文章编号: 0258-7106 (2018) 06-1147-21

大湖塘钨矿区岩浆岩黑云母的成分特征及其成矿 指示意义*

蒋 华^{1,2},张达玉^{1,2**},周涛发^{1,2},陈雪锋^{1,2},叶龙翔^{1,2},余振东³,项新葵³ (1合肥工业大学资源与环境工程学院,安徽合肥 230009;2安徽省矿产资源与矿山环境工程技术研究中心, 安徽合肥 230009;3江西省地质矿产勘查开发局九一六大队,江西九江 332100)

摘 要 大湖塘钨矿床是赣北地区近年来发现的超大型钨-多金属矿床,矿区内岩浆岩十分发育,且均含黑云母。按照黑云母的产出特征,大湖塘矿区岩浆黑云母可分为晋宁期花岗闪长岩中黑云母(类型一)、燕山期似斑状花岗岩中黑云母(类型二)、燕山期细粒花岗岩中黑云母(类型三)3种类型。对3类黑云母的电子探针和 LA-ICP-MS 分析结果显示,3 类黑云母属于铁云母到铁叶云母,富 F 贫 Cl,富集大离子亲石元素 Rb、Ba、K 和高场强元素 Ta、Nb、Ti 等。综合对比显示,与钨成矿相关的燕山期似斑状花岗岩中的黑云母(类型二)具有较低的 X_{Mg}值和 Fe³⁺/Fe²⁺值、较高的 Cl 含量、∑REE 浓度和 LREE/HREE 值,可作为含钨岩浆岩的成矿专属性指标。

Geochemical characteristics of biotite from igneous rocks in Dahutang tungsten ore district and its implications

JIANG Hua^{1,2}, ZHANG DaYu^{1,2}, ZHOU TaoFa^{1,2}, CHEN XueFeng^{1,2}, YE LongXiang^{1,2}, YU ZhenDong³ and XIANG XinKui³

(1 School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, Anhui, China;
 2 Anhui Province Engineering Research Center for Mineral Resources and Mine Environments, Hefei 230009, Anhui, China;
 3 No. 916 Geological Party, Jiangxi Bureau of Geology & Mineral Exploration, Jiujiang 332100, Jiangxi, China)

Abstract

The Dahutang tungsten deposit is a superlarge tungsten-polymetallic deposit recently discovered in northern Jiangxi Province. There are widely developed multi-type granitoid intrusions, which are consistently rich in biotite. On the basis of their geological occurrences, the biotites in the Dahutang mining area can be divided into three types: biotite in the Jingingian granodiorite (type 1), biotite in the Yanshanian porphyritic granite (type 2) and biotite in the Yanshanian fine-grained granite (type 3). Electron microprobe and LA-ICP-MS analyses on three types of biotite show that they have high F but low Cl concentrations, and belong to annite and siderophyllite. They are enriched in Rb, Ba, K and depleted in Ta, Nb, Ti. Based on comparative study, the authors detect that biotite (type 2) from the Yanshanian porphyritic granite (W-mineralized) has lower X_{Mg} and Fe³⁺/Fe²⁺ ratios, highest Cl and \sum REE concentrations and LREE/HREE ratios, which are probably efficient indicators of the W-

^{*} 本文受到科技部深地资源勘查开采专项(编号:2016YFC0600206)、国家自然科学基金项目(41302050、41341390441)和中央高校基本 科研业务费专项(编号:JZ2016HGTB0730)联合资助

第一作者简介 蒋 华,男,1994年生,硕士研究生,矿物学、岩石学、矿床学专业。Email:huajiang@mail.hfut.edu.cn * * 通讯作者 张达玉,男,1985年生,博士,副教授,矿物学、岩石学、矿床学专业。Email:dayuzhang@hfut.edu.cn 收稿日期 2018-05-20;改回日期 2018-10-10。张绮玲编辑。

bearing granitoids.

Key words: geochemistry, biotite, LA-ICPMS in-situ mineral analysis, EMPA, Dahutang tungsten deposit, Jiangnan terrane

黑云母是岩浆-热液过程中形成的常见矿物之 一(Rieder, 1999),其地球化学组分对于限定岩浆的 起源(Kesler et al., 1975; 蒋少涌等, 1992)、演化过程 (Brisken et al., 2015), 以及对成矿影响(Yavuz, 2003;唐攀等,2017;Jin et al., 2018)等方面具有重要 意义,已成为示踪岩浆-热液成矿过程的有效指示矿 物。大湖塘钨矿区位于江南古陆北缘钨多金属成矿 带的西部,是一个超大型钨矿床,WO,资源量已经达 107万吨(项新葵等,2017)。大湖塘钨矿区内发育晋 宁期花岗闪长岩、燕山期细粒花岗岩和似斑状黑云 母花岗岩(毛志昊,2016; Wei et al., 2018a),这些岩 石均发育大量黑云母。前人对大湖塘钨多金属矿床 开展了地质特征(项新葵等,2013)、成岩成矿年龄 (Mao et al., 2013; Wei et al., 2018b)、成矿物质来源 (袁琪,2016;孙克克等,2017)、成矿流体特征(叶泽 宇,2016)及成矿模式(Mao et al., 2014; 蒋少涌等, 2015)等研究工作,取得了许多进展。尽管前人已注 意到大湖塘矿区内不同岩浆岩中黑云母十分发育, 但对黑云母的地球化学特征、形成条件及其对钨多 金属矿床的成因联系等尚未开展系统研究。鉴于 此,本次工作聚焦于大湖塘钨矿区内不同岩浆岩中 黑云母,在地质和岩相学特征的基础上,开展了电子 探针(EMPA)和准分子激光剥蚀电感耦合等离子体 质谱仪(LA-ICP-MS)成分分析,并据此探讨了不同 类型黑云母的成因及其对钨矿床的指示。以期对大 湖塘钨多金属矿床成因提供证据,同时也为含矿岩 浆岩的成矿专属性指标研究提供依据。

1 地质特征

1.1 区域地质背景

大湖塘钨-多金属矿床位于江南古陆北缘钨-多 金属成矿带西段(图1),该成矿带处于常州-阳新断 裂(TCF)和江山-绍兴断裂(JSF)之间,与长江中下游 成矿带平行展布。江南古陆北缘钨-多金属成矿带 广泛发育新元古代一早古生代海相碳酸盐岩地层、 并广泛分布有晋宁期和燕山期中酸性侵入岩。成矿 带内矿化类型多样,以钨为主,钼、铜、金、铅-锌等矿 产也分布广泛。其中,钨矿床以江南古陆为界可分 为南、北两部分,南部钨多金属矿床主要包括朱溪、 大湖塘、香炉山、阳储岭、东源等,成矿元素组合以 W-Cu(Mo)为主;北部的钨多金属矿床主要有逍遥、 竹溪岭、高家塝、桂林郑等,成矿元素组合以W-Mo (Cu)为主(张达玉等,2017)。

1.2 矿区地质特征

大湖塘钨矿区位于江南古陆北缘钨矿带的西 部,矿区内地层主要为前震旦系浅变质岩,另有少量 寒武系—三叠系海相碳酸盐岩在区内零星分布。矿 区内岩浆作用强烈,具有燕山期中酸性侵入体呈岩 株侵位于新元古代花岗闪长岩的特点。石门寺矿段 位于大湖塘钨矿区的中北部(图2a),该矿段内出露 的主要地层为新元古界双桥山群,灰绿-深灰色板岩 夹变质杂砂岩、具复理石韵律。在黑云母花岗岩接 触带附近产生热变质,砂岩因受到硅化发生褪色现 象。岩石中钨丰度值达9.1×10⁻⁶(毛志昊,2016),远 高于地球平均值(0.6×10⁻⁶, 鄢明才等, 1997)和上地 壳值(1.9×10⁻⁶, Rudnick et al., 2003)。石门寺矿段内 出露的新元古代花岗闪长岩中发育一组NEE向的韧 性剪切带,与NEE走向的大湖塘-仙果山-狮尾洞基 底断裂交汇,共同成为含矿岩体侵位通道,为矿区的 主要控矿构造,在燕山期受到交代形成硅化破碎带 (图 2a)。石门寺矿段内出露的岩浆岩包括新元古代 黑云母花岗闪长岩与燕山期中酸性岩体,燕山期岩 浆岩具有多期次侵入特征,岩性以似斑状黑云母花 岗岩和细粒黑云母花岗岩为主(项新葵等,2013),少 量花岗斑岩呈岩株或岩脉零星分布在矿段西南部和 中部。

2 岩相学特征

本次研究工作的富含黑云母的岩石样品采集于 大湖塘钨矿区石门寺矿段,采样位置如图2b所示,黑 云母按其产出特征,分为晋宁期花岗闪长岩中黑云母 (类型一)、燕山期似斑状花岗岩中黑云母(类型二)和 燕山期细粒花岗岩中黑云母(类型三)3种类型。

晋宁期花岗闪长岩:花岗闪长岩呈灰黑色,具 中-细粒结构(图3a),块状构造。主要矿物组成为石 英、斜长石、钾长石、黑云母和角闪石等(图3b)。其

图 1 江南造山带区域地质简图(据张达玉等,2017) Fig. 1 The regional geological map of the Jiangnan orogenic belt (modified after Zhang et al., 2017)

中黑云母呈淡棕色,自形-半自形片状,粒径一般为 1~4 mm之间,浸染状分布于石英、斜长石等矿物颗 粒之间,含量约6%。黑云母在显微镜下呈深黄色, 多色性强,解理完全,具有裂片、扭曲等特征,黑云母 总体较新鲜(图3c),在局部发生了弱的绢云母化。

燕山期似斑状花岗岩:似斑状花岗岩呈淡肉红色, 似斑状结构,颗粒较大的斑晶矿物主要为斜长石,粒径 在5~20 mm之间,颗粒较小的矿物为斜长石、石英,钾 长石、黑云母等(图3d),粒径在0.5~2 mm之间,杂乱分 布(图3e)。还可观察到磷灰石、白钨矿、黄铜矿、金红 石,岩石发生了较强烈的云英岩化。其中黑云母呈黑 色,自形-半自形片状,分布于石英、斜长石等矿物边缘, 含量在4%左右。黑云母在正交偏光下呈浅绿色-浅黄 色,具多色性,解理完全,绢云母化强烈(图3f)。

燕山期细粒花岗岩:细粒花岗岩呈灰白色,细粒

结构,块状构造。主要矿物为钾长石、斜长石、石英和黑云母(图3g)。其中黑云母呈棕褐色,自形-半自形片状,粒径大小在0.5~1 mm,呈微细浸染状分布于斜长石与石英颗粒之间(图3h),含量约2%。黑云母在正交偏光下呈棕色-浅褐色,具多色性,解理完全,发生了绢云母化、绿泥石化(图3i)。

3 黑云母电子探针分析

本次共测定石门寺矿段3类黑云母60组电子探 针数据(包括类型-33组,类型二12组,类型三15 组,数据见表1)。黑云母主量元素测试在合肥工业 大学电子探针(EMPA)实验室完成,采用仪器型号为 JSX-8230。测试条件为:加速电压15 kV,束斑尺寸 3 µm,探针电流20 nA,所有元素的信号采集时间均

图 2 大湖塘北区石门寺矿段地质简图(a)与4号线勘探矿化类型剖面图(b)(据项新葵等,2017修改) Fig. 2 Geological sketch map of Shimensi ore block(a) and geological section along No.4 explosion line (b)(modified after Xiang et al., 2017)

图3 大湖塘矿区代表性岩浆岩岩相学照片

a. 花岗闪长岩;b. 花岗闪长岩显微照片;c. 花岗闪长岩中黑云母;d. 似斑状花岗岩;e. 似斑状花岗岩显微照片;

f. 似斑状花岗岩中黑云母;g. 细粒花岗岩;h. 细粒花岗岩显微照片;i. 细粒花岗岩中黑云母

Qtz一石英;Bt一黑云母;Pl一斜长石;Kfs一钾长石;Ms一白云母;Ser一绢云母;测年数据据孙克克等(2017)和毛志昊(2016)

Fig. 3 Petrographic characteristics of typical granitoids in Dahutang ore district

a. Granodiorite sample; b. Micro-petrographic photo from granodiorite; c. Biotite characteristics in the granodiorite;

d. Porphyroid granite; e. Micro-petrographic photo of the porphyroid granite; f. Biotite grain in porphyroid granite;

g. Fine-grained granite; h. Micro-petrographic photo of fine grained granite; i. Biotite distribution in the fine-grained granite

Qtz-Quartz; Bt-Biotite; Pl-Plagioclase; Kfs-Potash feldspar; Ms-Muscovite; Ser-Sericite;

Geochronological data after Sun et al., 2017; Mao, 2016

为15s,背景时间均为5s,检出限为01%,通过ZAF 方法修正,详细实验流程参照Shi(2017)。

黑云母的电子探针分析结果如表1所示。大湖 塘钨矿区3类黑云母的w(Al₂O₃)在16.66%~24.00% 之间,均值18.91%;w(SiO₂)在33.05%~42.38%之间, 均值 35.83%; w(K₂O)在 4.49%~11.64% 之间,均值 9.19%。3 类黑云母的全铁 w(FeO^T)和 w(TiO₂) 分别 在 17.71%~25.57% 和 1.80%~3.78% 之间,均具有富 Fe、Ti特征。三类黑云母的 Fe³⁺/Fe²⁺比值分别为:类型一,0.19~0.96,均值 0.47;类型二,0.14~0.55,均值

图4 黑云母地球化学判别图解

a. Fe/(Fe+Mg)-∑Al(底图据Rieder, 1999); b. MgO - Fe/(Fe+Mg); c. TiO₂-FeO+MnO-MgO(底图据Nachit et al., 2005) Fig. 4 Geochemical discriminative diagrams of the biotite

a. Fe/(Fe+Mg)- Σ Al diagram (after Rieder, 1999); b. Diagram of MgO (wt.%) versus Fe/(Fe+Mg) (apfu);

c. Ternary TiO₂-FeO+MnO-MgO diagram (after Nachit et al., 2005). (apfu=atoms per formula unit)

表1	大湖塘矿区花岗岩类黑云母的EMPA数据(w(B)/%	%)	
----	----------------------------	----	--

Table1 The biotite EMPA data from granotoids in Dahutang ore deposit (w(B)/%)

组分	JX01-01	JX01-02	JX01-03	JX01-04	JX01-05	JX01-06	JX01-07	JX01-08	JX01-09	JX01-10	JX01-11	JX01-12
类型一,n=33												
T/K	918.45	913.17	920.51	917.80	884.68	913.14	933.34	938.52	881.03	899.24	908.40	917.21
Na ₂ O	0.08	0.12	0.09	0.13	0.10	0.14	0.14	0.16	0.05	0.08	0.09	0.09
Al ₂ O ₂	18.79	18.53	17.80	18.35	18.21	17.76	18.28	18.20	17.56	17.39	17.05	17.11
K ₂ O	8.74	8.91	8.68	8.64	8.58	8.77	8.73	8.71	8.69	8.58	8.18	8.63
SiO	34.34	35.36	35.31	34.95	34.75	35.74	35.07	35.06	36.28	35.60	34.02	35.61
MnO	0.33	0.26	0.28	0.33	0.37	0.39	0.39	0.41	0.31	0.33	0.34	0.33
MgO	6.82	6.77	6.77	6.45	6.92	7.00	6.26	6.21	7.43	6.99	6.98	7.39
CaO	0.02					0	0.04	0.01	0.03			
FeO	20.54	20.66	20.62	20.58	21.25	20.10	20.28	20.30	20.57	20.50	19.94	19.79
F	0.62	0.62	0.80	0.95	0.91	0.97	0.88	0.68	0.48	0.66	0.59	0.88
Cl	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.02	0.01	0.03	0.02	0.01
TiO	2.49	2.43	2.51	2.49	2.08	2.36	2.54	2.63	1.84	2.03	2.07	2.17
总和	92.51	93.41	92.59	92.50	92.81	92.84	92.33	92.11	93.06	91.97	89.04	91.65
F-O	0.36	0.36	0.46	0.55	0.53	0.56	0.51	0.39	0.28	0.38	0.34	0.51
C1-0	0	0.01	0.01	0.02	0.01	0.50	0.02	0.02	0.20	0.02	0.01	0.01
НО	3 51	3 54	3.45	3.40	3 44	3 42	3.40	3.45	3 59	3.47	3 39	3.41
T-site	5.51	5.54	5.45	5.40	5.44	5.42	5.40	5.15	0.07	5.47	5.57	5.41
Si	5 36	5 44	5 4 9	5 4 5	5 44	5 53	5.85	585	6.06	6.01	5.97	6.05
A1	3.45	3 36	3.76	3 37	2.26	3.24	3.50	3.59	3.46	2.46	3.57	3.43
白和	8.81	8.81	8.76	8.81	8 70	8 77	9.14	0.12	9.52	9.40	9.52	0.48
A 1IV	2.64	2.56	2.51	2.55	2.56	2.47	215	2.15	1.04	1.00	2.02	1.05
Ai M_site	2.04	2.30	2.31	2.55	2.50	2.47	2.13 0	2.15	1.94	1.99	2.03	1.95
A 1[V]]	0.81	0.81	0.76	0.81	0.70	0.77		1.42	1.52	1.49	1.40	1.49
AI ⁽¹⁾	0.81	0.81	0.70	0.81	0.79	0.77	0.22	0.22	0.22	0.26	0.27	0.28
11 E a 3+	0.29	0.28	0.29	0.29	0.25	0.2	0.52	0.55	0.23	0.20	0.27	0.28
Fe ²⁺	0.03	0.74	1.05	1.04	0.58	1.92	1.05	1.05	0.75	0.75	0.07	0.78
re-	2.02	1.92	1.95	1.94	2.20	1.85	1.95	1.95	2.15	2.14	2.20	2.03
M	0.04	0.05	1.57	0.04	0.05	0.03	0.06	0.00	1.05	0.05	1.92	0.05
ivig ∺ ≠n	5.41	5.22	5.24	1.50	5.49	5.21	1.50	(19	1.65	1.70	1.65	1.67
运 小H	3.41	5.55	5.54	2.33	5.40	5.51	0.19	0.18	0.32	0.44	0.30	0.49
No	0.03	0.04	0.03	0.04	0.03	0.04	0.05	0.05	0.02	0.02	0.03	0.02
INA V	1.74	1.75	1.72	1.72	1.71	1.72	1.96	1.05	1.95	1.05	1.02	1.07
K	1.74	1.75	1.72	1.72	1./1	1.75	1.80	1.65	1.85	1.85	1.65	1.67
Ca či ≠n	1.77	1 70	1.75	1.76	1.74	1.77	1.01	1.01	1.97	1 00	1.96	1.00
应用	1.//	1.76	0.12	0.14	0.12	1.//	0.12	0.10	1.67	0.10	0.00	0.12
F Cl	0.09	0.09	0.12	0.14	0.15	0.14	0.13	0.10	0.07	0.10	0.09	0.13
CI OU	2 01	2.01	2 00	2.96	2.86	2.86	0	2 00	2.02	2.00	2 01	0
ОП Ба ³⁺ /Ба ²⁺	0.22	0.29	0.27	0.29	0.26	5.60	0.45	5.90	5.95	3.90	0.20	0.29
$V = M\alpha/(M\alpha + F\alpha)$	0.52	0.38	0.57	0.38	0.20	0.42	0.43	0.43	0.54	0.55	0.50	0.38
$\Lambda_{\rm Mg}$ - wig/(wig+re)	0.44	0.43	0.43	0.44	0.42	0.47	0.44	0.44	0.40	0.45	0.43	0.46
A _{sid}	0.40	0.44	0.42	0.45	0.40	0.39	0.44	0.44	0.38	0.40	0.41	0.37
A_{ann}	2.40	0.12	0.14	0.12	0.12	0.14	0.12	2.70	2.04	0.15	2.50	0.15
IV(CI)	-2.40	-2.27	-2.47	-2.01	-2.50	-2.07	-2.02	-2.70	-2.04	-2.75	-2.39	-2.51
	2.11	4.72	2.33	2.23	4.60	2.27	2.28	2.39	2.59	5.17	2.40	2.33
IV(F/CI)	4.51	4.72	4.60	4.84	4.00	4.54	4.90	5.09	4.65	0.55	5.05	4.84
TO v10	0.50	0.55	0.55	0.56	0.58	0.55	0.56	0.50	0.54	0.55	0.55	0.52
$110_2 \times 10$	24.88	24.25	25.09	24.90	20.84	23.58	25.38	20.20	18.38	20.32	20.70	21.70
reo+MnO	20.87	20.92	20.90	20.91	21.62	20.49	20.67	20.71	20.89	20.83	20.28	20.12
log(/H ₂ O//HCI) ^{nalu}	5.13	5.27	5.06	4.91	5.18	5.50	4.89	4.81	5.56	4.82	4.96	5.07
log(/H ₂ O//HF) ^{ndid}	4.85	5.20	5.05	4.97	5.09	5.02	4.96	5.05	5.44	5.21	5.22	5.05
log(/HF//HCI) ^{nuld}	0.28	0.07	0.02	-0.05	0.09	0.49	-0.07	-0.24	0.12	-0.40	-0.26	0.02
log(F/OH)	-1.31	-1.32	-1.19	-1.12	-1.14	-1.11	-1.15	-1.27	-1.43	-1.28	-1.52	-1.15
log(CI/OH)	-3.46	-5.29	-3.09	-2.92	-3.15	-3.53	-2.92	-2.85	-3.55	-2.82	-2.97	-3.11
log(F/CI)	2.15	1.97	1.89	1.81	2.01	2.42	1.77	1.58	2.12	1.54	1.64	1.96

Continued	Table	1-1

组分	JX01-13	JX01-14	JX01-15	JX01-16	JX01-17	JX01-18	JX01-19	JX01-20	JX01-21	JX01-22	JX01-23	JX01-24
类型一,n=33												
T/k	913.81	915.17	915.23	933.64	920.19	928.53	922.46	927.74	918.63	933.20	924.93	909.46
Na ₂ O	0.11	0.14	0.09	0.13	0.09	0.08	0.10	0.09	0.15	0.10	0.13	0.08
Al_2O_3	19.00	18.07	18.20	18.17	17.42	17.94	17.87	17.90	18.28	18.39	17.79	19.79
K ₂ O	8.52	8.80	8.98	8.87	8.58	8.97	8.84	8.61	8.53	8.51	8.60	9.59
SiO ₂	33.26	37.82	37.42	36.12	36.48	37.32	36.60	36.45	34.74	34.81	35.27	38.54
MnO	0.34	0.40	0.46	0.38	0.42	0.44	0.45	0.43	0.48	0.41	0.37	0.49
MgO	6.76	6.57	6.65	6.66	6.99	6.66	6.49	6.32	6.00	6.09	6.32	6.89
CaO		0.03		0.02	0.05	0	0.01	0	0	0	0.01	0
FeO	21.75	17.71	18.54	19.57	19.90	19.07	19.32	19.88	21.33	20.89	20.93	20.61
F	0.28	0.83	0.69	0.77	0.71	0.78	0.73	0.78	0.57	0.72	0.91	0.78
Cl	0.02	0.01	0.01	0.02	0.02	0	0.01	0.02	0.01	0		0.01
TiO ₂	2.30	1.98	2.10	2.46	2.26	2.33	2.28	2.43	2.40	2.60	2.44	2.27
总和	92.27	92.10	92.91	92.86	92.65	93.30	92.41	92.62	92.29	92.25	92.44	99.06
F-O	0.16	0.48	0.40	0.45	0.41	0.45	0.42	0.45	0.33	0.42	0.53	0.45
Cl-O	0.02	0.01	0.01	0.01	0.02		0.01	0.02	0.01	0		0.01
H ₂ O	3.60	3.44	3.50	3.47	3.49	3.49	3.46	3.46	3.49	3.46	3.40	3.70
T-site									<u> </u>			
Si	5.67	6.16	6.09	5.95	6.06	6.07	6.03	6.00	5.81	5.81	5.90	5.95
Al	3.82	3.47	3.49	3.53	3.41	3.44	3.47	3.47	3.60	3.62	3.51	3.60
总和	9.49	9.62	9.58	9.48	9.47	9.51	9.50	9.47	9.41	9.43	9.41	9.55
A1 ^{IV}	2.33	1.84	1.91	2.05	1.94	1.93	1.97	2.00	2.19	2.19	2.10	2.05
M-site												
A1[VI]	1.49	1.62	1.58	1 48	1.47	P51	1.50	1.47	1 41	1 43	1.41	1.55
Ti	0.29	0.24	0.26	0.30	0.28	0.29	0.28	0.30	0.30	0.33	0.31	0.26
Fe ³⁺	0.50	1 18	1.08	0.95	0.87	1.05	1.00	0.95	0.76	0.79	0.81	0.97
Fe ²⁺	2.60	1.23	1 44	1.75	1 90	1.55	1.66	1.78	2 22	2.12	2.12	1.69
Mn	0.05	0.05	0.06	0.05	0.06	0.06	0.06	0.06	0.07	0.06	0.05	0.06
Μσ	1.72	1.60	1.61	1.64	1.73	1.62	1.59	1.55	1.50	1.52	1.58	1 59
台和	6.65	5.93	6.03	6.18	6.31	6.07	6.10	6.12	6.27	6.25	6.27	6.13
A_site	0.05	5.75	0.05	0.10	0.51	0.07	0.10	0.12	0.27	0.25	0.27	0.15
Na	0.04	0.04	0.03	0.04	0.03	0.02	0.03	0.03	0.05	0.03	0.04	0.03
K	1.85	1.83	1.86	1.87	1.82	1.86	1.86	1.81	1.82	1.81	1.83	1.80
Ca	1.05	0.01	0	0	0.01	0	0	0	0	0	0	0
亡和	1.80	1.99	1 80	1 01	1.86	1.80	1.80	1.84	1.87	1.85	1.88	1.02
лылтн F	0.04	0.12	0.10	0.12	0.10	0.12	0.11	0.12	0.00	0.11	0.14	0.11
r Cl	0.04	0.12	0.10	0.12	0.10	0.12	0.11	0.12	0.09	0.11	0.14	0.11
OH	3.06	2.00	3.00	3.88	3.80	3.88	2 80	3.88	2 01	2 80	3.86	3 80
Ea ³⁺ /Ea ²⁺	0.10	0.06	0.75	0.54	0.46	0.68	0.61	0.54	0.34	0.27	0.38	0.57
$Y = M\alpha/(M\alpha + F_{\alpha})$	0.19	0.56	0.75	0.48	0.40	0.08	0.01	0.47	0.40	0.37	0.38	0.48
Y	0.40	0.30	0.33	0.40	0.40	0.35	0.37	0.30	0.40	0.42	0.43	0.40
X sid	0.02	0.13	0.13	0.13	0.57	0.35	0.37	0.15	0.12	0.40	0.45	0.12
IV(C1)	-2.58	-2.55	-2.43	-2.65	-2.68	0.14	-2.36	-2 74	-2.19	-1.27	0.14	-2.32
IV(CI)	2.50	2.55	2.45	2.05	2.00	2 43	2.50	2.74	2.17	2 33	2 25	2.52
IV(F/C1)	5 30	5.02	4 94	5.04	5.12	2.15	4 80	5.11	4.61	3.60	2.23	4 74
Fe/(Fe+Mg)	0.60	0.44	0.47	0.52	0.52	0.49	0.51	0.53	0.60	0.58	0.57	0.52
$TiO \times 10$	23.01	19.84	21.00	24 59	22.64	23 30	22.80	24.26	24.03	25.97	24 42	22 71
FeO+MnO	22.09	18 11	19.00	19.95	20.32	19.51	19.77	20.30	21.05	21.29	21.12	21.10
log(fH_O/fHCl) ^{fluid}	4.89	5.14	5.22	4.92	4.89	1	5.23	4,81	5.28	6.21	21.50	5.27
log(fH_O/fHF) ^{fluid}	5.47	5.19	5.23	5.07	5.15	5.11	5.14	5.06	5.15	5.02	4.95	5.17
log(fHF/fHCl) ^{fluid}	-0.58	-0.05	-0.02	-0.15	-0.25	2.11	0.09	-0.25	0.13	1.19		0.10
log(F/OH)	-1.67	-1.18	-1.27	-1.21	-1.26	-1.21	-1.24	-1.21	-1.35	-1.24	-1.13	-1.24
log(Cl/OH)	-2.89	-3.23	-3.28	-2.98	-2.94		-3.28	-2.85	-3.28	-4.23		-3.31
log(F/Cl)	1.22	2.05	2.02	1.77	1.68		2.04	1.64	1.93	2.99		2.07
			-					-				

Continued Table 1-2

组分	JX01-25	JX01-26	JX01-27	JX01-28	JX01-29	JX01-30	JX01-31	JX01-32	JX01-33	JX51-01	JX51-02	JX51-03
类型一,n=33										类型二,n=	=12	
T/k	876.48	926.68	908.86	910.98	934.95	869.78	907.08	910.01	908.60	935.69	908.41	937.66
Na ₂ O	0.06	0.08	0.09	0.09	0.08	0.05	0.08	0.08	0.08	0.18	0.03	0.04
Al ₂ O ₃	20.04	19.67	19.85	19.83	20.11	17.51	19.33	19.34	19.28	16.68	19.37	19.58
K ₂ O	9.02	9.64	9.85	9.86	10.01	8.86	10.19	10.29	10.34	9.94	9.15	9.83
SiO ₂	37.14	37.29	37.86	37.94	37.90	42.39	37.73	38.15	37.71	35.25	35.19	35.19
MnO	0.47	0.54	0.49	0.49	0.52	0.41	0.49	0.48	0.46	0.63	0.63	0.66
MgO	7.11	6.84	6.92	6.84	6.86	6.72	7.04	7.03	6.99	5.28	6.34	6.04
CaO	0.01	0	0	0.01	0	0.01	0	0	0	0	0	0
FeO	22.38	21.64	20.95	20.88	20.16	20.56	21.07	20.63	21.11	21.50	22.80	22.46
F	0.78	0.78	0.78	0.78	0.77	0.78	0.77	0.77	0.77	0.68	0.67	0.66
Cl	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.03	0.03	0.03
TiO.	1 99	2 59	2.28	2 31	2 59	1.80	2.24	2.24	2.26	2.68	2 37	2.84
总和	99.00	99.08	99.08	99.03	99.03	99.11	98.95	99.04	99.03	92.54	96 59	97 34
E-O	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.39	0.39	0.38
C1 0	0.01	0.01	0.01	0.01	0.45	0.01	0.45	0.02	0.02	0.02	0.02	0.02
но	3.72	2.60	2.60	2.60	2.60	2.72	2.67	3.67	2.66	2 29	3.62	2.61
T-site	5.72	3.09	3.09	5.09	3.09	5.72	5.07	5.07	3.00	3.38	3.02	5.01
Si	5.85	5.83	5.89	5.89	5.86	6.41	5.90	5.94 0	5.90	5.86	5.71	5.64
Al	3.72	3.62	3.64	3.63	3.66	3.12	3.57	3.55	3.55	3.27	3.70	3.70
总和	9.57	9.45	9.52	9.52	9.52	9.53	9.47	9.48	9.45	9.14	9.41	9.33
Al ^{IV}	2.15	2.17	2.11	2.11	2.14	1.59 🕎	2.10	2.06	2.10	2.14	2.29	2.36
M-site						C						
Al ^[VI]	1.57	1.45	1.52	1.52	1.52	1.53	1.47	1.48	1.45	1.14	1.41	1.33
Ti	0.24	0.30	0.27	0.27	0.30	0.20	0.26	0.26	0.27	0.33	0.29	0.34
Fe ³⁺	0.64	0.84	0.92	0.95	1.02	1.16	0.93	1.00	0.95	1.06	0.62	0.78
Fe ²⁺	2.31	1.99	1.80	1.76	1.59	1.44	1.82	1.68	1.81	1.93	2.47	2.23
Mn	0.06	0.07	0.06	0.06	0.07	0.05	0.06	0.06	0.06	0.09	0.09	0.09
Mg	1.67	1.59	1.60	1.58	1.58	1.51	1.64	1.63	1.63	1.31	1.53	1.44
总和	6.49	6.25	6.18	6.14	6.08	5.90	6.20	6.12	6.17	5.86	6.42	6.21
A-site					31							
Na	0.02	0.03	0.03	0.03	0.03	0.01	0.02	0.03	0.02	0.06	0.01	0.01
K	1.81	1.92	1.95	1.95	1.98	1.71	2.03	2.04	2.06	2.11	1.89	2.01
Ca	0	0	~ 0 0	0	0	0	0	0	0	0	0	0
总和	1.83	1.95	1.98	1.98	2.00	1.72	2.06	2.07	2.09	2.17	1.91	2.02
F	0.11	0,11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.10	0.10	0.10
Cl	0	0	0	0	0	0	0	0	0	0	0	0
OH	3.89	3.89	3.89	3.89	3.89	3.89	3.89	3.89	3.89	3.89	3.90	3.90
Fe^{3+}/Fe^{2+}	0.28	0.42	0.51	0.54	0.64	0.80	0.51	0.59	0.53	0.55	0.25	0.35
$X_{Mg} = Mg/(Mg+Fe)$	0.42	0.45	0.47	0.47	0.50	0.51	0.47	0.49	0.47	0.40	0.38	0.39
X _{sid}	0.47	0.44	0.42	0.41	0.40	0.26	0.40	0.39	0.40	0.41	0.51	0.51
X _{ann}	0.11	0.11	0.11	0.11	0.10	0.22	0.12	0.12	0.12	0.18	0.10	0.10
IV(Cl)	-2.24	-2.34	-2.42	-2.46	-2.54	-2.60	-2.58	-2.69	-2.73	-2.70	-2.63	-2.67
IV(F)	2.33	2.36	2.40	2.40	2.43	2.48	2.40	2.43	2.41	2.35	2.34	2.35
IV(F/Cl)	4.57	4.70	4.82	4.86	4.98	5.08	4.99	5.12	5.14	5.05	4.97	5.02
Fe/(Fe+Mg)	0.58	0.55	0.53	0.53	0.50	0.49	0.53	0.51	0.53	0.60	0.62	0.61
TiO ₂ ×10	19.89	25.93	22.81	23.07	25.94	18.03	22.37	22.37	22.56	26.75	23.70	28.42
FeO+MnO	22.85	22.17	21.44	21.37	20.67	20.97	21.56	21.12	21.58	22.13	23.43	23.12
log(fH2O/fHCl)fluid	5.31	5.19	5,16	5.12	5.04	5.08	5.00	4.92	4.85	4.76	4.83	4.78
log(fH_O/fHF) ^{fluid}	5.22	5.07	5.16	5.15	5.10	5.36	5 17	5.18	5 17	5.01	5.11	5.03
log(fHF/fHCl) ^{fluid}	0.09	0.12	-0.01	-0.04	-0.06	-0.28	-0.17	-0.26	-0.32	-0.25	-0.28	-0.25
log(F/OH)	-1 24	-1.24	-1 24	-1 24	-1 24	-1 24	-1 24	-1 24	-1 24	-1.26	-1.30	-1.30
log(Cl/OH)	-3.26	-3.22	-3.18	-3.15	-3 11	-3.09	-3.03	-2.96	-2.88	-2.78	-2.80	-2.79
log(F/Cl)	2.02	1.98	1.94	1.91	1.87	1.85	1.79	1.72	1.64	1.52	1.51	1.49

	-2.42	10
Continued	Table	1-3

组分	JX51-04	JX51-05	JX51-06	JX51-07	JX51-08	JX51-09	JX51-10	JX51-11	JX51-12	JX09-01	JX09-02	JX09-03
类型二,n=12										类型三,n=	=15	
T/k	901.70	964.73	938.30	938.22	954.12	960.60	960.13	956.62	945.29	966.90	983.98	940.07
Na ₂ O	0.03	0.07	0.05	0.07	0.06	0.11	0.09	0.09	0.08	0.07	0.10	0.13
Al ₂ O ₃	16.66	18.17	18.04	19.94	19.87	20.11	19.76	19.66	19.63	18.28	18.14	18.21
K ₂ O	7.16	9.02	8.87	9.51	10	9.94	10.21	10.05	10.08	8.86	8.80	8.54
SiO	33.06	33.06	33.06	33.72	34.96	34.63	34.59	34.99	34.61	34.86	35.05	34.55
MnO	0.56	0.61	0.61	0.68	0.66	0.65	0.68	0.67	0.67	0.57	0.43	0.50
MgO	5.60	5 44	5 50	6 38	5 94	6.11	6.08	5.85	6.00	6.18	5.84	6.26
CaO	0.02	0	0	0.01	0.01	0.01	0.01	0.02	0.01	0110	5101	0.20
FeO	20.07	20.56	21.13	24.95	23.46	23.17	23.29	23.45	23.93	20.90	21.27	21.05
F	0.66	0.66	0.66	0.67	0.67	0.66	0.67	0.67	0.67	0.69	0.72	1.04
Cl	0.00	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.08	0.02	0.01
TiO	2.05	2.17	2.68	2.02	2.25	2 26	2 24	3 30	2.06	2.24	3.73	2.70
110 ₂ 首 和	2.05	00.70	2.00	2.92	08.00	08 70	08 72	08 77	08.76	02.42	02.92	2.70
志和	0.28	90.79	0.28	96.60	98.90	0.29	96.75	0.20	98.70	95.45	95.62	92.38
F-0	0.58	0.58	0.58	0.39	0.39	0.58	0.38	0.39	0.39	0.39	0.42	0.00
0	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	2.50	0.01	0.01
H ₂ O	3.23	3.35	3.36	3.68	3.66	3.66	3.65	3.65	3.65	3.50	3.49	3.37
1-site								P				
Si	5.94	5.63	5.67	5.46	5.54	5.50	5.51	5.55	5.53	5.76	5.74	5.80
Al	3.53	3.65	3.65	3.80	3.71	3.77	3.71	3.67	3.70	3.56	3.50	3.60
总和	9.47	9.28	9.32	9.26	9.25	9.27	9.22	9.22	9.22	9.32	9.24	9.39
Al ^{IV}	2.06	2.37	2.33	2.54	2.46	2.50	2.49	2.45	2.47	2.24	2.26	2.20
M-site												
Al ^[VI]	1.47	1.28	1.32	1.26	1.25	1.27	1.22	1.22	1.22	1.32	1.24	1.39
Ti	0.28	0.41	0.35	0.36	0.39	0.40	0.40	0.39	0.37	0.40	0.46	0.34
Fe ³⁺	0.67	0.87	0.77	0.41	0.73	0.71	0.73	0.76	0.67	0.83	0.89	0.75
Fe ²⁺	2.35	2.06	2.26	2.97	2.38	2.37	2.37	2.35	2.53	2.06	2.02	2.21
Mn	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.08	0.06	0.07
Mg	1.50	1.38	1.41	1.54	1.40	1.45	1.44	1.38	1.43	1.52	1.43	1.57
总和	6.35	6.09	6.20	6.63	6.24	6.28	6.26	6.19	6.31	6.22	6.09	6.32
A-site				1 200.								
Na	0.01	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.02	0.02	0.03	0.04
K	1.64	1.96	01.94	1.96	2.02	2.01	2.07	2.03	2.05	1.87	1.84	1.83
Ca	0	0 4	0	0	0	0	0	0	0	0	0	0
总和	1.66	1.98	1.96	1.99	2.04	2.05	2.10	2.06	2.08	1.89	1.87	1.87
F	0.11	0.10	0.10	0.09	0.10	0.09	0.10	0.10	0.10	0.10	0.11	0.16
Cl	0	0	0	0	0	0	0	0	0		0	0
OH	3.89	3.89	3.89	3.90	3.90	3.90	3.90	3.90	3.90	3.90	3.89	3.84
Fe ³⁺ /Fe ²⁺	0.29	0.42	0.34	0.14	0.31	0.30	0.31	0.32	0.26	0.40	0.44	0.34
$X_{\rm Me} = Mg/(Mg + Fe)$	0.39	0.40	0.38	0.34	0.37	0.38	0.38	0.37	0.36	0.43	0.41	0.42
X i	0.46	0.50	0.51	0.59	0.54	0.55	0.54	0.54	0.55	0.45	0.46	0.46
X	0.15	0.10	0.11	0.07	0.09	0.07	0.08	0.09	0.09	0.12	0.13	0.12
IV(Cl)	-2.70	-2.70	-2.68	-2.54	-2.60	-2.63	-2.63	-2.62	-2.58		-2.44	-2.38
IV(F)	2 31	2 33	2 31	2.28	2 32	2 33	2 33	2 32	2 31	2 37	2 33	2.17
IV(F/C1)	5.01	5.03	4 99	1.82	4.92	1.96	1.96	4 94	1 80	2107	4 77	4.55
$F_{0}/(F_{0}+M_{c})$	0.61	0.60	0.62	4.62	0.63	9.50	9.50	0.63	9.67	0.57	0.50	4.55
TO ×10	20.49	21.66	26.80	0.00	22.47	22.60	0.02	22.01	20.61	22.42	27.20	0.58
$110_2 \times 10$	20.48	21.17	20.80	29.25	32.47	22.00	33.43	24.12	24.60	52.45 21.47	37.29	27.05
	20.64	21.1/	21./4	25.62	24.12	23.83	23.97	24.12	24.60	21.4/	21.70	21.55
log(/H ₂ O//HCl) ^{nuid}	4.78	4.72	4.75	4.84	4.80	4.78	4.77	4./8	4.81	107	4.99	5.09
log(/H ₂ O//HF) ^{fluid}	5.10	4.92	4.98	4.97	4.95	4.95	4.94	4.95	4.97	4.95	4.86	4.83
log(fHF/fHCl) ^{fluid}	-0.32	-0.20	-0.23	-0.13	-0.16	-0.17	-0.17	-0.17	-0.16		0.13	0.26
log(F/OH)	-1.25	-1.26	-1.27	-1.30	-1.30	-1.30	-1.30	-1.30	-1.30	-1.27	-1.24	-1.07
log(Cl/OH)	-2.75	-2.77	-2.76	-2.82	-2.81	-2.80	-2.80	-2.80	-2.81		-3.06	-3.11
log(F/Cl)	1.50	1.50	1.49	1.52	1.51	1.50	1.50	1.50	1.51		1.82	2.03

	Continued	Table	1-4
--	-----------	-------	-----

组分	IX09-04	1209-05	IX09-06	IX09-07	1209-08	1209-09	IX09-10	TX09-11	IX09-12	IX09-13	IX09-14	IX09-15
	01109 01	57107 05	01109 00	57105 07	57107 00	57107 07	57107 10	57107 11	57107 12	57107 15	57107 11	57107 15
<u>大主</u> ,,,,, 10 T/k	962 77	970.09	976 31	978 86	952 75	967 12	965 97	955 88	929 58	955 78	953 35	962 19
Na O	0.12	0.13	0.09	0.09	0.08	0.10	0.11	0.10	0.08	0.14	0.10	0.09
ALO	18.28	18 75	10.53	20.20	10.03	10.35	10.53	19.85	24.00	10.17	10.10	10.55
K O	8 66	7.82	9.60	11.64	19.02	19.55	19.55	0.00	4.50	19.47	10.34	19.55
K ₂ 0	24.70	22.41	24.00	24.00	10.50	25.10	24.99	25.16	4.50	10.10	24.71	24.04
SIO ₂	54.79	0.51	54.99	34.99	35.65	55.10	34.88	55.10	0.71	35.57	0.51	34.94
MnO	0.57	0.51	0.50	0.57	0.53	0.52	0.52	0.51	0.71	0.50	0.51	0.51
MgO	5.86	6.13	6.22	6.45	6.32	6.41	6.29	6.26	/.15	6.24	6.31	6.25
CaO	21.20	0.02	0	0.02	0	0	0.01	0.02	0.25	0.02	0.01	0.08
FeO	21.30	20.67	21.58	23.03	22.91	23.05	23.15	23.10	25.55	22.99	23.47	23.05
F	0.70	0.72	0.72	0.73	0.72	0.72	0.72	0.72	0.73	0.73	0.73	0.72
CI	0	0.01	0.02	0.01	0.01	0.02	0.01	0.02	0.02	0.02	0.01	0.01
TiO ₂	3.21	3.29	3.58	3.78	3.13	3.46	3.45	3.24	2.55	3.23	3.18	3.36
息相	93.25	91.19	96.91	101.50	98.93	98.90	98.95	98.97	98.97	99.03	98.96	98.91
F-O	0.40	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42
Cl-O	0	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
H_2O	3.48	3.43	3.59	3.70	3.63	3.64	3.64	3.66	3.92	3.65	3.64	3.63
T-site									9			
Si	5.75	5.66	5.61	5.44	5.65	5.58	5.55	5.57	5.11	5.62	5.54	5.55
Al	3.56	3.75	3.69	3.70	3.55	3.63	3.66	3.71	4.33	3.62	3.69	3.66
总和	9.31	9.41	9.29	9.14	9.21	9.21	9.21	9.27	9.44	9.24	9.23	9.21
Al^{IV}	2.25	2.34	2.39	2.56	2.35	2.42	2.45	2.43	2.89	2.38	2.46	2.45
M-site						((
A1 ^[VI]	1.31	1.41	1.29	1.14	1.21	1.21	1.21	1.27	1.44	1.24	1.23	1.21
Ti	0.40	0.42	0.43	0.44	0.37	0.41	0.41	0.39	0.29	0.38	0.38	0.40
Fe ³⁺	0.82	0.67	0.85	0.89	0.84	0.76	0.76	0.74	1.59	0.81	0.72	0.79
Fe ²⁺	2.12	2.26	2.04	2.11	2.19	2.30	2.31	2.32	1.67	2.22	2.42	2.27
Mn	0.08	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.09	0.07	0.07	0.07
Mg	1.44	1.55	1.49	1.49	1.49	1.52	1.49	1.48	1.63	1.47	1.50	1.48
总和	6.17	6.38	6.17	6.15	6.18	6.28	6.26	6.27	6.73	6.20	6.31	6.22
A-site				1 1 31	10							
Na	0.04	0.04	0.03	0.03	0.02	0.03	0.03	0.03	0.02	0.04	0.03	0.03
К	1.82	1.69	1.98	2.31	2.14	2.07	2.08	2.02	0.88	2.05	2.11	2.09
Са	0	0	0 0	0	0	0	0	0	0.04	0	0	0.01
总和	1.86	1.74	2.01	2.34	2.16	2.10	2.12	2.05	0.94	2.09	2.14	2.14
F	0.10	0,11	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Cl	0	0	0	0	0	0	0	0	0	0	0	0
OH	3.90	3.89	3.89	3.90	3.90	3.90	3.90	3.90	3.90	3.90	3.89	3.90
Fe ³⁺ /Fe ²⁺	0.39	0.30	0.42	0.42	0.39	0.33	0.33	0.32	0.95	0.37	0.30	0.35
$X_{\rm Me} = Mg/(Mg+Fe)$	0.40	0.41	0.42	0.41	0.41	0.40	0.39	0.39	0.49	0.40	0.38	0.39
X	0.47	0.50	0.49	0.51	0.48	0.50	0.52	0.52	0.53	0.50	0.53	0.51
X	0.12	0.09	0.09	0.07	0.12	0.10	0.09	0.09	-0.02	0.10	0.09	0.09
IV(Cl)	-1 54	-2.03	-2.44	-2.38	-2.34	-2.38	-2.28	-2.40	-2.59	-2.39	-2.30	-2.35
IV(F)	2 34	2.31	2 35	2 35	2 34	2 32	2.20	2 31	2.45	2 32	2 30	2 32
IV(F/Cl)	3.88	4 34	4 78	4 73	4 68	4 71	4 59	4 71	5.05	4 71	4 59	4.67
Fe/(Fe+Mg)	0.60	0.59	0.58	0.50	0.59	0.60	0.61	0.61	0.51	0.60	0.62	0.61
$TiO \times 10$	32.12	32.87	35.83	37.94	31 30	34 50	34.40	32 40	25 52	32.25	31 77	33 57
10^{-10}	21.07	21.17	22.09	22.60	22.44	22.57	22.67	22.40	25.52	22.25	22.07	22.56
log(ALO/ALCI)finid	21.8/	21.1/ 5.40	22.08	23.00	23.44	23.37	23.0/	23.02	20.20	23.48	23.97	23.30
log(/ILO///ICI) ^{natu}	5.89	3.40	5.01	5.05	3.11	5.04	5.14	5.02	4.99	3.05	5.12	5.07
log(/H ₂ O//HF) ^{huid}	4.93	4.89	4.90	4.90	4.96	4.91	4.91	4.94	5.17	4.94	4.93	4.92
log(/HF//HCI) ^{nuid}	0.96	0.51	0.10	0.15	0.14	0.13	0.23	0.09	-0.18	0.10	0.19	0.15
log(F/OH)	-1.26	-1.24	-1.26	-1.27	-1.26	-1.26	-1.26	-1.27	-1.29	-1.26	-1.26	-1.26
log(Cl/OH)	-3.93	-3.45	-3.07	-3.12	-3.14	-3.08	-3.18	-3.05	-3.06	-3.08	-3.14	-3.11
log(F/Cl)	2.67	2.21	1.82	1.85	1.88	1.82	1.91	1.79	1.76	1.82	1.88	1.84

注: 共 60 组数据,结构式计算基于 22 个 O 原子(据 Dymek., 1983); OH=4-(Cl+F); IV(F)、IV(Cl)及卤素逸度的估算方法据 Munoz(1984); *T*/K 为 黑云母的 Ti 温度计所计算的值,估算方法据 Henry et al., (2005) *T*/K =*t*+273.25,计算方式为 *T*={[ln(Ti)-*a*-*c*(X_{Mg})³]/*b*}^{0.333}; 其中: *a*=2.3594; *b*=4.648X10⁻⁹; *c*=-1.7283; X_{Mg} =Mg/八面体阳离子数总和, X_{sid} =[(3-Si/Al)/1.75](1- X_{Mg}), X_{sid} 代表黑云母中的铁叶云母摩尔分数; X_{ann} =1- X_{sid} - X_{phl} , X_{ann} 代表黑云母中的铁云母摩尔分数; 基于 22 个氧原子计算,其中 X_{Mg} =0.275~1.000; Ti=0.04~0.60, *t*=480~800°C, *p*=400~600 MPa

0.32;类型三,0.30~0.95,均值0.40,与成矿有关的黑 云母具有最低的Fe³⁺/Fe²⁺比。值在Al-Fe/(Fe+Mg)图 解(图4a、b)中,三类黑云母均投点于黑云母系列;在 TiO₂×10-FeO+MnO-MgO 三角图解(图4c、b)中 (Nachit et al., 2005),3类黑云母均落在原生黑云母 区域。MgO值与主量元素的图解(图5)显示,3类黑 云母 X_{Mg}(Mg/(Mg+Fe))值分别为:类型一(0.40~ 0.56,均值0.45),类型二(0.34~0.40,均值0.38),类型 三(0.38~0.49,均值0.41),其中与成矿有关的黑云母 具有最低的 X_{Mg}值。MnO 值随 MgO 降低而逐渐增

图 5 黑云母中主量元素图解 Fig. 5 Geochemical diagrams of biotite EMPA data

质

大(图 5b),成矿岩体中黑云母(类型二)具有最高的 MnO(图 5b)、FeO^T(图 5e)值,而 Al₂O₃(图 5c)、SiO₂(图 5f),TiO₂(图 5a)、K₂O(图 5d)没有明显变化规律。

大湖塘钨矿区3类黑云母卤素地球化学计算如 表1所示。3类黑云母具有相对富F(028%~1.04%, 均值0.73%)贫Cl(0~0.03%,均值0.02%)的特征。3 类黑云母的IV(F/Cl)值变化分别为类型一(3.60~ 5.30,均值4.84),类型二(4.82~5.05,均值4.96),类型 三(3.88~5.05,均值4.63)(图8a、b)。它们的log(F/ OH)值和log(Cl/OH)值分别在-1.67~-1.07之间(均 值-1.25)和-4.23~-2.67之间(均值-3.07),指示3类 黑云母中Cl取代OH程度相似。

4 黑云母LA-ICP-MS成分分析

在岩相学和EMPA研究的基础上,本次测定大 湖塘钨矿区3种类型黑云母31组LA-ICP-MS数据 (包括类型一10组,类型二11组,类型三10组)。 LA-ICP-MS测试分析工作在合肥工业大学资源与环 境工程学院矿床成因与勘查技术研究中心矿物微区 分析实验室利用LA-ICP-MS完成。ICP-MS型号为 Agilent 7900 四级杆质谱,美国安捷伦公司生产;采 用仪器激光型号为 Analyte Excite 193nm 准分子激 光,美国 Phonton-Machines 公司生产;激光参数:波 长:193 nm,脉冲宽度:20 ns,激光能量:70 mJ/cm², 脉冲频率:8 Hz,激光光斑:32 µm,背景 20 s。经过 与实验室人员沟通,给出各类数据平均检出限,详见 表 2;采用的内标为 BCG-2G, BCR-2G, SRM 610, SRM 612, GSD-1G, GSE-1G。详细的仪器操作条件 和数据处理方法参照汪方跃等(2017)。

大湖塘钨矿区 3 类岩浆岩黑云母的 LA-ICP-MS 数据如表 2 所示。稀土元素总量(Σ REE)分别为类 型一(0.19×10⁻⁶~1.96×10⁻⁶,均值 0.49×10⁻⁶)、类型二 (0.03×10⁻⁶~5.64×10⁻⁶,均值 1.47×10⁻⁶)和类型三 (0.12×10⁻⁶~0.97×10⁻⁶,均值 0.57×10⁻⁶)。轻重稀土元 素比值(LREE/HREE)分别为类型一(0.16~1.30,均 值 0.52),类型二(0.23~9.09,均值 2.78),类型三 (0.53~6.99,均值 2.64)。微量元素原始地幔标准化 蛛网图(图 6)显示,大湖塘矿区 3类黑云母微量稀土 元素与各自岩浆岩的全岩地球化学特征相比,黑云 母的稀土元素总量(Σ REE)显著低于各自对应的岩 浆岩稀土元素总量(Σ REE)。进一步分析显示,3类 黑云母 Rb、Ba、K、Nb、Ta和Ti均高于该类花岗岩的

Fig. 6 Primitive mantle normalized trace elements patterns of the 3 types of biotite from granitoids in Dahutang ore deposits (normalization values after Sun et al, 1989)

全岩浓度,指示黑云母具有富集 Rb、Ba、K大离子亲 石元素和Nb、Ta和Ti等高场强元素等特征;值得指 出的是,类型二黑云母具有最高的∑REE和LREE/ HREE值,可能与岩浆中富W成因相关。此外,类型 二和类型三中各有一个黑云母测点具有异常高的微量元素(图6),结合其测点位置,这2组异常值可能 是由于该点位边上的绿泥石蚀变所引起。 大离子亲石元素K、Rb均在黑云母中富集、在岩浆演化过程中有相似的地球化学性质,大湖塘矿区3 类黑云母的K/Rb值分别为:类型一,90.53~110.74,

图 7 大湖塘矿区 3 类黑云母微量元素图解 Fig. 7 The trace elements of the 3 types of biotite from granitoids in Dahutang ore district

组分	BT-01-2-4-1	BT-01-2-4-2	BT-01-2-4-3	BT-01-2-4-4	BT-01-2-4-5	BT-01-2-4-6	BT-01-2-4-7	BT-01-2-4-8	BT-01-2-4-9	BT-01-2-4-10	半均检出限
奀型一, <i>r</i>	n=10	0.02	0.01	0.01	0.05	0.01	0.12	0	0	0	0
La	0.01	0.02	0.01	0.01	0.05	0.01	0.12	0	0	0	0
Ce	0	0.07	0.04	0	0.13	0.02	0.40	0.01	0	0	0
Pr	0	0.02	0	0	0.02	0	0.07	0	0.01	0.01	0.01
Nd	0.02	0.02	0.05	0.02	0.07	0.02	0.29	0	0	0	0.03
Sm	0	0	0	0	0.04	0	0.15	0	0	0	0.05
Eu	0.03	0.05	0.03	0.03	0.03	0.06	0.07	0.02	0.02	0.02	0.01
Gd	0	0	0	0	0.06	0.02	0.10	0	0	0.02	0.02
Tb	0	0	0	0	0.01	0	0.01	0	0	0	0
Dy	0	0.02	0.01	0	0.02	0	0.13	0	0	0.03	0.01
Но	0	0	0	0	0.01	0	0.03	0	0.01	0	0.01
Er	0.01	0.01	0.03	0	0.03	0	0.08	0	0.02	0	0.01
Tm	0.01	0.01	0	0	0	0.01	0.02	0.01) 0	0.01	0
Yb	0.06	0.04	0.13	0.13	0.09	0.06	0.14	0.09	0.12	0.06	0.01
Lu	0.01	0.01	0.02	0	0.02	0.03	0.01	0.02	0	0.02	0
Y	0.06	0.09	0.06	0.07	0.16	0.08	0.33	0.04	0.04	0.04	0.01
LREE	0.05	0.17	0.13	0.05	0.34	0.12	1.10	0.03	0.04	0.03	
HREE	0.16	0.18	0.25	0.20	0.40	0.22	0.85	0.16	0.20	0.17	
LR/HR	0.34	0.96	0.52	0.27	0.84	0,54	1.30	0.16	0.17	0.16	
Σ REE	0.21	0.35	0.38	0.25	0.74	0,33	1.96	0.19	0.24	0.20	
Rb	1602.78	1654.83	1445.68	1588.31	1601.85	01626.85	1557.35	1633.94	1566.53	1561.54	0.14
Ba	919.92	788.12	778.45	830.12	933.48	1017.29	849.04	1075.14	1043.03	993.49	0
Sr	1.57	1.65	1.91	1.54	1.75	1.95	1.25	1.40	1.51	1.52	0.02
U	0	0.01	0.02	0.01	0.10	0.02	0.07	0	0.01	0.01	0.01
Pb	4.85	6.23	6.21	0 5.18	4.73	5.33	6.85	4.64	3.90	5.58	0.06
Cs	249.35	677.10	241.37	353.51	326.44	298.48	615.05	390.46	328.38	279.75	0.06
Ga	39.01	41.20	39.56	41.35	38.79	41.19	37.52	40.83	39.31	38.03	0.05
Th	0	0.01	0.01	0.01	0.04	0.01	0.01	0	0.01	0	0
Nb	25.12	28.13	41.29	30.46	33.14	35.39	33.56	20.21	15.44	33.52	0.01
Zr	0.65	0.42	0.51	0.77	0.68	0.79	0.23	0.84	0.82	0.66	0.02
Та	1.39	1.69	2.84	2.11	1.53	1.95	2.39	0.82	0.49	1.59	0.01
Hf	0.07	0.06	0.08	0.06	0.03	0.08	0.02	0.09	0.08	0.06	0.01
Li	2161.90	2046.96	2118.09	2043.38	2021.91	2135.57	1715.11	2206.30	2104.57	2015.18	0.41
Sc	25.66	26.26	25.20	26.42	25.76	27.43	22.91	24.63	24.92	25.03	0.13
v	367.51	365.17	403.19	403.13	378.41	392.35	295.14	415.87	400.54	357.83	0.06
Cr	60.16	60.17	64.78	63.26	60.54	133.32	46.16	67.49	62.58	58.42	3.66
Co	56.48	61.35	58.06	55.22	56.08	52.51	54.99	54.92	54.65	56.30	0.05
Ni	110.85	114.41	119.84	113.60	112.87	109.90	125.46	118.53	113.16	115.65	0.86
Cu	0.28	0.07	0.15	0.42	0.48	0.33	36.68	0.39	0.22	0.18	0.28
Zn	1098.00	1020.99	1113.17	1115.67	1097.49	1073.61	998.88	1118.62	1115.22	1059.36	0.31
W	13.00	15.18	24.52	11.38	16.44	15.25	12.86	11.79	10.33	11.75	0.05
	10.00	0		- 1.00			- 2.00		- 0.00		0.00

表2 大湖塘矿区花岗岩类黑云母中LA-ICP-MS数据(w(B)/10-6)

Table 2 Biotite LA-ICP-MS data from granotoids in Dahutang deposit ore district $(w(B)/10^{-6})$

续表 2-1

Continued Table 2-1

组分	JX-51-3-BT-1	JX-51-3-BT-2	JX-51-3-BT-3	JX-51-3-BT-4	JX-51-3-BT-5	5 BT-51-3-1	BT-51-3-2	BT-51-3-3	BT-51-3-4	BT-51-3-5	BT-51-3-6	半均检出限
类型二, n	=11											
La	0.11	0.02	0.11	0	0.01	0.08	0.59	0.04	0.04	3.34	0.47	0
Ce	0.41	0.06	0.90	0.01	0	0.19	2.61	0.20	0.39	16.98	1.20	0
Pr	0.02	0.01	0.06	0	0	0.03	0.32	0.02	0.10	1.85	0.18	0.01
Nd	0.15	0	0.26	0	0	0.14	1.33	0.11	0.32	7.46	0.40	0.03
Sm	0.05	0	0	0	0	0.12	0.19	0	0.25	1.31	0.05	0.05
Eu	0.01	0.01	0.03	0.02	0.01	0	0.05	0	0.03	0.08	0.01	0.01
Gd	0.02	0.04	0	0.03	0	0.05	0.20	0	0.12	0.64	0.13	0.02
Tb	0.01	0	0.03	0	0	0	0.03	0.02	0.02	0.11	0.05	0
Dy	0.05	0	0.26	0	0.02	0.03	0.11	0.04	0.05	0.25	0.11	0.01
Ho	0.02	0	0.01	0	0	0	0.01	0.01	0.02	0.05	0.02	0.01
Er	0.03	0	0.04	0.01	0	0.02	0.03	0	0.06	0.14	0.08	0.01
Tm	0.01	0	0.01	0	0	0	0	0	0	0.01	0.01	0
Yb	0.01	0.02	0	0.04	0	0	0.08	@ 0	0.02	0.03	0.03	0.01
Lu	0	0	0.01	0	0	0	0	U	0.01	0	0	0
Y	0.15	0.01	0.12	0.02	0	0.07	0.10	0.12	0.28	0.37	0.19	0.01
LREE	0.74	0.10	1.36	0.02	0.02	0.55	5.08	0.37	1.13	31.03	2.31	
HREE	0.30	0.07	0.48	0.10	0.02	0.18	0.56	0.19	0.56	1.62	0.61	
LR/HR	2.47	1.49	2.83	0.23	0.87	3.03	9.09	1.99	2.01	19.17	3.76	
∑REE	1.03	0.17	1.84	0.13	0.03	0.74	5.64	0.56	1.69	32.64	2.92	
Rb	2089.06	1344.86	1929.42	1498.05	1086.87	1170.96	1056.71	1456.87	1470.96	1532.05	1579.89	0.14
Ba	394.06	363.87	74.96	1076.21	161.04	272.32	534.10	701.43	837.51	855.19	844.04	0
Sr	1.15	0.59	1.05	0.59	0.67	0.79	0.82	0.79	1.02	1.05	0.93	0.02
U	0.05	0.02	2.20	0	0	0.09	0.18	0.33	0.04	0.20	0.04	0.01
Pb	6.90	7.19	5.45 🔘	6.54	8.63	9.26	7.79	7.24	6.72	8.38	8.70	0.06
Cs	477.14	160.19	1263.83	101.09	235.76	278.46	253.94	166.94	261.87	149.93	268.51	0.06
Ga	100.64	104.40	77.55	92.33	98.66	114.44	110.14	107.32	109.00	109.00	107.36	0.05
Th	0.01	0.01	1.53	0	0	0.01	0	0.19	0.03	0.09	0.10	0
Nb	120.52	142.62	111.61	86.72	122.61	117.62	99.28	86.59	79.69	94.64	122.41	0.01
Zr	0.23	0.26	0.82	0.45	0.12	0.35	0.44	0.96	0.79	0.60	0.61	0.02
Та	24.99	24.16	25.99	5.85	14.25	10.76	6.77	5.11	4.95	8.13	17.62	0.01
Hf	0.06	0.05	0.08	0.04	0.01	0.03	0.12	0.22	0.03	0.10	0.13	0.01
Li	2728.65	2639.93	1970.13	2488.23	2237.09	2529.39	2458.97	2819.94	2865.55	2722.06	2621.84	0.41
Sc	45.03	53.53	34.41	47.83	47.82	51.98	53.87	56.92	55.12	50.37	50.31	0.13
V	257.96	277.82	204.13	281.07	280.19	319.22	316.19	327.59	324.21	312.40	299.53	0.06
Cr	98.75	106.67	92.28	124.63	113.89	122.89	127.24	129.17	135.11	142.04	132.93	3.66
Со	30.25	31.11	25.26	28.95	32.41	34.91	34.82	34.60	34.18	33.03	35.51	0.05
Ni	27.02	28.32	23.61	30.14	28.75	29.92	33.12	30.09	35.66	29.99	35.31	0.86
Cu	0.84	0.44	0	0.49	0.52	0.13	0.45	0.28	0.22	0.17	0.29	0.28
Zn	733.47	928.66	686.15	982.08	957.42	1038.42	1036.63	1087.50	1083.71	1058.93	1011.29	0.31
W	8.22	3.16	11.44	4.52	2.44	2.13	1.90	9.69	4.43	4.87	4.40	0.05

续表 2-2

Continued Table 2-2

组分	JX-09-3-BT-1	JX-09-3-BT-2	BT-09-10-1	BT-09-10-2	BT-09-10-3	BT-09-10-4	BT-09-10-5	BT-09-10-6	BT-09-10-7	BT-09-10-8	平均检出限
	n=10	011 07 0 01 2	2109 101	51 09 10 2	210,100	51 07 10 1	21 07 10 0	51 07 10 0	51 07 10 7	51 07 10 0	ТЭШЦК
La	0.01	0.05	0.20	0.04	0.06	0.15	3.21	0.02	0.04	0.19	0
Ce	0.05	0.03	0.23	0.02	0.22	0.39	7.13	0.40	0.14	0.38	0
Pr	0	0.02	0.04	0	0.04	0.02	0.79	0.03	0	0.03	0.01
Nd	0	0.07	0.04	0	0.13	0.07	2.13	0.18	0.05	0.14	0.03
Sm	0	0	0.14	0	0	0.01	0.52	0.03	0	0	0.05
Eu	0	0	0	0	0.01	0	0.03	0.01	0.01	0.01	0.01
Gd	0	0	0.05	0	0.02	0.03	0.54	0	0	0.05	0.02
Th	0	0	0.02	0	0.02	0	0.11	0	0.02	0.05	0
Dv	0	0	0.06	0	0.02	0.01	0.54	0	0.02	0.02	0.01
Но	0	0.01	0.00	0	0.02	0.02	0.12	0.01	0.04	0.02	0.01
Er.	0.02	0.01	0	0	0.01	0.02	0.12	0.01	002	0.01	0.01
Tar	0.02	0	0	0	0	0.02	0.28	0	0.02	0.01	0.01
1 m	0.01	0	0 02	0 02	0 02	0 02	0.02	0.02	0.05	0.01	0
YD	0	0	0.03	0.02	0.02	0.03	0.20	0.02	0.05	0	0.01
Lu	0	0	0.01	0.01	0.01	0	0.04	0.00	0	0	0
Y	0.09	0.11	0.16	0.02	0.04	0.16	2.42	0.06	0.02	0.11	0.01
LREE	0.06	0.18	0.65	0.06	0.46	0.64	13.81	0.67	0.24	0.75	
HREE	0.11	0.12	0.32	0.05	0.12	0.28	4.26	0.10	0.16	0.20	
LR/HR	0.53	1.55	2.04	1.18	3.84	2.28	3.24	6.99	1.49	3.84	
ΣREE	0.17	0.30	0.97	0.12	0.58	0.92	18.08	0.76	0.39	0.95	
Rb	1494.38	1522.61	1595.69	1338.83	1444.86	1560.56	792.36	1516.00	1511.46	1442.71	0.14
Ba	547.53	266.76	251.47	646.41	76.31	62.55	34.08	69.84	212.66	430.26	0
Sr	0.38	0.70	0.29	0.35	0.29	0.55	4.61	0.53	0.36	1.48	0.02
U	0.07	0.05	0.38	0.01	0.07	0.94	11.35	0.28	0.13	0.47	0.01
Pb	4.80	5.93	6.41	4.73	5.39	8.73	58.62	5.68	6.07	6.53	0.06
Cs	146.87	161.51	156.80	81.32	117.17	166.63	145.64	179.77	173.85	214.38	0.06
Ga	115.81	119.21	119.03	118.43	114.64	121.13	127.63	121.98	123.14	121.30	0.05
Th	0.03	0.07	0.44	0.03	0.16	0.86	18.57	0.28	0.26	0.76	0
Nb	93.14	109.12	97.73	103.12	106.06	111.62	89.54	93.54	102.48	104.58	0.01
Zr	0.40	0.64	1.21	0.52	0.67	2.39	22.04	1.85	1.25	3.21	0.02
Та	7.39	9.40	7.72	8.28	8.86	9.55	11.86	7.09	7.55	7.63	0.01
Hf	0.15	0.03	0.02	0.01	0.01	0.14	0.70	0.06	0.17	0.26	0.01
Li	2330.20	2324.65	2365.95	2375.06	2340.55	2404.21	2337.95	2334.85	2369.50	2410.12	0.41
Sc	60.09	64.05	58.93	61.14	62.59	61.35	53.97	60.55	62.29	63.72	0.13
V	353.88	370.02	351.19	354.65	360.60	360.53	456.73	346.61	334.83	337.51	0.06
Cr	124.32	124.40	122.70	122.04	125.08	129.69	182.76	122.23	132.04	127.46	3.66
Co	36.86	39.92	42.05	40.89	39.96	39.94	39.69	38.41	42.14	41.14	0.05
Ni	36.71	40.76	38.37	38.75	38.71	41.80	45.67	40.53	38.42	41.65	0.86
Cu	0.35	0.85	3.13	0.23	1.06	7.22	87.98	2.22	1.69	4.33	0.28
Zn	1081.34	1034.46	1049.60	1033.65	1036.96	1034.59	611.79	1008.53	1068.93	1041.56	0.31
W	3.77	3.62	3.25	3.08	3.04	7.32	23.40	3.11	3.05	3.11	0.05

注:空白为低于检测限;比值单位为1。

均值 102.50;类型二,61.60~157.07,均值 111.49;类型三,94.26~126.97,均值 113.31(图7),可见类型一和类型三的 K/Rb 值较为集中,而类型二变化范围较大,可能是由于类型二黑云母受岩浆热液影响。成矿岩浆岩中黑云母(类型二)具有较高的 Pb(图7b)、Li(图7d)、Cs(图7c)含量和较低的 Ba(图7a)、V(图7h)含量。值得指出的是,在类型二黑云母中w(W)最低,在5×10⁻⁶~24.52×10⁻⁶之间(图7e),这与W是强不相容元素,在黑云母结晶过程中不易进入黑云母矿物相符。

蕗

5 对钨成矿的指示

5.1 挥发分的影响

挥发分对成矿热液中形成金属络合物影响显著

(Loferski et al., 1995; Sillitoe, 2010),在岩浆热液成 矿系统中扮演催化剂和金属元素运移载体的重要角 色。黑云母是富集卤族元素的矿物之一,在花岗岩 浆冷却过程中,F和Cl通过与OH替换进入黑云母中 (Grabezkev et al., 1979; Munoz, 1984)。黑云母的F 和Cl含量可以用来估算岩浆中(或热液)相关的卤素 挥发分富集程度(Speer, 1984; Zhu et al., 1991; Jin et al., 2018)。大湖塘钨矿区内,燕山期似斑状花岗岩 中黑云母(类型二)具更为集中的F-Cl含量,相比晋 宁期花岗闪长岩和细粒花岗岩中黑云母(类型一和 类型三),似斑状花岗岩中黑云母(类型一和 类型三),似斑状花岗岩中黑云母(类型一和 之型三)的 Cl 含量较高,有利于W的富集(Schaefer et al., 1999)。大湖塘钨矿区似斑状花岗岩黑云母(类型 二)的 log(f(H₂O)/f(HCl))值小于0(图 8c、d),明显低 于类型一和类型三中黑云母的 log(f(H₂O)/f((HCl))

图8 黑云母中卤族元素地球化学图解

a. IV(F)与IV(F/Cl); b. IV(Cl)与IV(F/Cl); c. log(f(H₂O)/f(HF))与log(f(HF)/f(HCl));

d. log (f(H₂O)/f(HCl))与log(f(HF)/f(HCl))(计算过程参考Munoz,1984)

Fig. 8 Geochemical diagrams of the Halogen group elements in the biotite grains

a. Intercept value IV(F) versus IV(F/Cl); b. IV(Cl) versus IV(F/Cl); c. $\log(f(H_2O)/f(HF))$ versus $\log(f(HF)/f(HCl))$;

d. $\log(f(H_2O)/f(HC1))$ versus $\log(f(HF)/f(HC1))$ (calculation after Munoz, 1984)

值,表明似斑状花岗岩岩浆中HF浓度低于HCl,有 利于W等成矿物质的富集(唐攀等,2017),这也与加 拿大New Brunswick西-中部地区Sisson Brook 砂卡 岩W-Mo-Cu矿床中成矿岩浆岩黑云母的特征一致 (Zhang et al., 2016)。另一方面,大湖塘钨多金属 矿床的成矿岩浆岩黑云母(类型二)的log(f(H₂O)/f (HF))值与log(f(H₂O)/f(HCl))值变化很小(图8c、 d),指示钨成矿岩浆岩中H₂O相对稳定,其对W 的富集成矿影响不大。

5.2 氧逸度的影响

前人研究显示,成矿元素具有 Sn→W→Mo→ Cu-Mo→Cu-Au对应的成矿岩浆岩氧化性增高特点 (Pignatelli et al., 2016),还原性花岗岩浆有利于钨矿 化(Hedenquist et al, 1994),但也有观点认为W在岩 浆中是亲石元素(刘英俊等, 1987),不会与岩浆中含 硫阴离子形成络合物,氧逸度的改变对于W的价态 影响作用不大(Farges et al., 2006)。黑云母Fe³⁺/Fe²⁺ 比值是估算其母岩浆氧逸度的有效方法(Mungall, 2002; Borisov et al., 1990)。Wones 等(1965)研究显 示当岩浆系统的氧逸度增加会抑制 Fe²⁺替换 Mg²⁺ 从而黑云母的X_{Mg}值会随岩浆/或(热液)的氧逸度 增高而增高。Zhang等(2016)研究发现加拿大 New Brunswick 西-中部地区 Sisson Brook 矽卡岩 型 W-Mo-Cu矿床成矿岩体的黑云母中具有较低的 X_{Me}值,指示氧逸度较低(图 9b);Jin 等(2018)在研究 秦岭地区东沟斑岩型Mo矿床成矿岩体的黑云母具 有较高的X_{Mg}值,指示具有较高氧逸度特征。以上 研究成果显示黑云母可作为钨钼矿床岩浆岩氧逸 度判别的指示性矿物。本次工作显示,似斑状花岗 岩中黑云母(类型二)具有最低的 Fe³⁺/Fe²⁺值(图 9a)和X_{Mg}值(图9b);在黑云母Fe³⁺-Fe²⁺-Mg氧逸度 判别图解(图9c、d)中、似斑状花岗岩黑云母(类型 二)具有靠近Fe²⁺特征,指示具有更低的氧逸度(图 9b),这与前人对利用锆石中Ce4+/Ce3+与Eu/Eu*分

图 9 黑云母氧逸度判别图解(底图据 Wones et al., 1965) a. Fe³⁺/Fe²⁺与 3 类黑云母之间的相关图解;b. Fe³⁺/Fe²⁺与 X_{Mg}; c、d. 黑云母氧逸度相关图解 Fig. 9 Geochemical discriminative diagrams of the biotite grains (base map after Wones et al., 1965)

a. Diagram of the biotites versus Fe^{3+}/Fe^{2+} ; b. $X_{M\sigma}$ versus Fe^{3+}/Fe^{2+} ; c, d. Diagram of oxygen fugacity of biotite

析得到大湖塘石门寺燕山期成矿花岗岩氧逸度较低一致(Wei et al., 2018b)。综上,大湖塘矿区成矿 岩浆岩中的黑云母具有相对低氧逸度特点,可能指 示了低氧逸度的岩浆对W成矿有利。

6 结 论

(1)大湖塘钨矿区发育晋宁期花岗闪长岩中的 黑云母(类型一)、燕山期似斑状花岗岩中的黑云母 (类型二)、燕山期细粒花岗岩中黑云母(类型三)3类 黑云母,它们均属于铁云母到铁叶云母系列,具富F 贫Cl特征;微量元素具富集大离子亲石元素Rb、Ba、 K和高场强元素Ta、Nb、Ti等特征。

(2) 大湖塘钨矿区的成矿相关的燕山期似斑状 花岗岩中黑云母(类型二)与贫矿岩体黑云母(类型 一和类型三)相比,具有较低*X*_{Mg}值和Fe³⁺/Fe²⁺比值、 较高的Cl、ΣREE浓度和LREE/HREE值,且氧逸度 较低,这些特征可作为含钨岩浆岩的成矿专属性 指标。

志 谢 本文实验研究工作得到了合肥工业大 学陈彤老师、汪方跃副研究员、王娟博士的帮助,在 此表示诚挚的谢意。

References

- Borisov A A and Shapkin A I. 1990. A new empirical equation rating Fe³⁺/Fe²⁺ in magmas to their composition, oxygen fugacity, and temperature[J]. Geochemistry International, 27(1): 111-116.
- Brisken C, Rajaram R, Ayyannan A and Umberto R. 2015. Hydrogen deficiency in Ti-rich biotite from anatectic metapelites (El Joyazo, SE Spain): Crystal-chemical aspects and implications for hightemperature petrogenesis[J]. American Mineralogist, 88(4): 583-595.
- Dymek R F. 1983. Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneiss, West Greenland[J]. American. Mineralogist, 68: 880-899.
- Farges F, Linnen R L and Brown G E Jr. 2006. Redox and speciation of tin in hydrous silicate glasses: A comparison with Nb, Ta, Mo and W[J]. Canadian Mineral, 44(3): 795-810.
- Grabezkev A I, Vigorova V G and Chashukhina V A. 1979. Behavior of fluorine during crystallization of granites (in connection with

validation of the criteria of granite specialization)[J]. Geochemistry international, 16: 23-33.

- Hedenquist & Amp J W and Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 370 (6490): 519-527.
- Henry D J, Guidotti C V and Thomson J A. 2005. The Ti-saturation surface for low-tomedium pressure metapelitic biotites: Implications for geothermometry and Ti substitution mechanisms[J]. American. Mineralogist, 90: 316-328.
- Jin C, Gao X Y, Chen W T and Zhao T P. 2018. Magmatic-hydrothermal evolution of the Donggou porphyry Mo deposit at the southern margin of the North China Craton: Evidence from chemistry of biotite[J]. Ore Geology Reviews, 92: 84-96.
- Jiang S Y, Ding T P, Wang D F and Wei J Y. 1992. Geochemistry of biotite and garnets from metamorphic rocks and discussion on metamorphism P-T conditions in Qing-Chengzi mining district[J]. Acta Geoscientica Sinica,13(1): 71-84(in Chinese with English abstract).
- Jiang S Y, Peng N J, Huang L C, Xu Y M, Zhan G L and Dan X H.
 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province[J]. Acta Petrologica Sinica, 31(3): 639-655 (in Chinese with English abstract).
- Kesler S E, Issigonis M J, Brownlow A H, Damon P E, Moore W J, Northcote K E and Preto V A. 1975. Geochemistry of biotite from mineralized and barren intrusive systems[J]. Econ. Geol., 70(3): 559-567.
- Liu Y J and Ma D S. 1987. The geochemistry of Tungsten[M]. Beijing: Science Press. 232p(in Chinese with English abstract).
- Loferski P J and Ayuso R A. 1995. Petrography and mineral chemistry of the composite Deboullie pluton, northern Maine, USA: Implications for the genesis of Cu-Mo mineralization[J]. Chemical Geology, 123(1-4): 89-105.
- Mao J W, Cheng Y B, Chen M H and Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 48(3): 267-294.
- Mao J W, Pirajno F, Lehmann B, Luo M C and Berzina A. 2014. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings[J]. Journal of Asian Earth Sciences, 79: 576-584.
- Mao Z H. 2016. Geodynamic setting and mineralization of the giant

veinlets-disseminated tungsten ore field in Jiangxi Province, China (dissertation for doctoral degree)[D]. Supervisor: Liu J J. Beijing: China University of Geosciences. 149p(in Chinese with English abstract).

- Munoz J L. 1984. F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits[J]. Rev. Mineral. Geochem., 13: 469-493.
- Mungall J E. 2002. Roasting the mantle: slab melting and genesis of major Au and Au-rich Cu deposit[J]. Geology, 30: 915-918.
- Nachit H, Ibhi A, Abia E H and Ohoud M B. 2005. Discrimination between primary magmatic biotite, reequilibrated biotite and neoformed biotite[J]. Compt. Rendus. Geosci., 337(16): 1415-1420.
- Pignatelli I, Faure F and Mosser-Ruck R. 2016. Self-mixing magma in the Ruiz Peak rhyodacite(New Mexico, USA): A mechanism explaining the formation of long period polytypes of mica[J]. Lithos, 266-267: 332-347.
- Rieder M. 1999. Nomenclature of the micas[J]. Bulletin of Mineralogy Petrology & Geochemistry, 63(2): 267-296.
- Rudnick R L and Gao S X. 2003. Composition of the continental crust[J]. Treatise on Geochemistry, 3: 1-64.
- Schaefer B, Frischnecht R, Guenther D, et al. 1999. Determination of trace element partitioning between fluid melt using LA-ICP-MS analysis of synthetic fluid inclusions in glass[J]. European Journal of Mineralogy, 11(3): 415-426.
- Shi Y H. 2017. Petrology and zircon U-Pb geochronology of metamorphic massifs around the middle segment of the Tan-Lu fault to define the boundary between the North and South China blocks[J]. Journal of Asian Earth Sciences, 141: 140-160.
- Sillitoe R H. 2010. Porphyry copper systems[J]. Econ. Geol., 105(1): 3-41.
- Speer J A. 1984. Micas in igneous rocks[J]. Reviews in Mineralogy, 13 (6): 299-356.
- Sun K K, Chen B, Chen J S and Xiang X K. 2017. The petrogenesis of the Jiuling granodiorite from the Dahutang deposit, Jiangxi province and its tectonic implications[J]. Acta Petrologica Sinica, 33(3): 907-924(in Chinese with English abstract).
- Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D and Norry M J, eds. Magmatism in the Ocean Basins[J]. Geological Society, London, Special Publications, 42: 313-345.
- Tang P, Tang J X, Zheng W B, Leng Q F, Lin B and Tang X Q. 2017.

Mineral chemistry of hydrothermal biotite from the Lakang'e porphyry Cu-Mo deposit, Tibet[J]. Earth Science Frontiers, 24(5): 265-282(in Chinese with English abstract).

- Wang F Y, Ge C, Ning S Y, Nie L Q, Zhong G X and white N C. 2017. A new approach to LA-ICP-MS mapping and application in geology[J]. Acta Petrologica Sinica, 33(11): 1-15(in Chinese with English abstract).
- Wei W F, Lai C K, Yan B, Zhu X X, Song S Q and Liu L. 2018a. Petrogenesis and Metallogeic implications of Neoproterozoic granodiorite in the super-large Shimensi tungsten-copper deposit in northern Jiangxi, South China[J]. Minerals, 8(429): 1-22.
- Wei W F, Shen N P, Yan B, Lai C K, Yang J H, Gao W and Liang F. 2018b. Petrogenesis of ore-forming granites with implications for W-mineralization in the super-large Shimensi tungsten-dominated polymetallic deposit in northern Jiangxi Province, South China[J]. Ore Geology Reviews, 95: 1123-1139.
- Wones D R and Eugster H P. 1965. Stability of biotite-experiment, theory, and application[J]. American. Mineralogist, 50: 1228-1272.
- Xiang X K, Wang P, Zhan G N, Sun D M, Zhong B, Qian Z Y and Tan R. 2013. Geological characteristics of shimensi tungsten polymetallic deposit in northern Jiangxi province[J]. Mineral Deposits, 32 (6): 1171-1187(in Chinese with English abstract).
- Xiang X K, Yin Q Q, Zhan G N, Qu K, Liu X, Tan R and Zhong B.
 2017. Metallogenic conditions and ore-prospecting of Shimensi tungsten ore section in the North of Dahutang area in Jiangxi Province[J]. Journal of Jilin University(Earth Science Editon), 47 (3): 645-658(in Chinese with English abstract).
- Yan M C, Chi Q H, Gu T X and Wang C S. 1997. Chemical compositions of continental crust and rocks in the eastern China[J]. Geophysical & Geochemical Exploration, 21(6): 451-459(in Chinese with English abstract).
- Yavuz F. 2003. Evaluating micas in petrologic and metallogenic aspect: I-definitions and structure of the computer program MICA⁺ [J]. Computers & Geosciences, 29(10): 1203-1213
- Ye Z Y. 2016. The study of mineralization features and fluid metallogenetic process of the sup-large tungsten deposit in Dahutang, Northern Jiangxi(dissertation for Master degree) [D]. Supervisor: Hou Z Q. Beijing: China University of Geosciences. 64p(in Chinese with English abstract).
- Yuan Q. 2016. The study of mineralogy and geochronology of the Late Jurassic epoch ore-bearing granites in Dahutang Shimensi rungsten(dissertation for master degree) [D]. Supervisor: Peng H

M. Jiangxi: East China University of Technology_o 75p(in Chinese with English abstract).

蕗

- Zhang D Y, Wei O X, Chen X F, Ye L X, Ding L and Lü Q L. 2017. Study on the magmatism and mineralization in the qingyang W-Mo orefied, northern Jiangnan terrane[J]. Acta Petrologica Sinica, 33(11): 3659-3674(in Chinese with English abstract).
- Zhang W, Lentz D R, Thorne K G and McFarlane C. 2016. Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W-Mo-Cu deposit, west central New Brunswick: An indicator of halogen and oxygen fugacity of magmatic systems[J]. Ore Geology Reviews, 77: 82-96.
- Zhu C and Sverjensky D A. 1991. Partitioning of F-Cl-OH between minerals and hydrothermal fluids[J]. Geochimica et Cosmochimica Acta, 55(7): 1837-1858.

附中文参考文献

- 蒋少涌,丁悌平,万德芳,魏菊英.1992. 青城子矿区黑云母和石榴石 的地球化学及变质作用的p-t条件探讨[J].地球学报,13(1):71-84.
- 蒋少涌,彭宁俊,黄兰椿,徐耀明,占岗乐,但小华.2015.赣北大湖塘
 矿集区超大型钨矿地质特征及成因探讨[J].岩石学报,31(3):
 639-655.

刘英俊,马东升.1987.钨的地球化学[M].北京:科学出版社.232页. 毛志昊.2016.江西大湖塘超大型斑岩钨矿床成矿动力学背景与成 矿作用(博士论文)[D].导师:刘家军.北京:中国地质大学. 149页.

- 孙克克,陈斌,陈军胜,项新葵.2017. 江西大湖塘矿区九岭花岗闪长 岩的成因及其构造意义[J]. 岩石学报,33(3):907-924.
- 唐攀,唐菊兴,郑文宝,冷秋锋,林彬,唐晓倩.2017.西藏拉抗俄斑岩 铜钼矿床黑云母矿物化学特征[J].地学前缘,24(5):265-282.
- 汪方跃,葛粲,宁思远,聂利青,钟国雄,White N C. 2017. 一个新的 矿物面扫描分析方法开发和地质学应用[J]. 岩石学报,33(11): 3422-3436.
- 项新葵,王朋,詹国年,孙德明,钟波,钱振义,谭荣.2013. 赣北石门 寺超大型钨多金属矿床地质特征[J]. 矿床地质,32(6):1171-1187.
- 项新葵,尹青青,詹国年,曲凯,刘行,谭荣,钟波.2017. 江西大湖塘 北区石门寺矿段钨矿成矿条件与找矿预测[J]. 吉林大学学报 (地球科学版),47(3):645-658.
- 鄂明才,迟清华,顾铁新,主春书.1997.中国东部地壳元素丰度与岩石平均化学组成研究[J].物探与化探,21(6):451-459.

叶泽宇.2016. 赣北大湖塘超大型钨矿床矿化特征与流体成矿作用 研究(硕士论文)[D]. 导师:侯增谦.北京:中国地质大学.64页.

- 袁琪. 2016. 江西大湖塘石门寺钨矿晚侏罗世含矿花岗岩矿物学及 年代学研究(硕士论文)[D]. 导师:彭花明. 江西:东华理工大 学. 75页.
- 张达玉,位欧祥,陈雪锋,叶龙翔,丁宁,吕启良.2017.江南古陆北缘 青阳钨钼矿集区成岩成矿作用研究[J].岩石学报,33(11): 3659-3674.