文章编号:0258-7106(2012)06-1337-13

青海省祁连县东沟铜矿床成矿特征及成因研究

武 鹏¹ 马彦青² 李向民¹ 徐学义¹ 余吉远¹ 王国强^{1,3} 唐 $卓^1$ 韩 \mathscr{G}^1

(1中国地质调查局西安地质调查中心,陕西西安 710054;2 青海省第五地质矿产勘查院,青海西宁 810012;3长安大学地球科学与资源学院,陕西西安 710064)

摘 要 通过对东沟铜矿床的成矿特征、流体包裹体地球化学以及矿床成因研究,获得了如下认识:① 成矿环 境为晚寒武世的大洋扩张脊环境,容矿岩石为蛇绿岩套上部的基性火山岩,矿床成矿金属组合为 Cu-Zr(少量),围岩 蚀变主要有硅化、绿泥石化、碳酸盐化及绿帘石化等,其中,硅化、绿泥石化与矿体的关系最为密切;② 对不同类型 矿石中黄铁矿、黄铜矿的电子探针分析均表明,具有低温或中低温热液成矿的特征;③ 流体包裹体地球化学研究表 明,该区成矿期石英中包裹体类型简单,仅有纯液体包裹体和液体包裹体,气相分数低,液体包裹体气相成分以 CO₂ 为主,液相成分主要为 H₂O,矿床成矿流体温度为 150~200℃,盐度 w(NaCl_{eq})为 13%~16%,密度为 0.87~0.95 g/cm³,④ 矿床属于"塞浦路斯"型块状硫化物矿床。

关键字 地球化学 成矿特征 流体包裹体 塞浦路斯型矿床 东沟铜矿 北祁连中图分类号: P618.41文献标志码 :A

Metallogenic characteristics and genesis of Donggou copper deposit in Qilian County, Qinghai Province

WU Peng¹, MA YanQing², LI XiangMin¹, XU XueYi¹, YU JiYuan¹, WANG GuoQiang^{1,3}, TANG Zhuo¹ and HAN Yuan¹

(1 Xi'an Institute of Geology and Mineral Resources, China Geological Survey, Xi'an 710054, Shaanxi, China;
2 No. 5 Institute of Geology and Mineral Resources Exploration of Qinghai Province, Xining 810012, Qinghai, China;
3 College of Earth Science and Land Recourses, Chang'an University, Xi'an 710064, Shaanxi, China)

Abstract

Based on a study of ore-forming characteristics, fluid inclusion geochemistry and genesis of the Donggou copper deposit, the authors obtained the following understanding: ① The metallogenic environment was an oceanic spreading ridge environment in Late Cambrian, the ore-bearing rocks were mafic volcanic rocks in the upper part of the ophiolite, the ore-forming metals were of Cu-Zn combination, and the wall-rock alterations included silicification, chloritization, carbonatization and epidotization, with silicification and chloritization having the most close relationship with the ore body. ② Electron microprobe analyses of pyrite and chalcopyrite in different ores show low-middle temperature hydrothermal mineralization characteristics. ③ Geochemical studies of fluid inclusions show that inclusion types in quartz are rather simple and comprise only pure liquid inclusions and gas-liquid inclusions, with low gas-liquid ratio, and gas-liquid two-phase inclusions and liquid inclusions are mainly composed of CO_2 and H_2O respectively. Ore-forming fluids have temperature of $150 \sim 200^{\circ}C$, salinity of

^{*} 本文得到青藏专项'北祁成矿带成矿条件研究与找矿靶区优选 (编号:1212010818090)"北山-祁连成矿带地质矿产综合研究 (编号: 1212010010405)"资助

第一作者简介 武 鹏,男,1982年生,工程师,从事岩石学、矿物学、矿床学研究。Email:312725578@qq.com 收稿日期 2012-02-01;改回日期 2012-10-29。张绮玲编辑。

 $w(NaCl_{eq})13\% \sim 16\%$, and density of $0.87 \sim 0.95 \text{ g/cm}^3$. ④ Mineralization types are of "Cyprus" type massive sulfide deposit.

Key words: geochemistry, mineralization characteristics, fluid inclusions, Cyprus-type deposit, Donggou copper deposits, North Qilian

东沟矿区行政区划属于青海省祁连县扎麻什克 乡 距祁连县城约 21 km ,矿床中心地理坐标为 :东 经 100°7′ 北纬 38°6′(图 1)。东沟铜矿床发现于上 世纪 50 年代 ,由于该矿区海拔较高、交通不便 ,前人 对它的调查研究工作相对较少。就仅有的资料来 看 ,对该矿床的成因主要有 2 种认识 :一种是中低温 热液充填型矿床[●] ,另一种认为是与火山喷流作用有 关的块状硫化物矿床 ;就其形成环境也有 2 种认识 : 一为中奥陶世的大陆裂谷环境 ,赋矿岩系为中酸性 火山-沉积岩(冯益民等,1996;蒋敬业等,1999),二 为晚寒武世—早奥陶世大洋扩张脊环境(夏林圻等, 2001 武鹏,2010)。近年来,随着在该矿区的西侧支 沟(简称 '西沟 ')发现了具有工业价值的富铜工业矿 体而受到越来越多的关注,作者对该矿区进行了野 外地质调查,矿区含矿围岩由辉橄岩、辉长岩及基性 火山岩组成,构成了较为完整的蛇绿岩层序。矿体 产于蛇绿岩中的基性火山岩内,与典型的"塞浦路 斯 '型矿床(Hutchinson,1984)相似。一般来讲,在造

图 1 祁连县扎麻什东沟地区地质简图(据❶修改)

1—第四系沉积物;2—二叠系—三叠系砂岩;3—泥盆系臭牛沟组;4—早中志留世碎屑岩;5—加里东期中期闪长岩;6—加里东期 早期花岗岩;7—晚寒武世基性火山岩;8—辉长岩;9—超基性岩;10—中寒武世黑刺沟群;11—不整合;12—断层;13—矿床; 14—研究区范围;15—采样点

Fig. 1 Geological sketch map of Donggou area in Zamashi , Qilian County

(modified after 1:200 000 Geological Maps of Qilian Sheet)

1—Quartenary sediments ; 2—Permian-Triassic sandstone ; 3—Devonian Chouniugou Formation ; 4—Early-middle Silurian clastic rocks ; 5—Middle Caledonian diorite ; 6—Early Caledonian granite ; 7—Late Cambrian basic volcanic rocks ; 8—Gabbro ; 9—Ultrabasic rocks ; 10—Middle Cambrian Heicigou Group ; 11—Unconformity ; 12—Fault ; 13—Ore deposit ; 14—Study area ; 15—Sampling point

山带形成演化过程中、随着俯冲作用的发生,大洋板 块消失殆尽,只有极少量以仰冲岩片形式残存于造 山带中,与之相关的块状硫化物矿床也难以保存,而 造山带中与块状硫化物矿床有关的蛇绿岩大多属于 SSZ型,东沟铜矿是北祁连山成矿带形成于大洋环 境'塞浦路斯'矿床的典型代表,因此,本文对东沟矿 床的成矿特征、成矿条件以及矿床成因开展研究,进 一步厘定北祁连塞浦路斯型矿床分布及成矿特点, 以供区域找矿参考。

1 成矿地质背景

北祁连山是中国重要的块状硫化物矿床成矿带 之一,与早古生代海底火山作用有关的铜多金属矿 床是该造山带的特色资源(宋叔和,1955;1982;向鼎 璞等,1985;孙海田,1993;邬介人等,1994;宋志高, 1984 李文渊 2004)。据研究,北祁连成矿带在早古 生代经历了以下 3 个演化阶段(夏林圻等, 1995; 1996 :1998 :2001): ① 新元古代—早寒武世大陆裂 谷演化阶段 ② 中寒武世—晚奥陶世早古生代弧盆 演化阶段 ③ 晚奥陶世—志留纪碰撞后裂谷拉伸演 化阶段。各阶段火山岩发育,且保存良好,在中国乃 至世界都实属罕见。不同阶段均有与火山作用相关◎ 的块状硫化物矿床产出 ,如大陆裂谷阶段形成的清 水沟-白柳沟矿田(任有祥等,2000)、弧盆演化阶段 形成于岛弧裂谷的白银矿田(彭礼贵等,1995;任有 祥等,1995,李向民等,2000,和弧后扩张脊的石居里 沟铜矿床(杨合群等,2000;邬介人等,2001;李文渊 等 2006) 以及形成于碰撞造山期后陆缘裂谷的红 沟铜矿床(向鼎璞等,1985;孙海田等,1993;邬介人 等,1994)等。

东沟铜矿区位于北祁连构造带与中祁连构造带 的相邻部位,隶属于玉石沟-川刺沟洋脊蛇绿岩带的 东南延伸部分,该蛇绿岩带主要由斜辉橄榄岩、纯橄 岩、堆晶辉长岩、均质辉长岩、角斑岩、细碧质枕状熔 岩以及以团块形式出现于枕状熔岩中的放射虫硅质 岩(冯益民等,1996)组成。肖序常等(1978)根据覆 盖在基性熔岩上板岩夹层灰岩中的化石,认为玉石 沟蛇绿岩形成于寒武纪;夏林圻等(1998)采用 Sm-Nd和 Rb-Sr 等时线法测定,玉石沟和川刺沟的基性 火山熔岩的同位素年龄分别为 521 Ma 和 495 Ma, 并且在蛇绿岩带中发育的火山-沉积岩系内含有丰富的早奥陶世三叶虫、笔石和腕足类化石,表明玉石沟-川刺沟洋脊蛇绿岩带和与之相关的块状硫化物 矿床形成于寒武纪末—中奥陶世。

2 矿床地质

2.1 矿区地质

东沟铜矿床产于晚寒武世北祁连仰冲洋壳残片 中,该蛇绿岩片主要沿托莱山出露于祁连县扎麻什 东沟一带,东西长约数十千米(图1),其南、北两侧均 与二叠系、三叠系(P+T)呈断层接触关系;上部被泥 盆系(D)角度不整合覆盖,局部被加里东早期中粒花 岗岩(γ¹₃)及中期闪长岩(δ²₅)所侵入。东沟蛇绿岩主 要由辉橄岩、蛇纹岩、辉长岩及变质火山岩等单元构 成,彼此呈断层接触关系,构成较为完整的蛇绿岩单 元(图2),其中,矿体产出于蛇绿岩套单元上部层位 的基性火山岩中(图2、3)。

2.2 矿体特征

扎麻什东沟铜矿的矿体主要分布于东沟和西 沟,东沟矿体(图2)主要产于细碧岩和细碧质凝灰岩 中(图2A),矿体呈似层状和扁豆状,与围岩产状大 致相同,走向105~116°,倾向15~26°,倾角53~ 60°,矿体长250 m,宽约16.4 m,沿倾斜方向呈脉状 产出。西沟矿体主要产于细碧岩中(图2B),其产状 与东侧基本一致,但规模尚不清楚。

野外调查及光、薄片鉴定表明,东沟铜矿体以块 状含铜黄铁矿为主,另有少量浸染状矿石产出,地表 铜品位为0.5%左右,铜品位向深部变高,据三号浅 井分析表明,铜品位最高为3.33%,最低2.2%,平 均2.88%;五号孔铜品位最高2.76%,最低0.19%, 平均1.16%。西沟铜矿体以块状黄铜矿为主,另有 少量条带状和浸染状矿石产出,品位在5%~35%之 间[●],具有非常高的工业价值。

2.3 矿物组成

该矿床矿物组合简单,金属矿物以黄铜矿、黄铁 矿为主,其次为磁铁矿、闪锌矿。氧化带矿物为褐铁 矿、孔雀石、蓝铜矿、胆矾、石膏。脉石矿物主要有石 英、绿泥石、重晶石、方解石。矿区常见的矿石矿物 共生组合主要有:黄铜矿-黄铁矿,黄铁矿-黄铜矿-闪 锌矿(少量),黄铜矿-闪锌矿(少量)等。

1—Quartz keratophyre ; 2—Quartz-keratophyric tuff ; 3—Tuff ; 4—Spilite keratophyre ; 5—Pillow lava ; 6—Chloritized spilite ; 7—Spilite ; 8—Spilite tuff ; 9—Sericitized and chloritized quartz schist ; 10—Silicified marble ; 11—Gabbro ; 12—Augite peridotite ; 13—Ore body

2.4 矿石构造及结构

矿石构造主要有块状、条带状和浸染状,另有少 量角砾状构造(图4A、4B、4C、4D)。块状矿石主要 由黄铁矿和黄铜矿组成,条带状矿石主要由黄铁矿、 黄铜矿及石英,或者由不同金属矿物相间排列而成。

含铜黄铁矿矿石(图4E),金属矿物主要为黄铁 矿和黄铜矿,自形-半形粒状结构,浸染状、块状构 造。其中,黄铁矿为浅黄色,被黄铜矿交代明显,粒 度大小约为0.15 mm×0.10 mm,约占金属矿物的 60%~70%;黄铜矿为铜黄色,粒度大小约为0.08 mm×0.18 mm,约占金属矿物的40%~30%,交代 结构普遍,镜下可见黄铁矿的三晶嵌联结构和晶体 增生现象,反映了胶体沉积特征。脉石矿物主要为 石英,另有少量绢云母和方解石。

黄铜矿矿石(图 4D),金属矿物为黄铜矿,半自 形-他形粒状结构,条带状、块状构造,粒度大小约为 0.07mm×0.15mm,约占金属矿物的60%~95%; 脉石矿物主要为碳酸盐和石英。

2.5 电子探针分析

本次研究采集了东沟铜矿中 5 块不同类型矿石 (样品号:08QPI-04、08QB-24 为浸染状含铜黄铁 矿 08QPI-18 为块状黄铜矿矿石 ;08QPII-8、08QB-12为块状含铜黄铁矿)。采样位置的坐标为北纬 38°05′,东经100°00′15.7″,海拔3983 m。将样品磨 制成电子探针片并由西安地质矿产研究所测试中心 实验室进行分析。仪器型号: JXA-8230 电子探针 (Electron Probe Microanalyzer, EPMA) 注要由波谱 仪、能谱仪和阴极发光系统组成。利用波谱仪 (WDS)对 B-U(5-92)号元素组成的固体样品进行定 性定量分析,线扫描、面扫描及相分析,波长范围 0.087~9.3 nm 定量分析检测限 100×10⁻⁶。二次 电子像分辨率为 6 nm ,背散射电子像分辨率为 20 nm 放大倍数 40~300 000倍。阴极发光装置(CL) 为 EPMA 上的分系统,主要用于观察及扫描样品阴 极发光图像;X射线能谱仪(EDS)为EPMA上的分 系统 主要用于对样品进行快速、准确的定性分析。

1—第四系;2—上寒武统;3—细碧岩;4—细碧质凝灰岩;5—角砾集块岩;6—角斑岩;7—矿体;8—矿化带;9—断层;10—勘探线及编号

Fig. 3 Simplified geological map of the Donggou ore district , Zamashi , Qilian County

1—Quaternary sediments ; 2—Upper Cambrian ; 3—Spilite ; 4—Spilite tuff ; 5—Conglomerate breccia ; 6—Keratophyre ; 7—Ore body ; 8—Mineralization zone ; 9—Fault ; 10—Exploration line and its serial number

不同类型矿石中黄铁矿(FeS₂)的电子探针分析 (表1)表明,本矿区黄铁矿中w(Fe)为46.09%~ 46.55%,平均为46.33%,w(S)为52.81%~ 53.87%,平均为53.33%,主元素质量分数均> 99%;与黄铁矿的标准式[w(Fe)=46.55%,w(S) =53.45%;FeS=1:2]相比,硫略显亏损,具有黄铁 矿型铜矿床、多金属矿床中的黄铁矿特征(徐国风 等,1980),可能与热液过程中硫源缺乏有关(熊先孝 等 2000);黄铁矿的 n(S)/n(Fe)比值为 1.99~2.03 A 个样品大于 2,平均值为 2.015,具有低温热 液或沉积型黄铁矿的特点(佟景贵等 2004)。

不同类型矿石中黄铜矿(GuFeS2)的电子探针分析(表1)表明,本矿区黄铜矿中 at (Cu)为34.38%~ 35.79%,平均值为35.36%;w(Fe)为30.54%~ 31.01%,平均值为30.77%;w(S)为33.80%~ 34.79%,平均值为34.29%,表现出贫硫富铜、铁的

图 4 东沟矿区的矿石标本和显微特征照片 A.东沟块状含铜黄铁矿矿石; B. 西沟块状黄铜矿矿石; C. 西沟条带状黄铜矿矿石; D. 西沟浸染状黄铜矿矿石; E. 东沟块状含铜黄铁矿 矿石的显微特征; F. 西沟块状黄铜矿矿石的显微特征 Fig. 4 Ore specimen and microphotographs of the Donggou deposit

Λ. Massive copper-bearing pyrite ore of Donggou: B. Massive chalcopyrite ore of Xigou: C. Banded chalcopyrite ore of Xigou: D. Disseminated chalcopyrite ore of Xigou: E. Microphotographs of massive copper-bearing pyrite of Donggou: F. Microphotographs of massive

chalcopyrite of Xigou

特征。另外矿床中闪锌矿含 Fe 也较高,这些都显示 出该矿床为中低温度条件下成矿的特点。

2.6 围岩蚀变特征

矿体的近矿围岩为基性火山岩,围岩蚀变主要 有硅化、绢云母化、绿泥石化、碳酸盐化及绿帘石化 等(图 5),具有典型蛇绿岩的蚀变特征(Ohmton, 1983: Becker et al., 1996),以硅化、绢云母化、绿泥 石化与矿体的关系最为密切。岩相学研究表明,蚀 变矿物的生成顺序由早到晚依次为:绿帘石→绿泥 石→绢云母→石英→碳酸盐。绿帘石是组成蚀变细 碧岩的主要暗色矿物之一,与矿化关系不明显;绿泥 石呈片状-鳞片状产于细碧岩中(图5B、C、D),细碧 纪论中全民论物的中又惊红八长粉根

1343	;
------	---

	77 I	尓冯忉忉	炋圡禺∜	初的电丁扬	トモー フィリ 女X	脴	
Fahle 1	EPMA 1	results of n	netallic m	inerals in th	e Donggou	conner	denosi

长口炉旦						и (В У %					
作如编写一	Fe	Zn	S	Pd	Ag	Ni	Au	Cu	Pt	Pb	总和
黄铁矿											
08QPI-04	46.55	0.01	53.00	0.07	0.01	0.24	0.04	0	0	0.18	100.10
08QPI-18	46.41	0.05	53.51	0.01	0.02	0.02	0	0.15	0.11	0	100.28
08QPII-8	46.09	0.09	53.49	0.03	0.02	0	0	0.14	0	0.04	99.90
08QB-12	46.15	0.05	52.81	0	0	0	0.12	0.10	0.17	0.10	99.50
08QB-24	46.42	0	53.87	0	0	0	0	0.11	0	0	100.40
黄铜矿											
08QPI-18	30.89	0.08	33.80	0.04	0.01	0	0	35.79	0	0.07	100.68
08QPII-8	30.75	0.08	34.32	0.01	0.03	0	0	34.38	0	0	99.57
08QB-12	30.54	0.13	33.92	0.02	0.04	0	0.09	34.94	0	0.10	99.78
08QB-24	31.01	0.02	34.79	0	0.04	0	0	34.77	0	0.02	100.65
闪锌矿											
08QPI-18	1.94	62.75	32.88	0	0	0.02	0.22	0.88	0.44	0	99.13
08QB-12	0.69	66.95	31.60	0	0	0	0.43	0.29	0.13	0	100.09
方铅矿									9		
08QB-12	0.19	0	12.89	0	0	0	0	0.32	0	87.18	100.58
08QB-24	0.36	0.08	13.53	0	0	0	0	0.68	0	86.08	100.73

注 108QPI-04、08QB-24 为浸染状含铜黄铁矿 108QPI-18 为块状黄铜矿矿石 108QPII-8、08QB-12 为块状含铜黄铁矿。测试单位 :中国地质调查局西安地质调查中心 2009。

岩由于变质作用的影响,原岩的组织结构受到了破坏,在部分地方枕状、杏仁状构造非常发育,杏仁体主要由方解石组成。绿泥石与黄铜矿化关系密切, 区域性变质成因绿泥石镜下呈墨绿色,具异常干涉 色,矿化蚀变形成的绿泥石镜下呈灰色,其异常干涉 色,矿化蚀变形成的绿泥石镜下呈灰色,浅灰色,具 一级灰干涉色。硅化作用与金属硫化物紧密伴生, 常呈条带状,多以石英集合体形式产出。碳酸盐化 蚀变矿物主要为方解石,早期的方解石粒度小,常与 硅化、绿泥石化共生,并见与金属硫化物共生,晚期 的晶体大,可见其交代硫化物,为后期蚀变矿物。

2.7 矿床与古火山机构的空间关系

在北祁连山已知的矿床和矿点中,与火山作用 有关的块状硫化物矿床产出位置与古火山机构有着 紧密的空间关系(彭礼贵等,1995;任有祥等,1995; 夏林圻等,1998;李向民等,2000)。前人通过火山岩 相填图工作,建立了白银矿田和石居里矿区已知工 业矿床与古火山机构的关系,无论是产于岛弧裂谷 的折腰山铜矿(白银矿田),还是产出在弧后盆地扩 张脊的石居里铜矿,均位于火山喷口及其附近。因 此,恢复和重建东沟铜矿区古火山机构对研究该矿 区块状硫化物矿床的矿床成因和指导区域找矿具有 重要意义。为了恢复东沟矿区古火山机构,笔者对 东沟铜矿区进行了以火山岩相为主的路线地质调 查,东沟火山机构整体火山喷发作用是很猛烈的爆

发 溢流型 周围有大量玄武质、碱性玄武质的基性 熔岩及玄武质凝灰岩 局部地段发现有近火山口相 的凝灰质胶结的角砾集块岩(图6),所谓的"凝灰质 胶结的角砾集块岩 "是指一种由凝灰岩或凝灰质胶 结火山碎屑堆积物所形成的岩石。代表了火山强烈 爆发作用的火山堆积产物 宋叔和 1991 彭礼贵等, 1995)。东沟铜矿赋矿岩石为蛇绿岩套上部的基性 火山岩、矿床成矿金属组合为 Cu-Zn(少量) 围岩蚀 变主要有硅化、绿泥石化、碳酸盐化及绿帘石化等。 岩石组合特征分析表明 东沟地区火山活动具有间 歇性爆发和喷溢交互作用的特征。受到古火山机构 空间展布规律的控制 ,火山中心部位火山碎屑物质 呈环带状分布,火山喷口常见凝灰质胶结的角砾集 块岩。而且,东沟铜矿与西沟铜矿位置上分别处于 古火山机构的东、西两侧 ,向中间方向(火山喷口附 近)出现大量的凝灰岩、火山角砾岩、角砾集块岩等, 两矿床围绕着古火山喷口分布。因此认为 ,东沟地 区的铜矿床与古火山机构关系密切 是典型的火山 喷口型铜矿床。

3 流体包裹体研究

3.1 流体包裹体的测试方法 流体包裹体的显微测温工作在西安地质矿产研

图 5 矿区围岩蚀变的宏观和微观照片 Λ. 东沟铜矿围岩蚀变的宏观照片; B. 绿泥石化细碧岩标本; C.D. 绿泥石化细碧岩的显微特征 Q一石英: Ch 绿泥石: Se-绢云母: Ep-绿帘石

Fig. 5 Ore macroscopic and microscopic photographs of wall rock alteration in the Donggou deposit

A. Macrophotograph of wall rock alteration in the Donggou deposit: B. C. D. Microphotographs of chloritized spilite of the Donggou deposit Q-Quartz: Ch-Chlorite: Se-Sericite: Ep-Epidote

图 6 凝灰质胶结的角砾集块岩 Fig. 6 Tuffaceous cemented breccia agglomerate

究所流体包裹体实验室完成。测试仪器为英国 +600℃,冷冻数据和均一温度数据精度分别为 Linkam THMSG600 型冷热台,测温范围为-196~ ±0.1℃和±2℃。本次测试过程中升温速率在冰点

表 2 东沟铜矿床石英流体包裹体显微测温结果

Table 2 Microthermometric results of quartz fluid inclusions in the Donggou copper deposits

	冰点/℃	盐度 u(NaCl _{eq} У%	均一温度/℃	密度/(g/cm ³)	
范围(平均)	$-12.6 \sim -7.8$ (-10.6)	11.46~16.53(14.49)	121~199(169)	0.87~0.95(0.91)	
统计数	48	48	48	41	

测试单位:中国地质调查局西安地质调查中心。

附近为 1 ℃/min,均一温度附近为 0.5 ℃/min。单 个包裹体的激光拉曼探针分析所用仪器为英国 Renishaw公司生产的 InVia Reflex 型显微共焦激光 拉曼光谱仪,光源为 Spectra-Physics 氩离子激光器, 波长 514.5 nm,激光功率 40 mW,空间分辨率为 1~ 2 μ m,扫描速度 10 秒/6 次叠加,光谱仪狭缝 10 μ m, 主要在 100 ~ 4000 cm⁻¹ 波段取谱;实验室温度 23℃,湿度 65%。

3.2 流体包裹体岩相学研究

选择有代表性的样品(以成矿期网脉状、浸染状 矿石为主)制备了 8 件两面抛光的包裹体片,经显微 镜下详细观察和系统鉴定,大部分石英样品中流体 包裹体不发育,少数样品局部流体包裹体发育。总 的来看,石英中的流体包裹体类型较为单一。根据 最新分类方案(卢焕章等,2004),结合激光拉曼分析 结果,该矿区中成矿期的石英包裹体为纯液体包裹 体和气体包裹体两类,与典型塞浦路斯型矿床的流 体包裹体类型具有相似性(Spooner et al.,1977),未 见含液体 CO₂ 包裹体和含子矿物包裹体等。包裹体 个体均较小,一般小于 5 μm。

本次工作主要研究石英中那些个体相对较大的 气液两相包裹体,大小以 5 µm 左右为主,这些包裹 体形态为不规则状、长柱状、近椭圆状。显微镜下观 察判断这些包裹体呈孤立分布或不规则状分布,均 为原生包裹体,其气相分数相对较小,一般小于 10%。

3.3 显微测温学研究

3.3.1 显微测温结果

该矿区石英中液体包裹体由于个体普遍较小, 进行显微测温难度较大,有些包裹体在冰点附近的 相变难以判断,对这些包裹体,只测定了它们的均一 温度。

本次显微测温及计算的相关参数统计结果见表 2。研究显示,该区石英中的流体包裹体的均一温度 (全部均一至液相)为121~199℃,平均温度为 169℃,主要集中变化于150~200℃(图7A),即都在 200℃以下,表明该矿床成矿流体属低温热液流体。 将东沟铜矿床与北祁连弧后扩张脊环境的典型塞浦 路斯型矿床的成矿温度进行对比(表3),结果显示东 沟铜矿床与摆浪沟双岔、石居里\II号沟、石居里\I 为、猪咀哑巴等矿床具有相近的均一温度范围。

3.3.2 成矿流体的冰点、盐度和密度

用冷冻法测得研究区石英中流体包裹体的冰点 分别为-12.6~-7.8℃(表2),平均值为-10.6℃。 根据冰点温度,然后利用前人的实验相图或经验公 式来计算流体的盐度。采用 H₂O-NaCl 体系的盐度-冰点经验公式(Hall et al.,1988),由此计算出该研究 区石英包裹体中流体的盐度 $w(NaCl_{eq})$ 变化范围为 11.46%~16.53%(表2),平均值为 14.49%,在直 方图中 $w(NaCl_{eq})$ 峰值区间为 13%~16%(图7B)。 由此可看出该矿床成矿流体属中等盐度的流体。

■根据流体包裹体的均一温度和盐度数据,利用前人的经验公式(刘斌等,1999)计算出该区石英中包裹体中流体的密度变化范围为0.87~0.95 g/cm³(表2),总体呈现出密度变化范围不大且为中等密度的特点。因此,该矿床的成矿流体属中等盐度、中等密度的流体。

3.4 流体包裹体的激光拉曼探针分析

单个包裹体激光拉曼分析结果显示,流体包裹体的液相成分以H₂O为主(图 8A),部分样品含有少量 CO₂、H₂S、CH₄;气液两相包裹体的气相成分以 CO₂为主(图 8B),含少量 N₂,部分样品含极少量 H₂S。

表 3 北祁连塞浦路斯型矿床流体包裹体均一温度结果 Table 3 Microthermometric results of fluid inclusions in Cyprus-type deposits of North Qilian Mountains

产地	寄主矿物	均一温度范围/℃	资料来源
摆浪沟双岔	石英	120~188	
石居里Ⅷ号沟	石英	132~240	夏林圻等(1988)
石居里 \[号沟	石英	145 - 302	
猪咀哑巴	石英	153~169	邬介人等(1994)

4 矿床成因

4.1 成矿环境

海底块状硫化物矿床的形成几乎均与拉张环境 有关(夏林圻等,1996;1998;杨合群等,2000 /李文 渊等 2006)。

目前,已知有利于海底块状硫化物矿床形成的 地质构造环境主要有3种:①大陆裂谷环境;②岛 弧裂谷环境;③大洋扩张脊或弧后扩张脊环境(杨 合群等2000)。东沟矿区的含矿蛇绿岩套位于托莱 南山以北的扎麻什地区,在空间位置-上属于玉石沟- 川刺沟蛇绿岩带的东南延伸部分。岩石地球化学研 究表明,祁连县东沟蛇绿岩中的基性火山岩属于拉 斑玄武岩系列,球粒陨石标准化稀土元素配分模式 为近平坦型(La/Yb),在0.97~1.26之间;微量元 素分配模式除个别大离子亲石元素(Ba、Rb、U、K) 外,基本为平坦型曲线,Nb、Ta、Zr、Hf 无亏损,显示 出洋中脊玄武岩(N-MORB)的地球化学特征;在Zr-Zr/Y和Ti/100-Zr-3Y等构造环境判别图中,所有样 品均落入 MORB 区域内,表明其形成于洋中脊环境 (武鹏,2010)。通过岩石组合特征、地球化学特征及 区域对比,认为扎麻什东沟蛇绿岩与玉石沟蛇绿岩应 是相同构造环境下的产物,都形成于洋中脊环境。

4.2 成矿时代

利用 LA-ICP-MS 对东沟蛇绿岩套中的基性火 山岩进行锆石 U-Pb 同位素年龄测定,结果为 499.8 Ma(武鹏,2010)表明东沟蛇绿岩形成于晚寒武世。 与火山作用有关的块状硫化物矿床成矿作用发生于 火山剧烈活动之后的间歇期(李文渊等,2006),因 而,东沟矿区成矿时代也应为晚寒武世。

4.3 成矿类型

产于海相火山岩中的块状硫化物矿床(VHMS) 主要有4种类型:黑矿(Kuroko)型、塞浦路斯 (Cyprus)型、别子(Besshi)型和诺兰达(Noranada)型 (Sanster et al.,1976;Franklin et al.,1981)。北祁连 山该类型矿床的形成都与板块构造作用有关,以拉 张构造环境为主,如洋中脊、弧间盆地扩张区、弧后 扩张区等对成矿十分有利。而前人对于东沟铜矿的 研究程度较低。通过对东沟矿区的岩石组合、成矿 环境、矿体特征、矿石矿物组合等方面的研究,表明 东沟矿床的容矿岩石为一套细碧岩的岩石组合,在 岩石地球化学方面表现为洋脊玄武岩的特征,与世 界上典型矿床相比,东沟矿床除了具有成矿温度为 低温、盐度很高的特点外,其他方面与特罗多斯块状 硫化物矿床的总体特征十分相似(表4),是较为典型 的塞浦路斯型块状硫化物矿床。

5 成矿前景分析

北祁连山塞浦路斯型 VHMS 矿床的形成有两种构造环境:一种是以石居里沟、九个泉、猪嘴哑巴等富铜矿为代表的块状硫化物矿床(夏林圻等, 1998 杨合群等 2000 ;李文渊等,2006),成矿环境为中-晚奥陶世的弧后扩张脊环境(李文渊等,2006); 另一种是本文所研究的东沟、阴凹槽等为代表的矿

床 成矿环境为晚寒武世——早奥陶世的大洋扩张脊 环境。尽管它们形成的环境不同,但在成矿特征上 均表现为单个矿体规模小,铜品位异常高;赋矿火山 岩组合特征为细碧岩组合,主要为蛇绿岩中的基性 火山岩系;成矿元素组合为Cu型或Cu-Zn型。北祁 连山弧后扩张脊环境下的塞浦路斯型矿床已被证实 具有较大规模和找矿潜力(杨合群等,2000,2002;邬 介人等 2001 ;李文渊等 2006);东沟铜矿的研究程 度较低,它与西沟铜矿相距近2 km,从已知矿床在 古火山机构中产出部位分析,东沟矿区尚有巨大的 找矿空间 区域上在玉石沟-川刺沟蛇绿岩上部的基 性火山岩中已发现多处具有工业价值的铜矿床 (点)显示了良好的找矿前景,预示该地区具有寻找 东沟型富铜矿的可能。另外,在该蛇绿岩带的北西 侧熬油沟蛇绿岩中的辉长辉绿岩墙,利用 SHRIMP U-Pb 法测定其形成于 503.7~507 Ma(张招崇等, 2001 相振群等、2007)。东沟矿区蛇绿岩在空间位 置上属于玉石沟-川刺沟蛇绿岩带的东南延伸部分。 结合东沟蛇绿岩中基性火山岩的岩石地球化学特 征、认为其与玉石沟-川刺沟蛇绿岩带构造环境相 1(4),形成于大洋扩张脊环境,因而也是寻找塞浦路斯 型 VHMS 矿床的有利地段。

6 结论及认识

(1)通过对东沟矿区的岩石组合、成矿环境、矿体特征、矿石矿物组合等方面的研究认为,东沟铜矿形成于晚寒武世大洋扩张脊,容矿岩石为蛇绿岩套上部的基性火山岩,是典型的产于大洋扩张脊环境的塞浦路斯型块状硫化物矿床。

(2) 流体包裹体地球化学研究表明,该区成矿期 石英中包裹体类型单一,仅有纯液体包裹体和气相

表 4	东沟铜矿	「与塞浦路斯型铜矿	「床特征对比表

10	Table 4 Contrast of minicialization characteristics of Donggou and Cyprus-type copper deposits						
内容	特罗多斯(塞浦路斯型)VHMS 矿床(夏林圻等 ,1998)	东沟铜矿					
大地构造位置	离散板块边缘 ,主要是大洋中脊	大洋扩张脊					
含矿岩石	蚀变玄武岩	主要是蚀变玄武岩以及基性凝灰岩等					
围岩蚀变	主要为硅化、绿泥石化、次为碳酸盐化、绿帘石化、 伊利石化	绿泥石化-硅化-碳酸盐化					
矿体特征	上部为块状矿体 ,下部为网脉状矿体	块状矿体、浸染状或网脉状矿体					
矿物组合	$Py + Cp + Sp \pm Ma \pm Pd \pm Mt$)	Py + Cp + Sp					
金属组分	富 Cu-Zn ,贫 Pb、Cu、Zn	富 Cu ,含有非常少的 Zn					
流体包裹体特征	均一温度 310~380℃ ,ττ(NaCleq)为 2.7%~4.0%	数量多、个体小,矿床成矿温度为 150~200℃、 ~(NoCL)为13%~16%					

分数小的液体包裹体,气相成分以 CO₂ 为主,液相成 分主要为 H₂O;矿床成矿流体为中低温度(150 ~ 200℃)中等盐度[π (NaCl_{eq})13%~16% \,中等密度 (0.87~0.95 g/cm³)且密度范围变化不大的热液。

(3) 北祁连地区,与大洋扩张脊有关的塞浦路斯 型块状硫化物矿床具有良好的找矿前景。

志 谢 在论文编写过程中,夏林圻研究员、计 文化研究员、何世平研究员、白建科工程师对本文提 出了不少意见和建议,在此一并表示感谢!

参考文献/References

- 冯益民,何世平.1996.祁连山大地构造与造山作用[M].北京:地 质出版社.1-135.
- 蒋敬业,李方林,王 苹,陆建培. 1999. 北祁连山火山成因块状硫化物矿床的金属来源研究[]]. 地质科技情报,18(2):57-61.
- 李文渊. 2004. 祁连山主要矿床组合及其成矿动力学分析[J]. 地球 学报,25(3):313-320.
- 李文渊,赵东宏,宋忠宝,李长安,李金善,张江华,王 伟,郭周平, 谢春林,栗亚芝,谢志峰,李百祥,赵晓平.2006.北祁连山塞浦 路斯型铜矿特征及勘查方法-以雪泉铜(锌)矿床为例[M].西 安:陕西科学技术出版社.5-64.
- 李向民,彭礼贵,贺庆,蔡春麟,王兴安.2000. 甘肃白银矿田东部 矿床成矿和找矿模式 M]. 北京:地质出版社.96-134.
- 刘 斌,沈 昆.1999.流体包裹体热力学[M].北京:地质出版社. 1-290.
- 卢焕章,范宏瑞,倪 培,欧光习,沈 昆,张文淮.2004. 流体包 裹体[M].北京:科学出版社.208-222.
- 彭礼贵,任有祥,李智佩,刘晓明,李向民,王兴安,刘德利.1995. 甘肃省白银厂铜多金属矿床成矿模式 M].北京:地质出版社. 1-84.
- 任有祥,彭礼贵,李智佩,李向民,王兴安,刘晓明,刘德利.1995. 白银矿田折腰山大型古火山及其在成矿作用中的地位[]].西北 地质科学,16(1):39-49.
- 任有祥,彭礼贵,李智佩.2000.北祁连山清水沟。白柳沟矿田块状 硫化物矿床成矿条件和成矿预测[M].北京:地质出版社,1-115.
- 宋叔和. 1955. 祁连山一带黄铁矿型铜矿的特征与成矿规律[J]. 地 质学报, 35(1):1-21.
- 宋叔和.1982. 黄铁矿型铜和多金属矿床——世界范围内一些主要 矿带和矿床类型的对比及研究趋势[J]. 中国地质科学院矿床地 质研究所所刊,34:1-81.
- 宋叔和. 1991. 中国一些主要金属矿床类型及其时空分布规律问题 [J]. 矿床地质,10(1):10-18.

- 宋志高. 1984. 祁连优地槽区块状硫化物矿床形成地质环境的初步 对比研究与探讨[J]. 矿床地质, 3(2):11-18.
- 孙海田, 邬介人, 沈建忠. 1993. 对北祁连山火山喷溢型贱金属硫化物矿床区域成矿的探试[]]. 矿床地质, 12(3): 193-201.
- 佟景贵,李胜荣,肖启云,李 祯,闫柏琨.2004.贵州遵义中南村 黑色岩系黄铁矿的成分标型与成因探讨[J].现代地质,18(1): 41-47.
- 邬介人,任秉琛,黄玉春,朱美珠,赵 统,于浦生.1994.西北海 相火山岩地区块状硫化物矿床[M].武汉:中国地质大学出版 社.1-271.
- 邬介人,于浦生,任秉琛. 2001. 北祁连石居里地区 Cu(Zn)S 矿床 地质特征及综合成矿模式 J] 矿床地质 20(4):339-346.
- 武 鹏. 2010. 青海省祁连县东沟铜矿成矿环境与成矿特征研究(硕 士论文[D]. 导师:徐学义. 西安:长安大学. 82页.
- 夏林圻,夏祖春,徐学义.1995,北祁连山构造-火山岩浆演化动力 学[J].西北地质科学,1995,16(1):1-28.
- 夏林圻,夏祖春,徐学义.1996.北祁连山海相火山岩岩石成因 [M].北京:地质出版社.1-153.
- 夏林圻,夏祖春,任有祥,左国朝,邱家骧,彭礼贵,王大为,杨巍 然,邬介人,夏卫华,覃功炯,于浦生.1998.祁连山及邻区火 山作用与成矿[M].北京:地质出版社.1-110.
- 夏林圻,夏祖春,任有祥,徐学义,杨合群,李智佩,杨建国,李文 渊,赵东宏,宋忠宝,李向民,于浦生.2001.北祁连山构造-火 山岩浆-成矿动力学[M].北京:中国地质大学出版社.170-199.
- 向鼎璞,戴天富.1985.北祁连山火山成因块状硫化物矿床区域成矿 特征[J].矿床地质,4(1):64-72.
- 相振群,陆松年,李怀坤,李惠民,宋 彪,郑健康. 2007. 北祁连 西段熬油沟辉长岩的锆石 SHRIMP U-Pb 年龄及地质意义[J]. 地质通报,26(12):1686-1691.
- 肖序常,陈国铭,朱志直.1978.祁连山古蛇绿岩的地质构造意义 [J].地质学报,54(1)287-295.
- 熊先孝,姚超美.2000. 向山地区铁、硫矿床中黄铁矿矿物学研究[J]. 岩石矿物学杂志,19(2):185-192.
- 徐国风,邵洁莲.1980.黄铁矿的标型特征及其实际意义[J].地质 论评,26(6):541-546.
- 杨合群,李文渊,赵东宏,宋忠宝.2000.北祁连山石居里沟富铜矿 床成矿特征[J].地质与勘探,36(6):20-22,31.
- 杨合群,宋忠宝,王兴安,李文明,李长安,赵东宏.2002.北祁连 山中西段塞浦路斯型铜矿特征、成矿作用及找矿标志[J].西北 地质,35(4):65-85.
- 张招崇,周美福,Paul T Robinson,毛景文,杨建民,左国朝. 2001.
 北祁连山西段熬油沟蛇绿岩 SHRIMP 分析结果及其地质意义
 [J].岩石学报,17(2):222-226.
- Becker K and Von Herzen R P. 1996. Pre-drilling observations of conductive flow heat flow at the TAG active mound using Alvin[A]. In : Proceeding of ODF[C]. Initial Reports, 158 : College Station,

TX:23-29.

- Franklin J M , Sangster D F and Lydon J W. 1981. Volcanic-associated massive sulfide deposits J J. Econ. Geol. ,(75th Anniv):485-627.
- Hall D L , Sterner S M and Bodnar R J. 1988. Freezing point depression of NaCl-KCl-H₂O solutions J]. Econ. Geol. , 83(1):197-202.
- Hutchinson R W. 1984. Massive sulphide deposits and their significiance to other ores[A]. Paper for fifth regional congress on geology, mineral and energy resources of southeast Asia[C]. Information Institute of Geological Ministry. 22-27.
- Ohmton H. 1983. Stable isotope geochemistry of ore deposits J]. Review of Minerology , 16 : 491-560.
- Sangster D F and Scott S D. 1976. Precambrian Statabound, massive Cu-Zn-Pb sulfide deposits of North America[A]. Wolf K A, ed. Handbook of strata-bound and stratiform ore deposits[C]. Amsterdam : Elsevier. 129-222.
- Spooner E T C and Bray C J. 1977. Hydrothermal fluids of seawater salinity in ophiolite sulphide ore deposits Cyprus J]. Nature , 266 : 808-812.

《矿床地质》编辑部志谢审稿人

在 2012 年 11 月底,统计出 2011~2012 年为本刊进行网络审稿的审稿人共 134 人,按汉语拼音排序如 下。他们在百忙之中及时、公平、公正地评阅每篇论文,并给出翔实、中肯的意见及建议,为论文的及时发表, 为提高《矿床地质》的质量做出了积极贡献。编辑部在此向他们表达诚挚的敬意和衷心的感谢,尤其是吴良 士、张德全、江思宏、徐九华、徐文艺、杨富全、范宏瑞、曲晓明、孙景贵、王义天、陈衍景等审稿人为本刊承担了 大量审稿工作,审阅稿件 10 篇以上,在此特别志谢。

1.11

白大明	蔡明海	陈柏林	陈福坤	陈懋弘	陈衍景	陈振宇	储雪蕾	戴自希
杜安道	范宏瑞	丰成友	冯佐海	高林志	葛良胜	葛文胜	顾连兴	顾雪祥
韩春明	韩效忠	侯可军	侯满堂	侯增谦	胡芳芳	华仁民	黄方	黄智龙
江思宏	姜常义	蒋少涌	赖勇	李光明	李厚民	李华芹	李建威	李进文
李九玲	李万华	李文博	李晓峰	李延河	凌洪飞	刘昌岭	刘成林	刘家军
刘伟	刘显凡	刘勇胜 ○	刘玉平	卢振权	陆建军	罗照华	马东升	马黎春
马生明	马跃良	毛景文	孟祥金	彭建堂	秦克章	卿敏	邱华宁	曲晓明
曲懿华	佘宏全	史仁灯	帅开业	宋玉财	苏尚国	苏文超	孙景贵	孙晓明
汤艳杰	唐菊兴	陶琰	田世洪	万丽	王翠芝	王登红	王根厚	王可勇
王立本	王莉娟	王强	王涛	王晓霞	王学求	王义天	王玉往	王正其
吴福元	武广	肖荣阁	谢桂青	谢玉玲	邢树文	徐九华	徐庆生	徐文艺
薛春纪	杨富全	杨刚	杨天南	杨志明	杨竹森	姚佛军	叶会寿	叶锦华
叶 霖	于津海	余金杰	袁顺达	袁学诚	曾键年	曾普胜	曾文乐	张承帅
张德全	张连昌	张西营	张永生	张长青	张招崇	张作衡	章雨旭	赵元艺
赵志丹	周肃	周涛发	周振华	朱弟成	朱金初	朱祥坤	朱永峰	