文章编号: 0258-7106 (2022) 04-0722-19

Doi: 10. 16111/j. 0258-7106. 2022. 04. 004

甘肃厂坝-李家沟超大型铅锌矿床成矿金属来源

——来自闪锌矿原位 S-Pb 和 Zn 同位素证据*

魏 然^{1,2},王义天^{2**},胡乔青²,黄诗康²,窦 平³,胡文荣³

(1长安大学地球科学与资源学院,陕西西安 710061;2中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价 重点实验室,北京 100037;3甘肃厂坝有色金属有限责任公司,甘肃成县 742500)

摘 要 甘肃厂坝-李家沟铅锌矿床位于西秦岭多金属成矿带内的西成矿集区,为矿集区内重要的超大型铅锌 矿床。矿体赋存在中泥盆统安家岔组的白云石化大理岩及石英片岩中,其成因认识一直存在争议,主要分歧集中 在是同生还是后生。文章对不同成矿阶段的闪锌矿,采用多接收电感耦合等离子体质谱(MC-ICP-MS)测定 Zn 同 位素组成、采用激光剥蚀-多接收电感耦合等离子体质谱(LA-MC-ICP-MS)原位微区分析技术测定 S、Pb 同位素组 成,示踪成矿物质来源,并分析矿物沉淀机制,为深入理解矿床成因提供新的精细证据。研究结果显示,I、II、II 三个成矿阶段闪锌矿的δ⁶⁶Zn 分别为0.08‰~0.29‰,平均0.20‰;0.19‰~0.37‰,平均0.30‰;0.36‰~0.37‰,平均 0.37‰。其中,I阶段的闪锌矿δ³⁴S₁值为20.9‰~26.1‰,平均24.4‰;II阶段的闪锌矿δ³⁴S₁值为12.2‰~21.9‰, 平均19.1‰;II阶段的闪锌矿δ³⁴S₁值为18.2‰~24.7‰,平均21.5‰。3个阶段的矿石矿物 Pb 同位素组成变化不 大,²⁰⁶Pb/²⁰⁴Pb 为17.922~18.013,²⁰⁷Pb/²⁰⁴Pb 为15.567~15.647,²⁰⁸Pb/²⁰⁴Pb 为37.990~38.266。δ⁶⁶Zn 同位素值显示,成 矿金属早期来源于围岩海相碳酸盐岩,由于混合了岩浆热液或者是瑞利分馏作用,在成矿作用中后期δ⁶⁶Zn 同位素 逐渐上升。δ³⁴S 同位素值显示,早期硫源主要为地层中的硫酸盐,中后期的δ³⁴S 同位素值降低,可能是成矿流体中 岩浆热液中的 S²成分逐渐增多导致,闪锌矿为硫酸盐通过 TSR 反应沉淀成矿。Pb 同位素指示成矿物质来源于上 地壳,并混入了部分古老的变质基底的成分。笔者研究发现,厂坝-李家沟铅锌矿的成矿机制为不同来源的流体混 合,随着 pH 值、成矿流体的温度发生变化而沉淀成矿。

关键词 地球化学;闪锌矿;Zn 同位素;原位 S 同位素;原位 Pb 同位素;沉淀机制;厂坝-李家沟铅锌矿床 中图分类号:P618.42;P618.43 **文献标志码**:A

Source of ore-forming metals in Changba-Lijiagou super-large Pb-Zn deposit, Gansu Province: Evidence from in-situ S-Pb and Zn isotopic compositions of sphalerite

WEI Ran^{1,2}, WANG YiTian², HU QiaoQing², HUANG ShiKang², DOU Ping³ and HU WenRong³ (1 School of Earth Sciences and Resources, Chang'an University, Xi'an 710061, Shaanxi, China; 2 Institute of Mineral Resources, China Academy of Geological Sciences, Beijing 100037, China; 3 Gansu Changba Nonferrous Metals Co. Ltd., Chengxian 742500, Gansu, China)

Abstract

The Changba-Lijiagou giant Pb-Zn deposit is located in the Xicheng ore cluster, West Qingling polymetallic metallogenic belt. The deposit is hosted in Middle Devonian Anjiacha Formation dolomitic marble and quartz

^{*} 本文得到自然资源部重点实验室基本科研业务费项目(编号:KK2104)和地质调查项目(编号:DD20190368)联合资助

第一作者简介 魏 然,女,1983年生,博士研究生,助理研究员,主要从事矿床学研究。Email: weiranyspa@126.com

^{* *} 通讯作者 王义天,男,1969 年生,研究员,从事构造与成矿研究。Email: wyt@263.com

收稿日期 2022-01-25;改回日期 2022-06-11。秦思婷编辑。

schist. The ore genesis has been debated for years, which is mainly about syngenetic sedimentary or epigenetic mineralization. In this study, the Zn isotopic compositions of sphalerites formed in different stages are investigated by MC-ICP-MS and in-situ S, Pb isotopic compositions of different stages sphalerites are investigated by LA-MC-ICP-MS. The results are used to determine the metal origins and precipitation mechanism of sulfides, which provide new evidence for ore genesis. The sphalerites formed in three different stages (I, II, III) exhibit various Zn isotopic compositions (δ^{66} Zn₁=0.08‰ to 0.29‰, on average of 0.20‰; δ^{66} Zn₁=0.19‰ to 0.37‰, on average of 0.30%; δ^{66} Zn_{II}=0.36% to 0.37%, on average of 0.37%), and the in-situ S isotopic composition (δ^{34} S_I=20.9%) to 26.1‰, on average of 24.4‰; $\delta^{34}S_{\parallel}=12.2\%$ to 21.9‰, on average of 19.1‰; $\delta^{34}S_{\parallel}=18.2\%$ to 24.7‰, on average of 21.5%). The Pb isotopic compositions of ore minerals formed in the three stages change little (²⁰⁶Pb/²⁰⁴Pb= 17.922~18.013, ²⁰⁷Pb/²⁰⁴Pb=15.567~15.647, ²⁰⁸Pb/²⁰⁴Pb=37.990~38.266). The δ⁶⁶Zn isotopic compositions indicate that the ore-forming metal was derived from the host rock of marine carbonate in the early stage, and the δ^{66} Zn isotopic values gradually increased due to fluids mixing with the magmatic hydrothermal or Rayleigh distribution in the middle and late stage of mineralization. The δ^{34} S isotope values indicate that the early sulfur source was mainly sulphate in the strata. The decrease of $\delta^{34}S$ isotope values in the middle and late stages might be attributed to increasing of the S²⁻ component in the magmatic hydrothermal fluid, the sphalerite is precipitated from sulfate through TSR reaction. The Pb isotope values show that the metallogenic material comes from the upper crust, mixed partly with the metamorphosed basement. This study indicates that the mineralization mechanism of the Changba-Lijiagou Pb-Zn deposit is the mixing of fluids from different sources, and the rapid change of pH and temperature of ore-forming fluids caused the precipitation of sulfides.

Key words: geochemistry, sphalerite, Zn isotope, in-situ S isotope, in-situ Pb isotope, precipitation mechanism, Changba-Lijiagou Pb-Zn ore deposit

西秦岭是中国西北地区重要的有色、贵金属资源富集区,其内的甘肃西成(西和-成县)矿集区是重要的铅锌资源产地,发育有多个大型-超大型铅锌矿床,包括厂坝-李家沟超大型铅锌矿床,毕家山、洛坝、郭家沟等大型铅锌矿床。

厂坝-李家沟超大型铅锌矿的成因观点一直存 在争议,主要分歧为矿床成因是同生还是后生,同生 观点包括同生喷气沉积变质型、热水沉积型(Sedex) (蒋少涌等,2001;弓军虎等,2009),主要成矿作用发 生在沉积成岩期,有纹层状、条带状、浸染状矿化和 薄板状矿体(张声炎等,1988;马国良等,1998);后生 观点主要包括岩浆热液型,成矿物质来源于元古界 碧口群和志留系白龙江群,成矿作用发生在中生代 (杨松年等,1986;杨志华等,2000;Hu et al.,2015;王 义天等,2018;2021)。造成上述认识分歧的一个重 要原因,是对成矿金属的来源认识模糊不清,需要进 行深入的研究予以厘定。

闪锌矿的Zn同位素组成在不同成矿环境的矿 床之间存在明显差异,不同类型矿床成矿环境的差 异与Zn同位素组成变化范围之间的关系表明,δ⁶⁶Zn 值可直接用于约束铅锌矿的成矿金属来源。同时, 不同成矿阶段闪锌矿的Zn同位素组成变化能够反 映成矿流体在不同阶段的特征,示踪热液体系内Zn 迁移的地球化学过程和硫化物的沉淀机制(Kelley et al., 2009; Gagnevin et al., 2012; Pašava et al., 2014; Duan et al., 2016)。因此,笔者通过对不同成矿阶段 闪锌矿的Zn同位素组成分析,示踪成矿金属来源, 再结合闪锌矿的原位S同位素组成以及闪锌矿、黄 铁矿、方铅矿的原位Pb同位素组成,精细刻画成矿 作用过程和硫化物沉淀机制,为厂坝-李家沟超大型 铅锌矿床的成因研究提供新的证据。

1 西成矿集区地质概况

西成矿集区大地构造属于西秦岭中的南秦岭微 地块(图1a),位于北秦岭岛弧杂岩带和南秦岭增生 杂岩带之间的西汉水多层次逆冲推覆叠置岩片中 (王相等,1996)。矿集区北以黄渚关断裂为界,南侧 以人土山-江洛断裂为界,区域构造线为近 EW 向-NWW向(图1b)。

矿集区内出露地层主要为泥盆系碎屑岩和碳酸 盐岩,普遍经历了绿片岩相变质作用,中新生界仅零

图1 西秦岭构造分区(a)和西秦岭西成矿集区地质矿产简图(b)(修编自甘肃省有色金属地质勘查局106队,1988) 1-第四系;2-古近系紫红色砾岩;3-侏罗系含砾粗砂岩、砂质页岩;4-三叠系钙质板岩、粉砂岩、千枚岩、变砂岩夹角砾状灰岩;5-上泥盆 统洞山组灰岩、千枚岩夹粉砂岩;6-中泥盆统西汉水组千枚岩、砂质千枚岩;7-中泥盆统安家岔组二段砂质千枚岩、生物碎屑灰岩、礁灰岩; 8-中泥盆统安家岔组一段白色大理岩夹白云岩、礁灰岩夹微晶灰岩、局部相变为片岩与灰岩的组合;9-下泥盆统吴家山组结晶灰岩夹灰色 大理岩、黑云方解石英片岩夹灰岩及大理岩;10-晚三叠世花岗岩;11-晚三叠世闪长岩;12-正断层;13-逆断层;14-断层;15-地质界线; 16-Pb-Zn矿床;17-Pb-Zn-Cu矿床;18-Au矿床、点;19-Pb-Zn-Cu矿点;20-Pb-Zn矿点;21-W矿点;22-Mo矿点; 23-Fe矿点;24-西成矿集区

Fig.1 Tectonic setting of the West Qinling(a) and geologic map(b) of the Xicheng Ore Cluster in West Qinling showing the location of mineral spots (modified from The 106 Geological Exploration Brigade of Gansu Bureau of Nonferrous Metals Exploration, 1988)

1—Quaternary; 2—Eocene reddish conglomerate and sandstone with siltstone; 3—Jurassic gravel coarse sandstone and sandy shale; 4—Triassic calcareous slate, siltstone, phyllite and metasandstone with breccia limestone; 5—Upper Devonian Dongshan Formation limestone, phyllite with siltstone; 6—Middle Devonian Xihanshui Formation phyllite, sandy phyllite; 7—Middle Devonian sandy phyllite, bioclastic limestone, reefal limestone, the Upper Member of the Anjiacha Formation; 8—Middle Devonian marble with dolomite, bioclastic limestone with micrite, partly turns to marble and schists, the Lower Member of the Anjiacha Formation; 9—Lower Devonian Wujiashan Formation crystalline limestone with gray marble, biotite-calcite-quartz schist with limestone and marble; 10—Late Triassic granite; 11—Late Triassic diorite; 12—Normal fault; 13—Reverse fault; 14—Fault; 15—Geological boundary; 16—Pb-Zn deposit; 17—Pb-Zn-Cu deposit; 18—Gold occurrence; 19—Pb-Zn-Cu occurrence; 20—Pb-Zn occurrence; 21—Tungsten occurrence; 22—Molybdenum occurrence; 23—Iron occurrence; 24—Xicheng ore cluster

星分布,与泥盆系呈断层或不整合接触。西成铅锌 矿集区容矿地层为泥盆系,自下而上包括下泥盆统 吴家山组、中泥盆统安家岔组、西汉水组、洞山组等。 其中,吴家山组主要岩性为石英片岩、变质石英砂岩 及大理岩;安家岔组为中级变质的碎屑岩-碳酸盐岩 建造,以石鼓子断裂为界,东、西两侧沉积差异较大, 西侧为碳酸盐岩沉积,东侧为一套碳酸盐-碎屑岩组 合,产出有厂坝-李家沟矿床;西汉水组岩性以生物 微晶灰岩及千枚岩为主,产有邓家山、尖崖沟、页水 河、毕家山、洛坝等大、中型铅锌矿床,是重要的含矿 地层。上统洞山组主要岩性为钙质砂岩、板岩、灰 岩、千枚岩、长石石英砂岩等。

矿集区内褶皱及断裂构造发育,主要褶皱构造 吴家山背斜规模大,是矿集区的主干构造,该背斜轴 向近东西,东西两端倾没,核部为吴家山组,两翼是 安家岔组和西汉水组,该背斜北翼倒转,南翼正常; 次级背、向斜构造较为发育,次级背斜的鞍部是最主 要的控矿构造。断裂构造主要是走向断裂,呈近东西 向展布,产出于不同岩性层的界面部位。其中,规模 较大的断裂有北部的黄诸关深大断裂,南部的江洛大 断裂,二者均为由北向南逆冲,为断面北倾的逆冲断 裂。这2条断裂交汇处的三角地带即为西成矿集区, 断裂构造控制着矿集区内矿床的展布和岩浆岩的分 布(图1b);其次是北西向、北东向、南北向的断裂,规模 小,有的控制矿体的生成,而绝大多数对地层、岩体、 矿体等起破坏作用,使其错位、甚至缺失。

矿集区内岩浆活动较为强烈,主要是中晚三叠 世的酸性-中酸性岩浆侵入活动。矿集区东部侵入 岩发育,主要为印支期中酸性、酸性侵入岩,多呈岩 株、岩脉产出(图1b)。矿集区主要出露的岩体有糜 署岭花岗闪长岩(213 Ma)(秦江锋,2010)、草关石英 闪长岩(205 Ma)(李永军等,2004)、黄渚关二长花岗 岩(216~229 Ma)(陈光,2002)、沙坡里二长花岗岩(李 佐臣等,2013)、厂坝二长花岗岩及闪长岩体(209~ 229 Ma)(魏然等,2017)等。沙坡里、厂坝、黄渚关、糜 署岭等岩体的围岩地层均遭受强烈的接触变质,形 成片岩类、大理岩类、石英岩类、角岩类等,伴随不同 程度的铜、铅、锌、钨、钼、铍等矿化。

2 矿区和矿床地质特征

2.1 矿区地质

厂坝-李家沟矿区内出露地层主要为中泥盆统 安家岔组,呈北西西向展布(图2a),岩性分为焦沟层 黑云母石英片岩、二云母石英片岩夹大理岩和厂坝 层大理岩、白云石大理岩、黑云方解石英片岩、二云 母石英片岩。

厂坝-李家沟铅锌矿床由厂坝、李家沟、小厂坝 3个矿区组成,均产于吴家山复背斜北翼的次级褶 皱——干鱼廊向斜的北翼,在剖面上主矿体基本的 构造形态为一个由西向东的单斜层,呈"S"形扭曲 (图2b),北为王家山背斜,南为干鱼廊向斜。矿体与 围岩多呈"似整合"接触,多个矿体均呈NWW向平 行展布,向SW陡倾(图2b)。矿体主要赋存在中泥盆 统的安家岔组,少量赋存于下泥盆统的吴家山组中, 直接容矿岩石主要为安家岔组的大理岩、白云石大 理岩(厂坝上层)以及二云母石英片岩(厂坝下层)。

近东西的层间压扭性断层、北东向为主的压扭 性-张扭性断层、北西西-近东西向的层间压扭性断层 (古志宏等,2007),3组断层联合控制着2个矿区的矿 体分布。其中,李家沟F₁断裂是划分厂坝矿区和李 家沟矿区的重要断裂,而小厂坝矿区属李家沟矿区 西段37~65线900m标高以下详查区段,属上部同一 类型矿体的下延部分。

矿区发育的岩浆岩主要有印支期的黄渚关岩体 及厂坝岩体,前者为花岗闪长岩,分布于厂坝-李家 沟矿区东北部,沿黄渚关深断裂侵入中泥盆统中,出 露面积约17 km²(图2a),岩体中心相为花岗闪长岩, 边缘相为石英闪长岩;后者为二长花岗岩,位于矿区 的东南侧(图2a),侵入于中泥盆统与下泥盆统中,出 露面积约2.4 km²,在北部的黄渚关岩体中部有小面 积的二长花岗岩出露。

2.2 矿床地质

厂坝-李家沟矿床主要由3个矿体构成,按产出 位置自北向南依次为Ⅲ号、I号、和Ⅱ号矿体;其中, Ⅰ号和Ⅱ号矿体产于细粒碎屑岩夹灰岩、白云岩地 层中,Ⅲ号矿体产出在二云母石英片岩中,其又分支 出Ⅲ-Ⅲ、Ⅲ-Ⅶ、Ⅲ-Ⅶ号矿体(成县李家沟铅锌矿床 地质勘查报告,1988)。空间上,矿体的中下部为富 含黄铁矿、深棕色闪锌矿和石英的块状矿体,上部为 浅黄色闪锌矿以及重晶石、方解石、黑云母等条带 状、浸染状和纹层状矿体。

2.2.1 主要矿体特征与产状

I号矿体占全矿床铅+锌金属量93.7%,具体特征如下:

如厂坝-李家沟铅锌矿床地质图及剖面图(图 2a、b)所示, I 号矿体呈层状、似层状,与含矿岩层走向 一致,为NWW,延伸超过1500m,倾向延伸超过 600m。矿体倾伏角55°~77°,矿体厚度不稳定,变化 在1~20m之间,整体中部宽、上下窄。矿体沿走向连 续分布,局部出现膨大尖灭,分支复合。受NE向断层 影响,在970m标高处发生错动,断距为十几m至上

百m。在矿体的下盘围岩中,张裂隙里充填方解石网脉。黄铁矿一般呈层状分布,宽几至几十cm,位于矿体的下盘,常见后期含黄铜矿石英脉产于裂隙中。 2.2.2 矿石类型、组成与结构构造

矿体的矿石类型主要为条带状矿石、块状矿石、 角砾状矿石、脉状矿石及浸染状矿石。通常块状矿 石位于矿体的中心部位,而条带状矿石位于块状矿 石的两侧,脉状矿体位于矿体的底部,在与围岩的接 触部位。

矿区主要矿石类型的金属矿物为闪锌矿、方铅 矿、黄铁矿、黄铜矿、磁黄铁矿、毒砂、白铁矿等;脉石 矿物主要为方解石、白云石、石英、黑云母、钾长石、白 云母、透辉石、透闪石、电气石、角闪石、石榴子石等。

最常见的矿石类型为条带状矿石,呈条带状构造,粒状变晶结构(图 3a、b)。金属矿物主要为闪锌 矿(含量 60%)中细粒-隐晶质,棕色-深棕色,粒度在 几百μm到2 mm之间,为低铁含量闪锌矿;黄铁矿 (含量 5%)呈粒状,粒径为2~5 mm,自形,稀疏浸染状 产在闪锌矿中;脉石矿物主要为方解石、石英。

块状矿石,呈块状构造,深棕青褐色,矿石品位高(图3c)。闪锌矿(含量97%),中细粒-隐晶质,青灰色,粒度在1 μm到几 μm之间,多与方铅矿、磁黄铁

图3 厂坝-李家沟铅锌矿床的矿石类型

a.条带状棕红色闪锌矿赋存于灰白色层状大理岩中;b.条带状矿石产于石英片岩中;c.条带状矿(右)与块状矿石(左)接触,共同赋存在大理 岩中;d.角砾状矿石,石英+方解石角砾被中粒闪锌矿胶结;e.石英硫化物脉穿切地层;f.中粒黄铁矿、方铅矿浸染状产于片中 Sp—闪锌矿;Py—黄铁矿;Gn—方铅矿;Q—石英;Cal—方解石

Fig.3 Different types of ores from the Changba-Lijiagou Pb-Zn deposit

a. Bands of brown sphalerite occur in gray-white bedded marble; b. Banded ore occurs in quartz schist; c. Banded ore (right) is in contact with massive ore (left) and co-occur in marble; d. Brecciated ore, quartz+calcite breccia cemented by mid-grained sphalerite; e. Quartz sulfide veins cut through the strata; f. Medium-grained pyrite and galena are disseminated in the schist

Sp—Sphalerite; Py—Pyrite; Gn—Galena; Q—Quartz; Cal—Calcite

矿交生;麻点黄铁矿(含量3%)及少量毒砂共生。与 方铅矿交生的隐晶质闪锌矿为青褐色-棕灰色;与磁 黄铁矿交生的隐晶质闪锌矿为深棕色。

角砾状矿石,角砾状构造,在灰岩及片岩中均有 产出(图 3d),角砾为围岩(片岩或灰岩),多呈流动状。 金属矿物主要为棕红色闪锌矿,自形,中粗粒。脉石 矿物为方解石、石英、黑云母、白云母等。脉石角砾 多呈透镜状或浑圆状,大小 3~30 cm,角砾之间的胶 结物为闪锌矿。

脉状矿石产于弱硅化的灰岩中,灰岩中有中细 粒浸染状硫化物(黄铁矿、方铅矿、黄铜矿)与石英脉 共生。石英中含有中细粒半自形黄铁矿,细粒磁黄 铁矿,他形,闪锌矿浸染状分布(图3e)。

浸染状矿石,在围岩(灰岩及片岩)中常见浸染状 黄铁矿(图3f),多为自形,粒度1~3mm,在片岩中常 见浸染状方铅矿(含量5%~30%),为银灰色,他形,粒 度0.5~1.0mm;或在石英脉中常见细脉浸染状黄铜 矿,他形,沿后期裂隙分布。浸染状闪锌矿,自形,等 粒状,粒度0.1~0.2mm,与粒状石英共生。稠密浸染 状闪锌矿成层状分布。

围岩蚀变主要有重晶石化、硅化、绢云母化、电 气石化等,其中,重晶石化和硅化蚀变作用与成矿关 系密切。

2.2.3 成矿阶段划分

根据矿石组构特征和矿脉之间的穿插关系,将

厂坝-李家沟矿床划分为3个成矿阶段(图4),具体如下:

早阶段(I):闪锌矿-重晶石阶段,形成条带状、 角砾状、纹层状、浸染状闪锌矿矿石。闪锌矿(n× 10² μm,Sp-1)(图5a~f),棕黄色,自形。第I阶段成 矿作用的矿物组合为闪锌矿(棕黄色)+黄铁矿(Py-1)+白铁矿+钠长石+石英+方解石+重晶石+黑云母。 条带状矿石的主要脉石矿物为方解石,重晶石,石英 (图5e、f)。黄铁矿(Py-1)呈麻点状,常被毒砂、Py-2或 方铅矿交代(图6a~f)。

中阶段(Ⅱ):闪锌矿-方铅矿-磁黄铁矿阶段,形 成块状矿石。微粒-隐晶质深棕色-青褐色闪锌矿 (n μm,Sp-2)(图5g~k,图6g、h),多与方铅矿、磁黄铁 矿交生(图5h、i),硅化作用强烈。第Ⅱ阶段矿物组合 闪锌矿(深棕色Sp-2)+黄铁矿(Py-2)+磁黄铁矿+方铅 矿+白铁矿+毒砂+阳起石+微斜长石+白云母+钠长 石+硅灰石+透辉石+石英+黑云母+方解石。透闪石 与无麻点的黄铁矿(Py-2)共生(图5j),黄铁矿(Py-2)、毒砂或方铅矿交代早期系形成的黄铁矿(Py-1), 同时,钾长石交代钠长石(图5k,图6i)。第Ⅱ阶段闪 锌矿(n μm)多形成于第Ⅰ阶段闪锌矿(n×10² μm)的 边部(图5d)。第Ⅱ阶段的块状矿石与第Ⅰ阶段条带 状矿石整合接触。

晚阶段(Ⅲ):方解石-石英-硫化物阶段,形成脉 状矿石(图 51)。方解石脉切穿早期条带状矿体及中

<u></u> 矿化阶段 矿物	早阶段(I) 闪锌矿-重晶石阶段	中阶段(II) 闪锌矿-方铅矿-磁黄铁矿	晚阶段(III) 方解石-石英-硫化物
黄铁矿			
闪锌矿			
白铁矿			
黄铜矿			
毒砂			
磁黄铁矿			
方铅矿			
方解石			
石英			
钠长石			
重晶石			
阳起石			
黑云母			
透闪石			
硅灰石			
透辉石			
微斜长石			
白云母			
	1	1	

图4 厂坝-李家沟铅锌矿床矿物共生组合及生成顺序

Fig.4 Paragenetic association and sequence of minerals in the Changba-Lijiagou Pb-Zn deposit

图5 厂坝-李家沟铅锌矿床矿石及镜下特征

a. 条带状矿石(右)与块状矿石(左) 接触界面,围岩为大理岩; Sp-1 为粗粒,高Fe含量闪锌矿; b. 两阶段闪锌矿的透射光下特征; c. 赋存在大理 岩中的粗粒 Sp-1(棕红色)(含重晶石); d. 粗粒闪锌矿 Sp-1 (棕红色)(100~200 μm)边部产出砂糖状 Sp-2(1~10 μm); e. 中粗粒 Sp-1(棕红色)与重晶 石共生于石英片岩中; f. 赋存于硅化灰岩中的粗粒闪锌矿 Sp-1(棕红色)与重晶石共生; g. 细粒 Sp-2(深棕色)与中细粒自形 Py-2共生; h. 细粒闪

锌矿 Sp-2(深棕色)与方铅矿和中粒自形 Py-2共生;i.细粒 Sp-2与磁黄铁矿产于块状矿石中;j. Py-2与透闪石共生,产于大理岩中;k.钾长石交 代钠长石与 Sp-2共生,产于大理岩中;l.方铅矿与毒砂共生,产于石英脉中;m.黄铜矿与磁黄铁矿共生产于石英的裂隙中,围岩为灰岩; n.黄铜矿与磁黄铁矿共生,钾长石产于烟灰色石英脉中(单偏光);o.黄铜矿与磁黄铁矿共生,钾长石产于烟灰色石英脉中(反射光) Sp—闪锌矿;Py—黄铁矿;Gn—方铅矿;Cpy—黄铜矿;Po—磁黄铁矿;Tr—电气石;Apy—毒砂;Kfs—钾长石;Brt—重晶石;Q—石英; Ab—钠长石;Cal—方解石;Bt—黑云母

Fig. 5 Photographs and microscopic characteristics of ores from the Changba-Lijiagou Pb-Zn deposit
a. The contact interface between banded ore (right) and massive ore (left), the host rock is marble; Sp-1 is a coarse grained sphalerite with high Fe content; b. Characteristics of sphalerites formed in two stages under transmission light; c. Coarse grained Sp-1 (brown) (containing barite) in marble;
d. Coarse grained sphalerite Sp-1 (brown) (100~200 µm) with the sugar like Sp-2 (1~10 µm) occurred at the edge; e. Medium coarse-grained Sp-1 (brown) and barite co-occurred in quartz schist; f. Coarse grained sphalerite Sp-1 (brown) occurring in silicified limestone coexists with barite;
g. Fine grained Sp-2 (dark brown) coexists with medium-fine-grained Euhedral Py-2; h. Fine grained sphalerite Sp-2 (dark brown) coexists with galena and medium grained euhedral Py-2; i. Fine grained Sp-2 and pyrrhotite in massive ores; j. Py-2 coexist with tremolite in marble; k. K-feldspar replaced albite coexist with Sp-2 in marble; 1. Galena coexist with arsenopyrite and occur in quartz vein; m. Chalcopyrite and pyrrhotite are occurred in the quartz fractures, the host rock is limestone; n. Chalcopyrite and pyrrhotite coexist, and K-feldspar occurs in smoke gray quartz vein (single polarized light); o. Chalcopyrite and pyrrhotite coexist, and potassium feldspar occurs in smoke gray quartz vein (reflected light) Sp—Sphalerite; Py—Pyrite; Gn—Galena; Cpy—Chalcopyrite; Po—Pyrrhotite; Tr—Tourmaline; Apy—Arsenopyrite;

Kfs-K-feldspar; Brt-Barite; Q-Quartz; Ab-Albite; Cal-Calcite; Bt-Biotite

期块状矿体,硅化蚀变共生(图5m)钾长石,黄铜矿和 磁黄铁矿(图5n、o)共生,含少量闪锌矿。

3 样品和分析方法

3.1 采样位置及样品特征

本次研究的14件样品分别采自厂坝矿区及小 厂坝矿区,所测样品选自5个中段的闪锌矿单矿物 (900中段、1058中段、1094中段、1130中段、1286中 段),分别选自条带状、块状、脉状及浸染状矿石,为 第 I 成矿阶段、第 II 成矿阶段、第 III 成矿阶段的闪 锌矿矿石样品。采样位置及详细样品特征见表1。 条带状闪锌矿矿石中含有中粗粒闪锌矿及中粗 粒黄铁矿,均为自形产出。闪锌矿粒度200~300 μm, 黄铁矿粒度300~500 μm,含大量脉石矿物,如石英、 方解石、黑云母,黄铁矿与闪锌矿比例为3:2~1:1。 块状闪锌矿矿石以中细粒闪锌矿为主,粒度1~10 μm, 含有少量磨圆黄铁矿,黄铁矿含量不超过20%,多为 细粒-隐晶质闪锌矿与细粒方铅矿共生,或细粒-隐晶 质闪锌矿与磁黄铁矿共生,方铅矿、磁黄铁矿粒度1~ 3 μm(图 6d、h)。脉状闪锌矿主要为与石英、方解石 脉共生的闪锌矿、方铅矿、黄铜矿等(图 51、5m~o)。

3.2 分析方法

闪锌矿LA-MC-ICP-MS原位S同位素测试在南 京聚谱检测科技有限公司完成。193 nm ArF 准分子 激光剥蚀系统型号为 Analyte Excite,多接收器型号

表1 厂坝-李家沟铅锌矿样品描述表(矿物简写见图5)

Table 1	Description on samples fro	om the Changba-Li	jiagou Pb-Zn deposit	(Mineral abbreviation	ons quoted from Fig.5)
样品	号 采样位置	矿石构造	成矿阶段	矿石矿物	闪锌矿颜色/粒度
XCB-	035 900中段57线	块状矿石	Ш	Sp+Gn+Py	微粒-隐晶质青褐色
XCB-	043 900中段57线	块状矿石	Ш	Sp+Ccp	细粒棕红色
XCB-	045 900中段57线	块状矿石	Ш	Sp+Gn+Py	隐晶质青褐色
XCB-	505 900中段79线	脉状状矿石	Ш	Sp+Q+Cal	中细粒棕红色
XCB-:	509 900中段79线	条带状矿石	Ι	Sp+Gn+Py	中细粒棕红色
XCB-	507 900中段79线	块状矿石	Ш	Sp	微粒-隐晶质深棕色
CB-5	15 1058中段38线	条带状矿石	Ι	Sp	中粗粒棕红色
CB-5	20 1058中段38线	条带状矿石	Ι	Sp	中细粒深棕色
CB-5	24 1058中段38线	条带状矿石	Ι	Sp	中粗粒深棕色
CB-5	14 1058中段38线	块状矿石	Ш	Sp	中粗粒浅棕红色
CB-5	21 1058中段38线	脉状矿石	Ш	Sp+Py	中细粒棕红色
CB-0	05 1094中段10线	块状矿石	Ш	Sp+Py	细粒-隐晶质深棕色
CB-4	2 1130中段40线	条带状矿石	Ι	Sp+Gn+Py	中粗粒棕红色
BA-	3 1286中段59线	条带状矿石	Ι	Sp	细粒棕红色

图6 厂坝-李家沟铅锌矿床不同阶段硫化物镜下特征

a~c. 白铁矿、毒砂交代 Py-1,与方铅矿和 Sp-2 共生;d. Py-2 交代 Py-1;e. 毒砂交代 Py-1,并与 Sp-1 共生;f. Py-1 与 Sp-1 共生;g. 为透射光, Sp-1 中粗粒,纯闪锌矿,Sp-2 期的与磁黄铁矿交生闪锌矿;h.反射光特征;i. 在 BSE 图像上,黄铁矿的生长环带 Sp--闪锌矿;Py--黄铁矿;Gn--方铅矿;Po--磁黄铁矿;Apy--毒砂;Q--石英;Cal--方解石;Bt--黑云母;Mar--白铁矿 Fig.6 Characteristics of sulfides formed in different stages in the Changba-Lijiagou Pb-Zn deposit

a~c. Pyrite and arsenopyrite replaced Py-1, coexisting with galena and Sp-2; d. Py-2 replaced Py-1; e. Arsenopyrite replaced Py-1, coexisting with Sp-1; f. Py-1coexist with Sp-1; g. Single polarized light, Sp-1 is medium-coarse grained, pure sphalerite, Sp-2 intergrowth with pyrrhotite; h. Characteristics under the reflected light; i. Growth ring zones of pyrite on BSE image

Sp-Sphalerite; Py-Pyrite; Gn-Galena; Po-Pyrrhotite; Apy-Arsenopyrite; Q-Quartz; Cal-Calcite; Bt-Biotite; Mar-Marcasite

电感耦合等离子体质谱仪(MC-ICP-MS)型号为Nu Plasma II。测试过程中以中国地质科学院国家地质 实验测试中心 GBW07267 黄铁矿压饼(δ³⁴S=+3.6‰) 与 GBW07268 黄铜矿压饼(δ³⁴S=-0.3‰),美国国家 标准技术研究院 NIST SRM123 闪锌矿碎颗粒(δ³⁴S= +17.1‰)作为数据质量控制,长期的外部重现性约 为±0.6‰(1倍 SD)。

重晶石δ³⁴S的测量在中国地质科学院矿产资源 研究所成矿作用与资源评价重点实验室完成,采用 EA-IRMS法,仪器为Flash 2000 HT 元素分析仪 (Thermo Fisher Scientific)、Conflo IV多用途连续流接 口(Thermo Fisher Scientific)和MAT253气体同位素 比质谱(Thermo Fisher Scientific)组成的连续流系统。 将挑选好的重晶石单矿物磨至200目并均一化,称 取 600 μ g样品及三倍质量的 V₂O₅,装入锡杯包紧, 依次放入 Flash 2000HT 的自动进样器中。试样经 Conflo IV 的开口分流装置进入 MAT253 的离子源, 测量 m/z 64 与 m/z 66 的束流比值,一般 δ^{34} S 的分析 精度达±0.2‰。

闪锌矿 Zn同位素组成的化学分离和测定在中

国地质科学院地质研究所同位素地质重点实验室的 超净化学实验室和 Nu Plasma HR 型多接收电感耦 合等离子体质谱(MC-ICP-MS)上进行。称取适量样 品放入Teflon溶样瓶中,以HNO3、HCl混合酸溶解 样品,溶解后的样品转换为盐酸介质后采用离子 交换层析法,使锌与其他元素有效分离。化学分 离后的样品溶液通过DSN-100 膜去溶进入等离子 体,对Zn同位素进行高精度分析测定。Zn同位素 的分析结果用相对于国际标准物质 JMC 3-0749C 的 千分偏差 δ^xZn 表示,其中, δ^xZn(‰)=[(^xZn/⁶⁴Zn)_{#H}/ (*Zn/64Zn)标准-1.0]×1000(X=68,66), 866Zn的外部精度 为±0.05(2SD)(Moynier et al., 2017)。

本次工作对第3个成矿阶段的闪锌矿、黄铁矿 和方铅矿进行LA-MC-ICP-MS微区原位Pb同位素 分析。实验测试在西北大学大陆动力学国家重点实 验室完成,采用193 nm 激光烧蚀系统(RESOlutionM-50,ASI)及NuPlasma Ⅱ多接收电感耦合等离 子体质谱进行测定。方铅矿的测试激光直径为 9 µm,频率为2 Hz。辉铋矿的测试激光直径为30 µm, 频率为6Hz。Yuan(2015)详细介绍了实验流程,标 样制作及数据的处理过程。

分析结果 4

3个阶段闪锌矿的硫同位素组成分析结果见表 2。 I 阶段闪锌矿的δ³⁴S 为 20.9‰~26.1‰(表 2),平 均24.4‰; Ⅱ阶段闪锌矿的δ³⁴S为12.2‰~21.9‰,平 均19.1‰;Ⅲ阶段闪锌矿的δ³⁴S值为18.2‰~24.7‰, 平均21.45‰。

3个阶段闪锌矿的Zn同位素组成分析结果见表 3。 I 阶段闪锌矿的δ⁶⁶Zn 为0.08‰~0.29‰,平均 0.20‰; Ⅱ阶段闪锌矿的δ⁶⁶Zn为0.19‰~0.37‰,平

Table 2	2 S isotope analysis of sphalerite and barite in different ore-forming stages of the Changba-Lijiagou dep						
样品号	样品来源	测试矿物	测试方法	成矿阶段	$\delta^{34}S$ /‰	SE/‰	资料来源
CD 515		闪锌矿	原位S同位素		20.9	0.1	
CB-212		重晶石	单矿物S同位素		33		
D.4.2		闪锌矿	原位S同位素		26.1	0.1	
BA-3		重晶石	单矿物S同位素		33.1		
CD 504		闪锌矿	原位S同位素		24.5	0.2	
CB-524	矿体	重晶石	单矿物S同位素	Ι	32.8		
NCD 500		闪锌矿	原位S同位素		24.8	0.1	
XCB-509		重晶石	单矿物S同位素		33.4		
CD 40		闪锌矿	原位S同位素		25.7	0.1	
CB-42		重晶石	单矿物S同位素		33.6		本次研究
CB-520		闪锌矿	原位S同位素		24.3	0.2	
XCB-043		闪锌矿	原位S同位素		21.4	0.2	_
CB-005		闪锌矿	原位S同位素		21.6	0.1	
CB-514	772 /-	闪锌矿	原位S同位素	п	21.9	0.1	
XCB-035	19 14-	闪锌矿	原位S同位素	Ш	20.3	0.3	
XCB-045		闪锌矿	原位S同位素		17	0.1	
XCB-507		闪锌矿	原位S同位素		12.2	0.3	
XCB-505	72° / 	闪锌矿	原位S同位素	ш	24.7	0.1	_
CB-521	10 14-	闪锌矿	原位S同位素	Ш	18.2	0.1	
		闪锌矿			20.92		
		磁黄铁矿			22.5		
	矿体	毒砂	单矿物S同位素		21.7		Leach et al.,
		重晶石			23.01		2001
		黄铁矿			22.14		
	广垣山井	方铅矿	単応m c 同た書		4		Zhang et al.,
	ノ 坝石 (平	黄铁矿	平0 初 5 		5~8(2)		2007

均 0.30‰; Ⅲ晚 阶 闪 锌 矿 的 δ⁶⁶Zn 值 为 0.36‰~ 0.37‰,平均0.37‰。

3个阶段矿石的Pb同位素组成分析结果见表4, 闪锌矿、黄铁矿及方铅矿及3个阶段的Pb同位素组 成变化不大。其中,²⁰⁶Pb /²⁰⁴Pb 比值为17.922~ 18.013,²⁰⁷Pb /²⁰⁴Pb 比值为15.567~15.647,²⁰⁸Pb /²⁰⁴Pb 比值为37.990~38.266。

5 讨 论

多接收电感耦合质谱(MC-ICP-MS)分析技术的 进步促进了非传统稳定同位素(Cu、Fe、Zn、Cd)在矿 床研究方面的应用(蒋少涌等,2001; Mason et al., 2005; Wilkinson et al., 2005; 王跃等,2010)。其中, Zn同位素体系在示踪热液流体内锌迁移的地球化 学过程和揭示热液体系中硫化物的沉淀机制等方面 具有重大意义,因而可能为矿床成因和成矿物质来 源提供新的约束(Kelley et al., 2009; Gagnevin et al., 2012; Pašava et al., 2014; Duan et al., 2016)。

5.1 成矿金属来源

前人研究证实玄武岩(MORBs洋中脊玄武岩和 OIBs 洋岛玄武岩)的 δ^{66} Zn 值主要分布在(0.28± 0.05)‰(Chen et al., 2013),而长英质火成岩的 δ^{66} Zn 值分布范围较大(0.12‰~0.88‰)(Telus et al., 2012; Chen et al., 2013;Sossi et al., 2015)。在其他地表的

表3	不同成矿阶段闪锌矿Zn同位素分析结果
.1. 2	7. instanta analasia manda af anhalasitas

Table 3	Zn isotopic analysis results of sphalerites in							
different ore-forming stages								

样品号	测试对象	形成阶段	$\delta^{66}Zn$ /‰	SD/‰
CB-515	闪锌矿		0.11	0.02
BA-3	闪锌矿		0.18	0.02
XCB-509	闪锌矿	T	0.28	0.04
CB-42	闪锌矿	1	0.29	0.01
CB-524	闪锌矿		0.19	0.03
CB-520	闪锌矿		0.08	0.02
XCB-043	闪锌矿		0.37	0.04
CB-005	闪锌矿		0.28	0.01
CB-514	闪锌矿	π	0.28	0.01
XCB-035	闪锌矿	Ш	0.37	0.02
XCB-045	闪锌矿		0.29	0.01
XCB-507	闪锌矿		0.29	0.03
XCB-505	闪锌矿	ш	0.37	0.04
CB-521	闪锌矿	Ш	0.36	0.01

Zn的储库中(海相碳酸盐岩、页岩、河水以及海水), δ^{66} Zn与火成岩的 δ^{66} Zn组成差别很大,其中,海水沉 积碳酸盐岩的δ⁶⁶Zn为0.24‰~1.32‰,现代深海表面 沉积物的δ⁶⁶Zn为0.17‰~0.35‰(Pichat et al., 2003; Maréchal et al., 2000; Bentahila et al., 2008; Lü et al., 2016; 王 跃, 2010; Ghidan et al., 2012; Zhao et al., 2014)。同时, 深部海水的平均δ⁶⁶Zn 值为0.51‰(Little et al., 2014; Zhao et al., 2014; John et al., 2014). 西成矿集区厂坝-李家沟铅锌矿的围岩主要是中泥 盆统安家岔组细碎屑岩夹灰岩、白云岩,以及二云母 石英片岩。由于其直接的Zn同位素组成没有找到 相应数据,引用全球碳酸盐岩、碎屑岩的范围和平均 值, 围岩的δ⁶⁶Zn 为-0.22‰~0.22‰(图 7) (Zhou et al., 2014a; 2014b; 2016; 2018)。 I 阶段闪锌矿的δ66Zn 为0.08‰~0.29‰,平均为0.20‰。δ⁶⁶Zn值分布范围 较大,数据与岩浆热液矿床的范围重合,同时,大部 分数据也落于中泥盆世—二叠纪沉积岩的范围内 (图7)。笔者推测 I 阶段的金属来源为中泥盆世— 二叠纪沉积岩,并混入了部分岩浆热液来源的金属。

II阶段闪锌矿的δ⁶⁶Zn为0.19‰~0.37‰,平均 0.30‰,较 I 阶段闪锌矿的 δ^{66} Zn 值有明显的升高。 造成 δ^{66} Zn同位素组成变化的原因主要包括:①闪 锌矿沉淀过程中的瑞利分馏,在闪锌矿的沉淀过程 中,热液流体内早期结晶的闪锌矿富集锌的轻同位 素,而晚期结晶的闪锌矿逐步富集锌的重同位素 (Wilkinson et al., 2005; Kelley et al., 2009); ② 热液 流体的温度变化(Mason et al., 2005);③不同性质 流体的混合作用(Wilkinson et al., 2005; Pašava et al., 2014)。热液流体降温在温差较大的情况下 (297~590℃), 会引起较为明显的 Zn 同位素分馏 (Toutain et al., 2008)。而如果2个阶段形成的温度 差异不大(60~250℃),则不会对Zn同位素组成发生 明显影响 (Maréchal et al., 2002; Wilkinson et al., 2005)。厂坝铅锌矿的第 I 阶段成矿温度为 185~ 250℃,第Ⅱ阶段流体包裹体成矿温度峰值为2个, 分别为250℃和350℃(未发表数据)。因此,笔者推 测温度变化并不是造成 Zn 同位素变化的主要原 因。闪锌矿的 S-Zn 同位素组成对比图(图 8a、b)显 示,投点位置并没有明显规律(R²=0.0171),指示成 矿流体的来源可能不唯一,而是2种或多种流体的 混合(Wilkinson et al., 2005; Pašava J et al., 2014)。 岩浆矿床和岩浆热液矿床的δ⁶⁶Zn为-0.05‰~ 0.44‰(Chen et al., 2013; Duan et al., 2016; He et al.,

2022年

	Table 4 Pb isotopic compositions of ore minerals in the Changba-Lijiagou deposit										
序号	样品编号	矿物名称	成矿期次	测试方法	²⁰⁶ Pb/ ²⁰⁴ Pb	SE	²⁰⁷ Pb/ ²⁰⁴ Pb	SE	²⁰⁸ Pb/ ²⁰⁴ Pb	SE	数据来源
1	XCB508-1-1	闪锌矿			17.968	0.002	15.623	0.002	38.176	0.005	
2	XCB508-1-3				17.969	0.005	15.623	0.006	38.175	0.014	
3	CB515-1		T	医体取 同位素	17.954	0.006	15.609	0.005	38.145	0.014	
4	CB515-2		1	原位 Pb 问位系	17.964	0.007	15.62	0.007	38.177	0.018	
5	CB515-3				17.947	0.007	15.609	0.006	38.151	0.016	
6	CB515-4				17.971	0.004	15.629	0.004	38.196	0.012	
7	XCB508-1-4				17.967	0.005	15.626	0.005	38.18	0.014	_
8	XCB508-1-5				17.975	0.003	15.629	0.003	38.192	0.009	
9	LJG510-4				17.985	0.005	15.643	0.005	38.224	0.013	
10	LJG510-7	Pat K-3: +9-	п	医体取 同位素	17.963	0.006	15.62	0.006	38.17	0.015	
11	LJG717-3-1	闪锌如	Ш	原位 PD 问位系	17.965	0.003	15.62	0.004	38.16	0.01	
12	LJG717-3-2				17.97	0.005	15.622	0.005	38.169	0.015	
13	LJG717-3-3				17.955	0.003	15.606	0.003	38.238	0.009	
14	LJG717-3-4				17.965	0.005	15.617	0.005	38.266	0.014	
15	CB006-2-1				17.957	0.001	15.618	0.002	38.155	0.004	本次研究
16	CB006-2-2	闪锌矿	Ш	原位 Pb 同位素	17.956	0.001	15.617	0.002	38.155	0.004	
17	CB006-2-3				17.954	0.002	15.616	0.002	38.152	0.006	
18	LJG703-3-1				18.013	0.003	15.647	0.003	38.237	0.009	_
19	LJG703-3-2				18.011	0.005	15.638	0.005	38.219	0.013	
20	LJG717-3-1	黄铁矿	Ι	原位 Pb 同位素	17.934	0.005	15.582	0.005	38.036	0.013	
21	LJG717-3-2				17.922	0.010	15.567	0.009	37.99	0.022	
24	CB515-1				17.967	0.003	15.62	0.003	38.168	0.007	
22	LJG717-3-3	去出矿	Π	百台 Dk 同台書	17.931	0.010	15.574	0.008	37.991	0.021	
23	LJG717-3-4	與沃彻	Ш	床位10円位系	17.952	0.008	15.607	0.009	38.117	0.024	
25	CB006-2-1				17.954	0.002	15.613	0.002	38.144	0.005	_
26	CB006-2-2				17.95	0.002	15.607	0.002	38.129	0.005	
27	LJG740-3	方铅矿	Ш	原位 Pb 同位素	17.982	0.002	15.62	0.002	38.179	0.007	
28	LJG740-3				17.975	0.002	15.615	0.002	38.166	0.006	
29	LJG740-3				17.978	0.003	15.617	0.003	38.173	0.007	
		方铅矿		单矿物 Pb 同位素	17.574~1	8.459	15.420~1	5.874	38.007~3	8.8787	匡文龙,2009
_		方铅矿			17.574~1	8.459	15.328~1	5.874	37.314~.	39.055	
		黄铁矿		单矿物 Pb 同位素	17.806~1	8.064	15.706~1	5.504	37.787~	38.381	室 元末 1000
		闪锌矿			17.625~1	7.868	15.328~1	5.508	37.314~	37.964	实几公,1992
		磁黄铁矿			17.57	1	15.47	71	37.6	37	

表4 厂坝-李家沟矿床矿石矿物 Pb 同位素组成

2021)(图7),玄武岩的Zn同位素组成可能代表地幔的Zn同位素组成(王跃等,2010)(δ⁶⁶Zn=0.19‰~0.48‰)。矿区及周边未发现明显的基性岩体,可以排除幔源流体的来源。

笔者通过Zn同位素研究(图7)得出, I阶段Zn 元素的来源为围岩泥盆纪的沉积碳酸盐岩; Ⅱ阶段 的含矿流体中由于含Zn元素的岩浆流体加入,岩浆 流体的平均δ⁶⁶Zn值高于泥盆纪沉积岩的平均值,流 体的混合致使δ⁶⁶Zn值发生了上升;Ⅲ阶段成矿流体 的δ⁶⁶Zn值由于数据量较少,不能完全显示Ⅲ阶段的 金属来源特征,通过Ⅲ阶段矿体的产出特征,推测是 Ⅱ阶段流体继续演化,在构造有利部位(断裂)充填

图7 厂坝-李家沟铅锌矿床不同阶段闪锌矿δ⁶⁶Zn值组成对比

Zn 同位素不同源区储库数据来源(Zhou et al., 2014a; 2014b; 2016; 2018; Chen et al., 2013; Duan et al., 2016; He et al., 2021; Gao et al., 2021) Fig.7 Comparison of sphalerite δ⁶⁶Zn values in different stages of the Changba-Lijiagou Pb-Zn deposit Zn isotope reservoirs in different sources (Zhou et al., 2014a; 2014b; 2016; 2018; Chen et al., 2013; Duan et al., 2016; He et al., 2021; Gao et al., 2021)

图 8 厂坝-李家沟矿闪锌矿 S-Zn 同位素组成关系图(a)和闪锌矿分阶段 S-Zn 同位素演化图(b) Fig.8 S-Zn isotopic compositions relational diagram of sphalerites in the Changba-Lijiagou deposit (a) and S-Zn isotopic compositions evolution diagram of sphalerites formed in different stages (b)

形成。

厂坝-李家沟铅锌矿床原位Pb同位素特征(表4, 图9a)显明,不同成矿阶段的矿石矿物Pb同位素值 变化不大,投点位置非常集中,全部投点落于造山带 与上地壳演化曲线之间,显示矿石铅可能主要来源 于上地壳,并且部分成矿物质来源于古老的变质基底(Wei et al., 2020)。在不同成矿阶段金属矿物²⁰⁸Pb/²⁰⁴Pb-²⁰⁶Pb/²⁰⁴Pb图解(图9b)中,投点更接近于此地区的岩浆岩而远离地层,指示岩浆岩对于成矿流体的贡献较大,矿石的Pb来源于壳幔相互作用

图 9 厂坝-李家沟铅锌矿不同成矿阶段金属矿物²⁰⁷Pb/²⁰⁴Pb-²⁰⁶Pb/²⁰⁴Pb 图解(a)和²⁰⁸Pb/²⁰⁴Pb-²⁰⁶Pb/²⁰⁴Pb 图解(b) (底图根据 Zartman et al., 1988)

Fig.9 ²⁰⁷Pb/²⁰⁴Pb vs. ²⁰⁶Pb/²⁰⁴Pb diagram (a) and ²⁰⁸Pb/²⁰⁴Pb vs. ²⁰⁶Pb/²⁰⁴Pb diagram (b) of ore minerals in different stages of the Changba-Lijiagou Pb-Zn deposit (base map after Zartman et al., 1988)

的岩浆活动。结合Zn同位素与Pb同位的特征,笔者 推测由于岩浆热液(0.02‰~0.44‰)的混入,致使本 矿床Ⅱ阶段的闪锌矿Zn同位素值升高,但也不能排 除瑞利分馏作用对δ⁶⁶Zn值升高的影响。

5.2 成矿过程

将不同成矿阶段的闪锌矿、黄铁矿、方铅矿单矿物挑出,分别测得硫化物的硫同位素,得出 $\delta^{34}S_{py}$ > $\delta^{34}S_{sp}$ > $\delta^{34}S_{gn}$ (Wei et al., 2020),指示成矿流体中S同位素的分馏已经达到平衡(匡文龙等,2009)。根据I 阶段闪锌矿的原位 δ^{34} S值,得出220℃下,TSR反应形成相应硫酸盐的 δ^{34} S值为29.5‰~34.7‰(Claypool et al., 1980),结合重晶石 δ^{34} S值为32.8‰~33.6‰(表2),与全球中-晚泥盆世蒸发岩(16‰~

图 10 厂坝-李家沟不同阶段硫化物-硫酸盐δ³⁴S 值分布特征 Fig.10 Distribution characteristics of δ³⁴S values of sulfidesulfate in different stages of the Changba-Lijiagou deposit

33‰) (Claypool et al., 1980) 值基本是一致的(表 2, 图 10), 指示未被改造的中泥盆统海水硫酸盐可能是 第 I 阶段硫化物的主要来源(Claypool et al., 1980)。

相比于 I 阶段的条带状矿石, II 阶段的块状矿 石含有较低的δ³⁴S 同位素值(表2)。对不同成矿阶段 的闪锌矿进行了流体包裹体测温分析结果表明(Wei et al., 2020), I 阶段闪锌矿的成矿温度峰值分别为 250℃和350℃高于 I 阶段闪锌矿的成矿温度 185~ 250℃。C-O同位素特征指示,厂坝-李家沟铅锌矿床 的 I 阶段成矿流体来源于地层水, I 阶段成矿流体 加入了岩浆水(Wei et al., 2020)。因此,造成 II 阶段 δ³⁴S 同位素值降低的原因,是在 2 个成矿阶段,成矿 流体的成分发生了变化,岩浆热液中 S²⁻的加入导致 δ³⁴S 同位素值降低。同时,也不能排除由于瑞利分 馏作用,稳定δ³⁴S 同位素值的流体在成矿环境变化 下的数值波动。

闪锌矿 S-Zn同位素组成关系图解见图 8b。对 比 3 个阶段的闪锌矿 S-Zn 同位素组成,δ³⁴S 为 12.2‰~33.6‰,δ⁶⁶Zn 为 0.08‰~0.37‰,数据较为分 散,且没有显示明显的相关性关系(*R*²=0.0171)(图 8a),指示成矿流体并非为单一来源,而是多来源。 从 I 阶段到Ⅲ阶段的演化过程中,δ³⁴S 值逐渐降低 而δ⁶⁶Zn 值逐渐上升(图 8b),在成矿作用过程中可能 分阶段混入了低δ³⁴S 值、高δ⁶⁶Zn 值的流体(Pašava et al., 2014)。

区域构造变质作用产生的变质流体产生热量使 围岩产生蚀变,萃取了其中的大量阳离子和金属离 子(Pašava et al., 2014),流体在碰撞后的伸展构造中

受构造应力驱动沿矿区主断层F1进入矿化区,在构 造的有利部位与富含SO4²⁻的地层水混合,SO4²⁻经过 TSR 作用被还原为H₂S(Wei et al., 2020),从而沉淀成 条带状矿石。Ⅱ阶段金属矿物磁黄铁矿的出现,暗 示存在更加还原性的流体成分。Barret等(1988)研 究显示,Zn和Pb元素在水溶液中是以氯络合物形式 存在的,并且其溶解度随着盐度和温度的升高而升 高。Ⅱ阶段的成矿过程为高温的酸性岩浆热液可能 是氯离子和一些Pb、Zn金属离子的源区,而区域构 造变质作用产生的变质流体同样携带金属离子 (Pašava et al., 2014)。上述混合的流体与碳酸盐岩发 生反应导致pH值上升,在流体pH值接近中性(~7.5) 时,闪锌矿与方铅矿发生沉淀(Anderson 1973;Sverjensky, 1986)。同时, 岩浆热液中S元素的加入, 使 矿石中的δ³⁴S降低,变质流体与岩浆热液的混合也 造成了Zn同位素的升高。

Ⅱ阶段的流体混合作用引起了Zn同位素的变 化,同时,可能由于瑞利分馏作用,低δ⁶⁶Zn值的Zn 元素向沉淀的矿石中聚集,高δ⁶⁶Zn值的Zn元素向 含矿流体中聚集,因此,δ⁶⁶Zn_I值普遍大于δ⁶⁶Zn_I 值。Fujii等(2011)研究证实,在高温的热液流体中, 水溶液中Zn的硫络合物的 $\delta^{66}Zn$ 同位素值高于 Zn^{2+} 和Zn的含氯络合物,而当pH值<5.5时,锌的氯化物 在溶液中占主体;当pH值>5.5时锌的含硫络合物在 溶液占主体。在富含硫化物的流体中,Zn同位素的 分馏同时受控于水溶液中Zn²⁺摩尔分数和硫化物的 溶解度,因此,推测pH值是主要的影响因素(Fujii et al., 2011)。δ⁶⁶Zn_中值的变化反映了成矿流体中含有 不同摩尔分数的锌络合物、不同pH值以及不同温度 的流体。Ⅱ阶段高达0.37‰的δ⁶⁶Zn值可能反映了 闪锌矿的形成有来自岩浆的高温酸性流体的加入, 同时,Ⅱ阶段岩浆热液中的S元素的加入进一步引 起 $\delta^{34}S_{+}$ 同位素值低于 $\delta^{34}S_{+}$ 。

随着流体混合作用的进行,地层中硫元素在成 矿作用中被逐渐消耗,直至消失,而岩浆热液中的硫 在沉淀的闪锌矿中占比增高,流体的混合作用造成 δ⁶⁶Zn_Ⅲ的值进一步升高(图 7),Ⅲ晚阶的脉状矿体在 构造的有利部位充填成矿。

6 结 论

(1) 厂坝-李家沟3个成矿阶段的δ⁶⁶Zn同位素 值指示 Ι 阶段金属来源为泥盆纪的沉积碳酸盐岩地 层,Ⅱ阶段加入了岩浆热液的来源,Ⅲ晚阶岩浆热液 来源的Zn元素占据主要成分。原位S同位素研究结 果表明,成矿早期的S源为含矿地层,中期加入了岩 浆热液,随着成矿作用的进行,晚期主要以岩浆热液 为主。原位Pb同位素结果表明,矿石铅可能主要来 源于上地壳,并且部分成矿物质来源于古老的变质 基底。

(2)将厂坝-李家沟铅锌矿成矿作用划分为3个 阶段,I阶段成矿流体以变质流体和地层水为主, Ⅱ-Ⅲ阶段以岩浆热液为主;从I阶段到Ⅲ阶段,闪 锌矿中的Zn同位素值变重、S同位素值增加,指示了 从以混合流体为主到以岩浆流体为主的变化的成矿 过程。

References

- Anderson G M.1973. The hydrothermal transport and deposition of galena and sphalerite near 100°C[J]. Econ. Geol., 68(4):480-492.
- Barrett T J and Anderson G M .1988. The solubility of sphalerite and galena in 1~5 mNaCl solutions to 300°C[J]. Geochim Cosmochim Acta, 52(4):813-820.
- Bentahila Y, Othman D B and Luck J M. 2008. Strontium, lead and zinc isotopes in marine cores as tracers of sedimentary provenance: A case study around Taiwan orogen[J]. Chemical Geology, 248: 62-82.
- Chen G. 2002. Rock and ore evidence of thermal-water-sedimentary metallogenesis in Xicheng lead-zinc metallogenic provinces[J]. Acta Geologica Gansu, 11(1):33-44 (in Chinese).
- Chen H, Savage P S, Teng F Z, Helz R T and Moynier F. 2013. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth[J]. Earth & Planetary Science Letters, 369-370: 34-42.
- Claypool G E, Holser W T, Kaplan I R, Sakai H and Zak I. 1980. The age curves for sulfur and oxygen isotopes in marine sulfate and their interpretation[J]. Chemical Geology, 28: 199-260.
- Dou Y J. 1992. Geological features of the thermal water sedimentary Pb-Zn deposits in Changba-Lijiagou of Chengxian County in Gansu[J]. Acta Geological Gansu, 1(2): 32-50 (in Chinese with English abstract).
- Duan J L, Tang J X and Lin B. 2016. Zinc and lead isotope signatures of the Zhaxikang Pb-Zn deposit, South Tibet: Implications for the source of the ore forming metals[J]. Ore Geology Reviews, 78: 58-68.
- Fujii T, Moynier F, Pons M L and Albarède F. 2011. The origin of Zn isotope fractionation in sulfides[J]. Geochimica et Cosmochimica Acta, 75: 7632-7643.
- Gagnevin D, Boyce A J, Barrie C D, Menuge J F and Blakeman R J.

2012. Zn, Fe and S isotope fractionation in a large hydrothermal system[J]. Geochimica et Cosmochimica Acta, 88(7):183-198.

- The 106 Geological Exploration Brigade of Gansu Bureau of Nonferrous Metals Exploration. 1988. Geological exploration report of the Lijiagou Pb-Zn deposit in the Chengxian Country[R]. Internal report. 1-92(in Chinese).
- Gao Y, Liu J, Li T G, Zhang D D, Yang Y C, Han S J, Ding Q F and Zhang S. 2021. Multiple isotope (He-Ar-Zn-Sr-Nd-Pb) constraints on the genesis of the Jiawula Pb-Zn-Ag deposit, NE China[J]. Ore Geology Reviews, 134:104142.
- Ghidan O Y and Ross D L. 2012. Zinc isotope fractionation analyses by thermal ionization mass spectrometry and a double spiking technique[J]. International Journal of Mass Spectrometry, 309: 79-87.
- Gong J H, Zhu L M, Sun B Y, Li B and Guo B. 2009. Zircon U-Pb ages and Hf isotope characteristics and their geological significance of the Shahewan, Caoping and Zhashui granitic plutons in the South Qinling orogen[J]. Acta Petrologica Sinica, 25(2): 248-264 (in Chinese with English abstract).
- Gu Z H, Zhao J X, Zhou Y Z, Yang Z J, Li H Z and Lü W C. 2007. Geological characteristics and origin of Changba-Lijiagou leadzinc deposit from western Qinling mountains, China[J]. Journal of the Graduates Sun Yat-Sen University(Natural Sciences, Medicine), 28(3):40-46(in Chinese with English abstract).
- He Z W, Li Z Q, Li B, Chen J, Xiang Z P, Wang X F, Du L J and Huang Z L. 2021. Ore genesis of the Yadu carbonate-hosted Pb-Zn deposit in southwest China: Evidence from rare earth elements and C, O, S, Pb and Zn isotopes[J]. Ore Geology Reviews, 131: 104039.
- Hu Q Q, Wang Y T, Mao J W, Wei R, Liu S Y, Ye D J, Yuan Q H and Dou P. 2015. Timing of the formation of the Changba-Lijiagou Pb-Zn ore deposit, Gansu Province, China: Evidence from Rb-Sr isotopic dating of sulfifides[J]. Journal of Asian Earth Sciences, 103: 350-359.
- Jiang S Y, Lu J J, Gu L X, Hua R M and Jiang Y H. 2001. Determination of Cu, Zn, Fe isotopic compositions by MC-ICPMS and their geological applications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 431-433(in Chinese with English abstract).
- John S G and Conway T M. 2014. A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes[J]. Earth and Planetary Science Letters, 394: 159-167.
- Kelley K D, Wikinson J J, Chapman J B, Crowther H L and Weiss D J. 2009. Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, northern Alaska[J]. Econ. Geol., 104(6): 767-773.
- Kuang W L, Chen N S, Zhang W H, Liu X H, Chen X Y, Zhu W and Dai D Q. 2009. Discussion on the minerogenetic process for Changba-Lijiagou SEDEX type lead-zinc deposits[J]. Geotectonica et Metallogenia, 32(4): 542-547(in Chinese with English abstract).
- Leach D L, Bradley D, Lewchuk M T, Symons D T A, Marsily G and

Brannon J. 2001. Mississippi Valley-type lead-zinc deposits through geological time: Implications from recent age-dating research[J]. Mineralium Deposita, 36(8): 711-740.

- Li Y J, Xie Q S, Luan X D, Li C Z, Yang J Q and Bi M B. 2004. The origins and tectonic significance of the Mishuling magma zone in West Qinling[J]. Xinjiang Geology, 22(4): 374-377(in Chinese with English abstract).
- Li Z C, Pei X Z, Li R B, Pei L, Hu B, Liu C J, Chen G C and Chen Y X. 2013. LA-ICP-MS zircon U-Pb dating, geochemistry of the Mishuling intrusion in western Qinling and their tectonic significance[J]. Acta Petrologica Sinica, 29(8): 2617-2634(in Chinese with English abstract).
- Little S H, Vance D, Walker-Brown C and Landing W M. 2014. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments[J]. Geochimica et Cosmochimica Acta, 125: 673-693.
- Lü Y W, Liu S A, Zhu J M and Li S G. 2016. Copper and zinc isotope fractionation during deposition and weathering of highly metalliferous black shales in Central China[J]. Chemical Geology, 422: 82-93.
- Ma G L and Qi S J. 1998. Genesis of albitites in Changba Pb-Zn ore deposit[J]. Geology and Geochemistry, 26(2): 29-33(in Chinese with English abstract).
- Maréchal C N, Nicolas E, Douchet C and Albarède F. 2000. Abundance of zinc isotopes as a marine biogeochemical tracer[J]. Geochemistry Geophysics Geosystems, 1(1): 1-15.
- Maréchal C N and Sheppard S M F. 2002. Isotopic fractionation of Cu and Zn between chloride and nitrate solutions and malachite or smithsonite at 30°C and 50°C [J]. Geochimica et Cosmochimica Acta, 66(15A): A484.
- Mason T F D, Weiss D J, Chapman J B, Wilkinson J J, Tessalina S G, Spiro B, Horstwood M S A, Spratt J and Coles B J. 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide(VHMS) ore deposit, Urals, Russia[J]. Chemical Geology, 221(3-4): 170-187.
- Moynier F, Vance D, Fujii T and Savage P. 2017. The isotope geochemistry of zinc and copper (review)[J]. Reviews in Mineralogy and Geochemistry, 82(1): 543-600.
- Pašava J, Tornos F and Chrastny V. 2014. Zinc and sulfur isotope variation in sphalerite from carbonate-hosted zinc deposits, Cantabria, Spain[J]. Mineralium Deposita, 49(7): 797-807.
- Pichat S, Douchet C and Albarède F. 2003. Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka[J]. Earth and Planetary Science Letters, 210: 167-178.
- Qi J F. 2010. Petrogenesis and geodynamic implications of the Late-Triassic granitoids from the Qinling Orogenic belt[D]. Doctoral Advisor: Lai S C. Xi'an: Northwest University. 20-65(in Chinese with English abstract).
- Sossi P A, Halverson G P and Nebel O. 2015. Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination[J]. Geostandards and Geoa-

nalytical Research, 39 (2): 129-149.

- Sverjensky D A. 1986. Genesis of Mississippi Valley-type lead-zinc deposits[J]. Annual Review of Earth and Planetary Sciences, 14: 177-199.
- Telus M, Dauphas N, Moynier F, Tissot F L, Teng F Z, Nabelek P I and Groat L A. 2012. Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: The tale from migmatites, granitoids, and pegmatites[J]. Geochimica et Cosmochimica Acta, 97: 247-265.
- Toutain J P, Sonke J, Munoz M, Nonell A, Polve M, Viers J, Freydier R, Sortino F, Joron J L and Sumarti S. 2008. Evidence for Zn isotopic fractionation at Merapi volcano[J]. Chemical Geology, 253 (1-2), 74-82.
- Wang X, Tang R Y, Li S, Li Y X, Yang M J, Wang D S, Guo J, Liu P, Liu R D and Li W Q.1996.Qinling orogeny and metallogenesis[M]. Beijing: Metallurgical Industry Press. 187-230(in Chinese with English abstract).
- Wang Y and Zhu X K. 2010. Application of Zn isotopes to study of mineral deposits: A review[J]. Mineral Deposits, 29(5): 843-852 (in Chinese with English abstract).
- Wang Y T, Hu Q Q, Liu S Y, Wei R, Chen S C and Yuan Q H. 2018. Geology and geochemistry of the Changba-Lijiagou super large Pb-Zn deposit in Gansu Province[M]. Beijing: Geology Press. 98-200(in Chinese with English abstract).
- Wang Y T, Mao J W, Hu Q Q, Wei Ran and Chen S C. 2021. Characteristics and metallogeny of Triassic polymetallic mineralization in Xicheng and Fengtai ore cluster zones, West Qinling, China and their implications for prospecting targets[J]. Journal of Earch Sciences and Environment, 4(3): 409-427.
- Wei R, Wang Y T, Hu Q Q, Huang S K, Yuan Q H, Bai Q L, Hu W R, Zhang X J and Cai T. 2017. Zircon U-Pb ages and Hf isotope compositions of Changba and Huangzhuguan plutons in West Qinling, and their geological significance[J]. Mineral Deposits, 36(6):1367-1386(in Chinese with English abstract).
- Wei R, Wang Y T, Mao J W, Hu Q Q, Qin S T, Liu S Y, Ye D J, Yuan Q H and Dou P. 2020. Genesis of the Changba-Lijiagou giant Pb-Zn deposit, West Qinling, Central China: Constraints from S-Pb-C-O isotopes[J]. Acta Geologica Sinica, 94(4): 884-900.
- Wilkinson J J, Weiss D J, Mason T F D and Coles B J. 2005. Zinc isotope variation in hydrothermal systems: Preliminary evidence from the Irish Midlands ore field[J]. Econ. Geol., 100(3): 583-590.
- Yang S N and Liao Y X.1986. Geological characteristics of the Changba-Lijiagou lead-zinc deposits in Gansu Province[J]. Mineral Deposits, 5(2): 14-22(in Chinese with English abstract).
- Yang Z H, Su S R, Zhou M F, Zhao T P, Zhang C L, Hei A Z, Liang Y and Zhao X N. 2000. New recognition on genesis of Xicheng Pb-Zn (Ag) - Au deposits[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 19(4):367-369(in Chinese).
- Yuan H L, Yin C, Liu X, Chen K Y, Bao Z A, Zong C L, Dai M N, Lai S C, Wang R and Jian S Y. 2015. High precision in-situ Pb isotopic analysis of sulfide minerals by femtosecond laser ablation

multi-collector inductively coupled plasma mass spectrometry[J]. Science China(Earth Science), 58(10):1712-1721.

- Zartman R E and Haines S M. 1988. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs—A case for bi-directional transport[J]. Geochimica et Cosmochimica Acta, 52(6):1327-1339.
- Zhang H F, Xiao L, Zhang L, Yuan H L and Jin L L. 2007. Geochemical and Pb-Sr-Nd isotopic compositions of Indosinian granitoids from the Bikou block, northwest of the Yangtze Plate: Constraints on petrogenesis, nature of deep crust and geodynamics[J]. Science in China (Ser.D), 50(7): 972-983.
- Zhang S Y, Zhao H C and Wu J M. 1988. Discussion on controlling conditons of metallogenesis and enrichment regularities of mineralization of lead-zinc deposits in Changba Lijiagou area[J]. Geology and Exploration, 2(2):1-9(in Chinese).
- Zhao Y, Vance D, Abouchami W and de Baar H J W. 2014. Biogeochemical cycling of zinc and its isotopes in the southern Ocean[J]. Geochimica et Cosmochimica Acta, 125: 653-672.
- Zhou J X, Huang Z L, Lü Z C, Zhu X K, Gao J G and Mirnejad H. 2014a. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, southwest China[J]. Ore Geology Reviews, 63: 209-225.
- Zhou J X, Huang Z L, Zhou M F, Zhu X K and Muchez P. 2014b. Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, southwest China[J]. Ore Geology Reviews, 58: 41-54.
- Zhou J X, Luo K, Li B, Huang Z L and Yan Z F. 2016. Geological and isotopic constraints on the origin of the Anle carbonate-hosted Zn-Pb deposit in northwestern Yunnan Province, SW China[J]. Ore Geology Reviews, 74: 88-100.
- Zhou J X, Wang X C, Wilde S A, Luo K, Huang Z L, Wu T and Jin Z G. 2018. New insights into the metallogeny of MVT Zn-Pb deposits: A case study from the Nayongzhi in South China, using field data, fluid compositions, and in situ S-Pb isotopes[J]. American Mineralogist, 103(1): 91-108.

附中文参考文献

- 陈光.2002. 西成铅锌矿化集中区热水沉积成矿作用的岩矿证据[J]. 甘肃地质学报,11(1):33-44.
- 窦元杰. 1992. 甘肃成县厂坝-李家沟热水-沉积铅锌矿床地质特征[J]. 甘肃地质学,1(2): 32-50.
- 甘肃省有色金属地质勘查局106队.1988.成县李家沟铅锌矿床地 质勘查报告[R].兰州:甘肃省有色金属地质勘查局106队.1-92.
- 弓军虎,朱赖民,孙博亚,李犇,郭波.2009. 南秦岭沙河湾、曹坪和柞 水岩体锆石 U-Pb年龄、Hf同位素特征及其地质意义[J]. 岩石学 报,25(2): 248-264.
- 古志宏,赵俊兴,周永章,杨志军,李红中,吕文超.2007.西秦岭厂 坝-李家沟铅锌矿矿床地质特征和成因分析[J].中山大学研究 生学刊(自然科学、医学版),28(3):40-44.

- 蒋少涌,陆建军,顾连兴,华仁民,姜耀辉.2001.多接收电感耦合等 离子体质谱(MCICPMS)测量铜、锌、铁的同位素组成及其地质 意义[J].矿物岩石地球化学通报,20(4):431-433.
- 匡文龙,陈年生,张万虎,刘新华,陈新跃,朱伟,戴德求.2009. 厂坝-李家沟 SEDEX 型铅锌矿床成矿作用研究[J]. 大地构造与成矿 学,32(4): 542-547.
- 李永军,谢其山,栾新东,李注苍,杨俊泉,毕明波.2004. 西秦岭糜署 岭岩浆带成因及构造意义[J]. 新疆地质,22(4): 374-377.
- 李佐臣,裴先治,李瑞保,裴磊,胡波,刘成军,陈国超,陈有折.2013. 西秦岭糜署岭花岗岩体年代学、地球化学特征及其构造意义[J]. 岩石学报,29(8):2017-2029.
- 马国良,祁思敬.1998. 厂坝铅锌矿床中钠长石岩的成因探讨[J]. 地 质地球化学,26(2): 29-33.
- 秦江锋.2010.秦岭造山带晚三叠世花岗岩类成因机制及深部动力 学背景(博士毕业论文)[D].导师:赖绍聪.西安:西北大学.20-65.
- 王相,唐荣扬,李实,李永祥,杨铭君,王东生,郭健,刘平,刘人定,李 文全.1996. 秦岭造山与金属成矿[M].北京:金属工业出版社. 187-230.

- 王义天,胡乔青,刘升有,魏然,陈绍聪,袁群虎.2018.甘肃厂坝-李 家沟超大型铅锌矿床地质地球化学[M].北京:地质出版社.98-200.
- 王义天,毛景文,胡乔青,魏然,陈绍聪.2021.西秦岭西成和凤太矿 集区三叠纪多金属成矿作用特征,规律及找矿方向[J].地球科学 与环境学报,43(3):27-28.
- 王跃,朱祥坤. 2010. 锌同位素在矿床学中的应用:认识与进展[J]. 矿床地质,29(5): 843-852.
- 魏然,王义天,胡乔青,黄诗康,袁群虎,柏全良,胡文荣,张湘君,蔡 拓.2017. 西秦岭厂坝、黄渚关岩体的锆石 U-Pb年龄、Hf同位素 组成及其地质意义[J].矿床地质,36(6):1367-1386.
- 杨松年,廖远兴.1986. 厂坝-李家沟铅锌矿床地质特征[J]. 矿床地 质, 5(2): 14-22.
- 杨志华,苏生瑞,周美夫,赵太平,张传林,黑爱之,梁云,赵晓宁. 2000. 西成铅锌(银)金矿床成因的新认识[J]. 矿物岩石地球化学 通报,19(4):367-369.
- 张声炎,赵化琛,吴健民.1988. 厂坝-李家沟铅锌矿床成矿控制条件 及矿化富集规律讨论[J]. 矿产与地质,2(2):1-9.