李孙雄,莫位明,云 平,范 渊. 2004. 海南千家地区主要断裂带特 征和控岩控矿作用分析[]]. 地质力学学报,10(2):137-145.
- 黎 彤. 1976. 化学元素的地球丰度 []. 地球化学 (3): 168-174.
- 毛景文,谢桂青,李晓峰,张长青,梅燕雄. 2004. 华南地区中生代大 规模成矿作用与岩石圈多阶段伸展[J]. 地学前缘,11(1):45-55.
- 毛景文,谢桂青,郭春丽,陈毓川. 2007. 南岭地区大规模钨锡多金属 成矿作用,成矿时限及地球动力学背景[J]. 岩石学报,23(10): 2329-2338.

- 唐立梅. 2010. 海南岛中生代两期构造伸展作用的岩浆记录及其大陆动力学意义(博士论文 [D]. 导师:陈汉林,董传万. 杭州:浙江大学. 104页.
- 汪 洋 邓晋福. 2003. 广西南部三叠纪强过铝质火成岩岩石化学特征的动力学意义[J]. 地质地球化学,31(4):35-41.
- 谢才富,朱金初,丁式江,付太安,李志宏,张业明,2004. 海南岛晚二 叠世—中三叠世镁铁质-超镁铁质侵入岩:后碰撞阶段岩石圈减 薄的证旗,A],2004年全国岩石学与地球动力学研讨会论文摘 要集[C],2004年全国岩石学与地球动力学研讨会,海口:中国 矿物岩石地球化学学会,308-309.
- 谢才富,朱金初,赵子杰,丁式江,付太安,李志宏,张业明,徐德明. 2005. 三亚石榴霓辉石正长岩的锆石 SHRIMP U-Pb 年龄:对海 南岛海西-印支期构造演化的制约[J]. 高校地质学报,11(1): 47-57.
- 谢才富,朱金初,丁式江,张业明,陈沐龙,付杨荣,付太安,李志宏. 2006. 海南尖峰岭花岗岩体的形成时代、成因及其与抱伦金矿的 关系[J]. 岩石学报,22(10)2493-2508.
- 吴福元 李献华 杨进辉 郑永飞. 2007. 花岗岩成因研究的若干问题 [J]. 岩石学报 23(6):1217-1238.
- 许德如,傅杨荣,杨昌松,王智琳,张小文,吴传军,付王伟. 2011.海 南抱伦金矿床主要研究进展与关键科学问题研究[J].矿物学 报 SI(增刊):984-985.
- 云 平,范 渊 莫位任,周进波. 2003. 海南岛晚中生代壳幔岩浆混 合作用——来自闪长质淬冷包体的证据[J]. 华南地质与矿产, (2):30-35.
- 云 平,吴育波,谢盛周. 2004. 海南岛燕山晚期典型侵入岩成因矿 物学研究及其地质意义[J]. 华南地质与矿产(4):1-8.
- 周新民. 2003. 对华南花岗岩研究的若干思考[J]. 高校地质学报,9 (4) 556-565.
- 周新民. 2007. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化 [M]. 北京 科学出版社. 691页.
- Dostal J and Chatterjee A K. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton Nova Scotia , Canada [J]. Chemical Geology , 163 : 207-218.
- Gilder S A , Gill J , Coe R S , Zhao X X , Liu Z W , Wang G X , Yuan K R , Liu W L , Kuang G D and Wu H R. 1996. Isotopic and paleomagnetic constrains on the Mesozoic tectonic evolution of South China[J]. Journal of Geophysical Research , 101 :16137-16154.
- Hildreth W H, Halliday A N and Christiansen R L. 1991. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau volcanic field J J. J. Petrol. , 32:63-138.
- Jahn B M , Chen P Y and Yen T P. 1976. Rb-Sr ages of the granitic rocks in Southeastern China and their significance J J. Geol. Soc. Am. Bull. , 86:763-776.
- Lapierre H , Jahn B M , Charvet J and Yu Y W. 1997. Mesozoic felsic

arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with tectonic activity in southeastern China [J]. Tectonophysics, 274:321-338.

- Liogeoiset J P , Nabez J , Hertogen J and Black R. 1998. Constraiting origin of post-collisional hign-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoid J J. Lithos , 45 : 1-28.
- Li Z X and Li X H. 2007. Formation of the 1300 km² wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China : A flat slab subduction mode[J]. Geology , 35 :179-182.
- Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids [J]. Geol. Soc. Am. Bull. , 101 :635-643.
- Morrison G W. 1980. Characteristics and tectonic setting of the shoshonite rock association [J]. Lithos , 13:97-108.
- Pearce J A. 1996. Source and settings of granitic rocks J J Episodes , Geochemical characte. 19 : 120-125. Contrib. Mineral Petro

- Rudnick R L and Fountain D M. 1995. Nature and composition of the continental crust : A lower crustal perspective J J. Rev. Gelphys. , 33:267-309.
- Sillitoe R H. 2010. Porphyry copper systems J J. Econ. Geol. , 105:3-41.
- Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt : Implications for mantle composition and processes [A] In : Saunders A D and Norry M J, eds. Magmatism in the ocean basins [M]. London : Geological Society of London. Special Publications, 42 : 528-548.
- Taylor S R and Mclemann S M. 1985. The continental crust : Its composition and evolutior [M]. Blackwell : Oxford Press. 312p.
- Whalen J B, Carrie K L and Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contrib. Mineral Petrol. , 95 :407-419.

1226