哈达门沟金矿床成岩成矿时代的定点定年研究

苗来成¹ Yum in Q iu² 关 康³ Neal M cN aughton² 裘有守³ 罗镇宽³ David G roves²

 (1 中国地质大学,北京 2 Centre for Strategic M ineral Deposits, Department of Geology and Geophysics, the University of Western Australia, Nelands 6907, Australia 3 冶金部天津地质研究院,天津)

提 要:哈达门沟大型钾长石-石英脉型金矿床位于华北地台北缘西段的乌拉山地区。矿区西部的大桦背花岗岩和矿区内的伟晶岩脉与金矿化均具有较为密切的空间关系,这导致不少研究者认为哈达门沟金矿床与大桦背岩体或伟晶岩之间也具有时间和成因联系。通过采用先进的高灵敏的高分辨率的离子探针(SHRIMP)对大桦背岩体、伟晶岩脉和钾长石化蚀变岩进行的锆石 U-Pb定点定年研究表明:伟晶岩脉形成于(1836±5)×10⁶ a,属吕梁旋回;大桦背岩体形成于(353±7)×10⁶ a,应为海西旋回早期产物;金矿化年龄小于或等于(132±2)×10⁶ a,应为燕山晚期。这些年龄结果说明,本区金矿化比大桦背岩体晚至少220×10⁶ a,这排除了金矿化与大桦背岩体和伟晶岩脉之间有任何成因联系的可能性。蚀变岩的年龄还证明,虽然乌拉山和胶东地区金矿床的围岩和年龄不同,但两地区的金矿化却几乎同时发生。此外,大桦背岩体的形成年龄与华北地块和蒙古古陆块碰撞作用发生的时间基本一致,因此大桦背岩体的SHRIMP年龄为这一碰撞作用提供了可靠的年代学证据。

关键词:金矿床 SHRMP 锆石 定点定年 内蒙古哈达门沟 中图法分类号: P617.9

哈达门沟金矿床位于内蒙古自治区包头市西郊,东距包头市15 km。该矿床是80年代中期 发现的一个大型金矿床,并以其独特的地质特征即矿化体为含金钾长石-石英脉^[1]引起了中外 矿床学家的极大兴趣。矿区内花岗岩类侵入体和伟晶岩脉均较发育。这些侵入体与区内金矿化 具较为密切的空间关系,因而在前人的研究中,认为该区金矿化与花岗岩类有关^[2,3],也有的 研究者认为金矿化与区内伟晶岩脉具有成因关系,并把哈达门沟金矿床划为伟晶岩型金矿 床^[4]。本文对哈达门沟矿区内的伟晶岩脉、花岗岩类侵入体和金矿体边部的钾化蚀变岩进行了 SH R IM P 即高灵敏的高分辨率的离子探针定点定年研究,其结果不仅精确确定了本区的成岩 成矿年龄,而且对认识区内金矿床成因和大地构造演化具有重要意义。

1 地质概况

哈达门沟金矿床位于乌拉山地区、大地构造位置上处于华北地台北缘西段的阴山隆起中

^{*} 本课题由中国-西澳经济技术基金资助 第一作者简介: 苗来成, 男, 1966年生, 为中国地质大学(北京)博士生, 主要从事矿床学研究。邮政编码: 100083 1999-04-28收稿, 1999-11-30修改回

段, 地貌上呈东西向狭长山带。区内出露的地层单元主要为上太古界乌拉山岩群、下元古界色 尔腾山群和中元古界渣尔泰群变质岩。区内构造形迹以东西向为主, 其中乌拉山-大青山山前 和山后深大断裂是区内规模最大的断裂构造, 分别沿乌拉山南缘和北缘展布。区内最重要的侵 入岩是位于哈达门沟金矿西侧的大桦背花岗岩体和北部的沙德盖岩体。这两个岩体相距1.3 km, 前者以近等轴状岩基出露, 而后者则呈不规则状岩株产出, 但两个岩体矿物成分和化学 成分基本一致, 岩体的微量元素和稀土元素地球化学特征也相近, 推测两者为同时形成的, 在 深部可能连为一体^[4]。另外, 在大桦背岩体东侧哈达门沟金矿区内, 还发育有一系列伟晶岩脉、 闪长岩脉和辉绿岩脉。

区域内金矿化以哈达门沟金矿为代表,以钾长石-石英脉形式沿近东西向的脆、韧性叠加断裂产出。金矿化围岩主要为乌拉山群变质岩及少部分伟晶岩脉。有关该矿的详细特征描述请参阅有关文献^[2,4,5]。

2 样品描述

第19卷 第2期

本文对采自大桦背岩体 (DHB-7)、伟晶岩脉 (HDMG-11) 和钾化蚀变岩 (HDM-19) 的 3个样品进行了 SHRIMP U-Pb 分析。

DHB-7样品采自清水沟附近的大桦背岩体中心相,岩性为似斑状黑云母二长花岗岩。岩石 新鲜,呈肉红色,中粗粒似斑状结构,块状构造。岩石的主要矿物组成为钾长石(35%,其中 斑晶占10%)、斜长石(30%)、石英(30%)及黑云母(4%);副矿物组合为磁铁矿、钛铁 矿、磷灰石和锆石及微量榍石和褐帘石。

HDMG-11样品取自哈达门沟矿区13号金矿脉附近的新鲜伟晶岩脉,组成矿物主要有钾 长石 (60%,主要为条纹长石)和石英 (35%)及少量的斜长石和白云母 (< 5%);有时可 见一定数量的磁铁矿。野外研究表明,该伟晶岩脉明显被13号金矿脉切割。

HDM-19样品为取自哈达门沟金矿区41168中段414矿房119~123勘探线间的13号脉旁侧的细粒钾长石化岩。岩石呈肉红色,细粒结构,块状构造。在此钾长石化岩中偶见围岩残留体(被糜棱岩化),同时还可见有含金黄铁矿-石英微细脉。推测其与金矿化大体同时或稍早于金矿化。

3 锆石 SH R IM P U-Pb 定点定年研究

3.1 分析方法

锆石样品是从5~10 kg 新鲜岩石样品中分离出来, 锆石 U-Pb 分析在澳大利亚西澳 SH R IM P (Ⅱ) 实验室进行。详细的锆石 SH R IM P U-Pb 分析及数据处理方法请参阅有关文 献^[15-17]。

为了解锆石晶体内部结构和区分不同成因的锆石,在西澳大学(UWA)对锆石晶体进行 了背散射电子扫描(BSE)成象和二次电子(ESD)成象研究。这些图象可以反映出在普通光 学显微镜下无法观测到的锆石的内部结构,同时可使 SH R IM P 定点定年的测点布置达到最佳 程度^[18]。

2000年

3.2 分析结果

上述3个样品的 SH R IM P 分析结果分别列于表1、2、3,并分别投到 U-Pb 谐和图 (图1、2、3)上。

Table 1. SHRIMP U-Pb analyses of zircon from Dahuabei rock body (DHB-7 sample)															
测点 号	U /1 0- 6	Th ∕10-6	T h∕U	$\frac{^{204}\mathrm{P}\mathrm{b}}{^{206}\mathrm{P}\mathrm{b}}$	f 206 /%	$\frac{\frac{207}{P}}{\frac{206}{P}}$	误差	$\frac{^{208}\mathrm{P}\mathrm{b}}{^{206}\mathrm{P}\mathrm{b}}$	误差	$\frac{\frac{207}{P}b}{^{238}U}$	误差	$\frac{^{207}\text{Pb}}{^{235}\text{U}}$	误差	²⁰⁶ Pb/ ²³⁸ U 年龄/10 ⁶ a	谐和 率/%
1 - 1	3900	534	0.14	0.00003	0.05	0.0530	32	0.0421	7	0.055	2	0.40	1	346± 9	106
2-1	2166	771	0.36	0.00058	0.92	0.0534	88	0.0956	20	0.056	2	0.41	1	349 ± 10	1 01
4-1	4174	1577	0.38	0.00047	0.75	0.0535	55	0.1199	13	0.059	2	0.43	1	367±10	105
5-1	2245	577	0.26	0.00057	0.90	0.0532	85	0.0760	19	0.055	2	0.40	1	343± 9	102
6-1	1 31 6	362	0.28	0.00004	0.07	0.0526	50	0.0846	11	0.055	2	0.40	1	342± 9	109
7-1	2802	786	0.28	0.00016	0.26	0.0532	44	0.0847	10	0.055	2	0.40	1	344± 9	1 01
8-1	2421	776	0.32	0.00013	0.20	0.0534	47	0.0978	11	0.056	2	0.41	1	348 ± 10	1 01
9-1	4638	1253	0.27	0.00091	1.45	0.0533	70	0.0862	16	0.060	2	0.44	1	377±10	110
10-1	5896	654	0.11	0.00019	0.30	0.0525	33	0.0335	7	0.058	2	0.42	1	365 ± 10	118
11-1	1857	1245	0.67	0.00008	0.13	0.0532	43	0.2048	12	0.053	1	0.39	1	333± 9	98
12-1	107	129	1.20	0.00044	0.70	0.0568	504	0.4430	137	0.037	1	0.29	3	235± 7	48
13-1	1530	401	0.26	0.00623	9.88	0.0570	408	0.1085	94	0.044	1	0.35	0 3	278± 8	56
17-1	2376	760	0.32	0.00076	1.21	0.0533	106	0.1013	25	0.054	2	0.39	1	336± 9	99
20-1	2213	938	0.42	0.00005	0.08	0.0536	49	0.1295	12	0.055	0 2	0.41	1	346± 9	98
27-1	3251	558	0.17	0.00008	0.12	0.0532	36	0.0525	8	0.056	2	0.41	1	352 ± 10	105
36-1	2753	517	0.19	0.00040	0.64	0.0520	66	0.0569	15	0.057	2	0.41	1	360 ± 10	125
37-1	2330	596	0.26	0.00021	0.33	0.0530	56	0.0793	13	0.056	2	0.41	1	351 ± 10	107
39-1	1408	379	0.27	0.00014	0.22	0.0529	72	0.0827	16	0.059	2	0.43	1	367±10	114
40-1	6074	1110	0.18	0.00073	1.16	0.0541	64	0.0603	15	0.061	2	0.46	1	383±10	102
41-1	1503	786	0.52	0.00091	1.45	0.0519	135	0.1242	31	0.056	2	0.40	2	349±10	125
42-1	786	560	0.71	0.00011	0.17	0.0524	85	0.2316	23	0.055	2	0.40	1	348 ± 10	116
43-1	815	113	0.14	0.00009	0.15	0.0535	91	0.0406	20	0.056	2	0.41	1	349±10	100
44-1	3287	1225	0.37	0.00102	1.62	0.0524	91	0.1079	21	0.057	2	0.41	1	359 ± 10	119
44-2	1 2 0 1	322	0.27	0.00120	1.90	0.0574	162	0.0902	37	0.056	2	0.44	2	350±10	69
45-1	2917	893	0.31	0.00042	0.66	0.0533	64	0.0983	15	0.059	2	0.43	1	369±10	1 0 8
46-1	2952	408	0.14	0.00028	0.44	0.0526	56	0.0252	12	0.058	2	0.42	1	364±10	116
48-1	3670	357	0.10	0.00030	0.47	0.0534	61	0.0324	14	0.055	2	0.41	1	346± 9	91

表 1 大桦背岩体锆石 SHRIMP U-Pb 分析结果 (DHB-7样品)

注:表中误差数值为最末几位数字; f₂₀₆为非放射成因²⁰⁶Pb 占全部²⁰⁶Pb 的百分比;表中数据为连续7次分析的平均值,误差为1σ (最终年龄的误差则为2σ);表2、3同此表

对于 DHB-7样品, 在总共27个分析中有25个形成一个相关组, 并切割一致曲线(图1), 其 加权平均年龄为(353±7)×10⁶ a, x²检验值为1.54。对这25个分析进行回归组合, 即除去那 些离散度较大的分析, 结果表明虽然回归后 x²检验值有所降低, 但年龄的加权平均值均在25 个(n)分析平均值(353±7)×10⁶ a 的误差范围之内。因此认为(353±7)×10⁶ a 代表了大 桦背岩体结晶年龄。测点13-1得到一个较小的不一致年龄(278±8)×10⁶ a, (谐和率仅56%), 且该测点的普通铅含量在所有分析中是最高的(9.88%, 表1); 测点12-1也给出一个较小的不 一致年龄(235±7)×10⁶ a, (谐和率仅48%)。在U-Pb 谐和图上, 上述两个分析点均落在一 致曲线下方(图1), 因而这两年锆石被解释为经历了放射性成因铅丢失。

表 2 哈达门沟金矿区伟晶岩脉中锆石 SHRIMP U-Pb 分析结果 (HDMG-11样品)

Table 2. SHRIMP U-Pb analyses of zircon from pegmatite veins in

the Hadam engou gold ore distric	et (HDMG-11	sample)
----------------------------------	-------------	---------

测点 号	U /1 0 ⁻⁶	Th ∕10-6	T h∕U	$\frac{^{204}\mathrm{P}\mathrm{b}}{^{206}\mathrm{P}\mathrm{b}}$	f 206 /%	$\frac{^{207}\mathbf{P}\mathbf{b}}{^{206}\mathbf{P}\mathbf{b}}$	误差	$\frac{^{208}\mathrm{P}\mathrm{b}}{^{206}\mathrm{P}\mathrm{b}}$	误差	$\frac{\frac{206}{P}b}{^{238}U}$	误差	$\frac{^{207}\text{Pb}}{^{235}\text{U}}$	误差	²⁰⁷ Pb/ ²³⁸ U 年龄/10 ⁶ a	谐和 率/%
1-1	835	26	0.031	0.00001	0.014	0.1119	4	0.0087	3	0.318	6	4.91	9	1831 ± 6	97
2-1	323	125	0.387	0.00004	0.063	0.1120	6	0.1112	10	0.318	6	4.91	9	1833 ± 10	97
3-1	340	143	0.421	0.00002	0.038	0.1123	6	0.1170	9	0.332	6	5.15	10	1937±9	1 01
5-1	357	133	0.373	0.00003	0.049	0.1127	6	0.1060	9	0.328	6	5.09	10	1843±9	99
6-1	311	122	0.392	0.00000	0.000	0.1120	6	0.1089	8	0.337	6	5.21	10	1833±9	102
7-1	189	55	0.291	0.00008	0.128	0.1133	9	0.0830	15	0.321	6	5.02	10	1853 ± 14	97
9-1	883	104	0.118	0.00002	0.030	0.1118	3	0.0343	4	0.333	6	5.13	9	1829±6	1 01
24-1	296	115	0.389	0.00006	0.095	0.1118	7	0.1086	11	0.332	6	5.12	10	1829±11	1 01
29-1	354	133	0.376	0.00001	0.017	0.1112	6	0.1039	9	0.337	6	5.24	10	1845±9	1 01
30-1	293	117	0.399	0.00003	0.049	0.1138	6	0.1132	11	0.335	6	5.25	10	1861 ± 10	100
41-1	356	152	0.427	0.00005	0.083	0.1119	8	0.1221	14	0.324	6	4.99	10	1830±13	99
42-1	431	201	0.466	0.00005	0.086	0.1129	7	0.1327	13	0.325	6	5.06	10	1846 ± 12	98
43-1	270	91	0.337	0.00051	0.812	0.1135	11	0.0987	23	0.322	6	5.04	11	1857±18	97
44-1	379	133	0.351	0.00006	0.093	0.1121	6	0.0988	9	0.333	6	5.16	10	1834± 9	1 01
45-1	357	155	0.434	0.00002	0.040	0.1100	6	0.1241	10	0.341	6	5.17	10	1800 ± 10	105
46-1	373	169	0.453	0.00000	0.002	0.1126	7	0.1323	12	0.327	8	5.08	13	1842 ± 10	99
47-1	98	83	0.847	0.00000	0.005	0.1625	14	0.2463	26	0.447	_11 (10.01	28	2482 ± 14	96
48-1	461	218	0.473	0.00001	0.010	0.1130	7	0.1357	<u></u> 1	0.308	8	4.81	12	1848 ± 10	94

对 HDM G-11 样品,共对18 颗锆石进行了18个点的分析。这 18个分析可分成两组:第一组只 包括一个分析(47-1点),其²⁰⁷Pb/ ²⁰⁶Pb年龄为(2482±28)×10⁶a。 该分析位于锆石的核部,且其年 龄为近一致年龄(谐和率96%,表 2),因而它被解释为继承锆石或 捕获锆石,且该年龄代表这颗继 承或捕获锆石的最小年龄。第二 组为主要锆石组,由17个分析组 成。在 U-Pb 谐和图上,它们形成 密集一簇并切割一致曲线或落在 谐和线附近(图2)。这17个分析的

组为主要锆石组,由17个分析组 图1 大桦背岩体(样品 DHB-7)锆石 SHRIMP U-Pb 谐和图 成。在 U-Pb 谐和图上,它们形成 Fig.1. SHRIMP U-Pb concordia plot of zircon (DHB-7 sam ple) 密集一簇并切割一致曲线或落在 from Dahuabei rock body.

加权平均²⁰⁷Pb/²⁰⁶Pb 年龄为(1835±7)×10⁶ a, 但其 x^2 检验值较大(1.81),因此,剔除离散 度较大的即最老和最年轻的两个分析结果(统计离群点),剩下15个(n)分析的加权平均为 (1836±5)×10⁶ a,其 x^2 检验值为0.68。该年龄被解释为伟晶岩脉的形成年龄。 法内海人论反细化始本也由进了 ompany

衣。	3 喧丛门沟金0	区钾化蚀变石甲氧	i (III SHRIMP	U-Pb 万州 竡禾((HDM-191年前)

八七十日

Table 3. SHRIMP U-Pb analyses of zircon from potash altered rocks in the Hadamengou gold ore district

测点 号	U /1 0 ⁻⁶	Th ∕10-6	T h∕U	$\frac{^{204}\mathbf{P}\mathbf{b}}{^{206}\mathbf{P}\mathbf{b}}$	f 206 /%	$\frac{^{207}\mathbf{P}\mathbf{b}}{^{206}\mathbf{P}\mathbf{b}}$	误差	$\frac{^{208}\mathbf{P}\mathbf{b}}{^{206}\mathbf{P}\mathbf{b}}$	误差	$\frac{\frac{206}{P}b}{^{238}U}$	误差	$\frac{{}^{207}\text{Pb}}{{}^{235}\text{U}}$	误差	²⁰⁶ Pb/ ²³⁸ U 年龄/10 ⁶ a	谐和 率/%
37-1	171	114	0.667	0.0004	0.654	0.0467	49	0.1953	112	0.0316	6	0.204	22	201±4	460
2-1	390	352	0.902	0.0000	0.001	0.0465	32	0.2868	77	0.0203	4	0.131	10	130±2	359
3-1	103	126	1.227	0.0022	3.505	0.0308	137	0.3377	322	0.0201	5	0.085	38	128±3	0
4-1	116	147	1.273	- 0.0002	0.000	0.0593	30	0.4245	87	0.0210	4	0.172	10	134±3	23
5-1	218	71	0.327	0.0002	0.265	0.0521	45	0.0868	96	0.0257	5	0.184	17	163±3	56
5-2	794	295	0.372	0.0001	0.182	0.0483	11	0.1201	22	0.0353	6	0.235	7	224± 4	192
6-1	608	163	0.267	0.0001	0.217	0.0504	21	0.0877	44	0.0238	4	0.165	8	152±3	71
6-2	624	99	0.158	0.0003	0.446	0.0474	18	0.0433	35	0.0274	5	0.179	8	174±3	246
7-1	250	182	0.730	0.0001	0.101	0.0501	42	0.2373	96	0.0200	4	0.138	12	128 ± 2	64
7-2	110	74	0.675	0.0001	0.232	0.0526	100	0.2111	229	0.0207	5	0.150	29	132±3	43
8-1	281	251	0.894	0.0001	0.146	0.4980	35	0.2825	83	0.0209	4	0.144	11	133±2	71
9-1	75	38	0.504	0.0000	0.000	0.0538	31	0.1596	55	0.0270	6	0.200	13	172±4	47
9-2	59	33	0.565	0.0005	0.733	0.0504	67	0.1806	151	0.0513	11	0.356	49	322± 7	151
10-1	159	79	0.500	0.0000	0.000	0.1651	10	0.1518	10	0.3883	70	8.842	174	2115 ± 32	84
10-2	394	131	0.333	0.0001	0.096	0.1701	7	0.0946	7	0.4158	72	9.750	179	2241 ± 33	88
13-1	106	119	1.113	0.0007	1.100	0.0448	106	0.3510	251	0.0210	5	0.130	31	134±3	0
14-1	160	156	0.971	- 0.0003	0.000	0.0537	24	0.3162	63	0.0209	4	0.155	8	134± 3	37
15-1	139	131	0.938	0.0000	0.000	0.0530	27	0.3087	69	0.0206	4	0.151	0.9	132±3	40
21-1	48	38	0.786	0.0001	0.181	0.0497	213	0.2722	493	0.0213	7 (0.146	63	136±4	75
23-1	172	179	1.036	0.0000	0.000	0.0503	20	0.3257	54	0.0277	0 5	0.192	9	176±3	85
24-1	232	210	0.902	0.0002	0.353	0.0459	49	0.2864	117	0.0203	4	0.129	14	130±2	0
25-1	102	52	0.505	0.0010	1.602	0.0411	94	0.1388	212	0.0257	6	0.146	34	164± 4	0
25-2	368	196	0.533	0.0003	0.524	0.0478	33	0.1634	73	0.0225	4	0.148	11	143±3	155
28-1	241	215	0.889	0.0004	0.614	0.0457	52	0.2716	1 21	0.0209	4	0.132	15	133±3	0
29-1	187	73	0.387	- 0.0001	0.000	0.0523	20	0.1219	30	0.0263	5	0.190	8	167±3	56
30-1	153	124	0.810	- 0.0001	0.000	0.0525	25	0.2624	58	0.0207	4	0.150	8	132±3	43
		AL	45												

HDM-19 样品的分析结果比较复杂, 总体上, 26个分析可以为两个相关组: 第一组由4个

(n)分析组成,其平均年龄为 (172±7)×10°a。第二组为主要的锆石组,由13个分析组成,它们在U-Pb谐和图上组成密集一簇并切割一致曲线(图3),这13个(n)分析的加权平均年龄为(132±2)×10°a,其x²检验值为0.66。其它分析比较散乱,其中有两个分析(测点10-1,10-2)分别给出(2115±32)×10°a和(2241±33)×10°a的²⁰⁶Pb/²³⁸U年龄,其它则散布于143×10°~322×10°a之间(表3)。由于HDMG-19样品为一钾化蚀

图 2 伟晶岩脉(样品 HDMG-11) 主锆石组 SHRIMP U-Pb 谐和图 Fig. 2. SHRIMP U-Pb concordia plot of main population of zircon (HDMG-11 sample) from the pegmatite vein.

++

нΛ

第19卷 第2期

变岩. 其中锆石情况比较复杂: 可能既有原岩变质岩的残留锆 石.又有该矿化岩石结晶时形成 的锆石。对于主要锆石组的锆 石.大多数具有典型的结晶生长 韵律环带. 所以认为主要锆石 组的平均年龄(132±2)×10°a 代表该矿化岩石的结晶年龄。而 第一组锆石的平均年龄 (172± 7) × 10⁶ a 代表该区另一次较重 要的地质事件的年龄。两个最老 年龄被解释为继承锆石的最小 年龄, 而它们的²⁰⁷Pb/²⁰⁶Pb 年龄 分别为 (2509±11) × 10⁶ a 和

图 3 蚀变岩(样品 HDM-19) 主锆石组 SHR IMP U-Pb 谐和图 Fig. 3. SHRIMP U-Pb concordia plot of main population of zircon (HDM-19 sample) from the altered rock.

(2558±7)×10°a, 说明该区存在大于25亿年的岩石即乌拉山群。其它单个散布的年龄则可能 kcdz. 是较老锆石不同程度铅丢失的结果。因而是无地质意义的。

地质意义 4

4.1 成岩成矿年龄

上述结果表明, 大桦背岩体形成于 (353±7) × 10° a, 属晚古生代海西早期产物。对此岩 体前人做过一些同位素定年工作,但所得结果相差十分悬殊,从165×10^{6[3]}~322×10⁶ a^[4],使 用的方法包括 K-Ar法、Rb-Sr等时线法和常规锆石 U-Pb 法。由于这些方法在地质学应用中 均具有一定的局限性[6],所以虽然本文所得结果比前人任何一种方法所得到的年龄都大,但它 却精确地反映了大桦背岩体的形成年龄。因为本文所用 SHRMP 方法在同位素定年中具有巨 大的优越性[67] 而且有详细的背散射和二次电子成象研究作基础 使分析测点均选择在锆石 晶体的最好部位 (无裂隙、无包裹体、无或放射晕较浅),因而分析结果准确可靠。大桦背岩 体及伟晶岩脉样品的分析结果十分集中也说明了这一点。

伟晶岩脉形成年龄为 (1836±5) × 10⁶ a, 属古元古代末期 (吕梁期) 产物。邹天人等[8]用 颗粒锆石 U-Pb 法得到哈达门沟金矿区山前钾化带的两个年龄分别为 (1975±12) × 10° a 和 (1981±14) × 10° a, 比本次所得结果稍大, 但也属吕梁旋回。这表明伟晶岩和山前钾化带均 为古元古代形成。邹天人等[8]所得年龄稍大的原因可能是他们所测锆石中有少量继承锆石混 染的结果、因为伟晶岩脉中已测到太古宙年龄的古老锆石。

对于成矿年龄,目前只有一种放射性同位素方法即 Re-Os 法可直接测定硫化物的形成年 龄[19], 但是大多数金矿床并不含适合做 Re-Os 测定的矿物 (如辉钼矿等), 所以一般是测定蚀 变矿物的年龄,并以蚀变矿物的年龄近似表示成矿年龄[9]。本文中的钾化蚀变岩本身含有石英 -硫化物细脉, 其形成年龄 (132±2) × 10° a。这说明哈达门沟金矿存在小于或近似等于该年龄 的矿化期,而这极有可能是主成矿期。因为野外研究表明,区内的钾化蚀变岩一般被石英-硫化

2000年

物脉穿切或蚀变岩破碎成角砾被石英-硫化物胶结。至于该区是否存在早期矿化作用,目前正在做进一步的研究。

上述结果清楚地表明, 伟晶岩脉和大桦背岩体分别形成于古元古代和海西早期, 而本区 金矿化却主要发生在中生代燕山晚期。这否定了前人普遍认为的本区大桦背岩体和金矿化均 形成于海西期, 同时也排除了金矿化与大桦背岩体和伟晶岩脉间有直接成因联系^[2-4]的可能 性。本次测得钾化蚀变岩 (132±2) × 10⁶ a 年龄的重大意义还在于, 虽然乌拉山地区与胶东地 区金矿的围岩及年龄不同, 但金矿成矿作用却几乎同时发生, 进一步证明是板块构造而不是 岩性控矿^[20]。

4.2 大地构造及岩石成因意义

所测伟晶岩脉的侵位年龄 (1836±5) × 10⁶ a 反映了古元古代吕梁旋回末期的一次构造-热事件; 大桦背岩体的年龄(353±7)×10⁶ a 则代表海西早期构造运动的产物。最近研究表明, 华北地块与蒙古古陆块或与安盖拉(Angara) 地块^[21]之间碰撞作用发生在晚泥盆世^[10,11]。大桦 背岩体的年龄为这一碰撞作用发生的时代提供了可靠的年龄学证据。蚀变岩样品中的第一组 锆石的年龄反映了容矿断裂构造发生韧性剪切变形的构造事件, 即中生代时本区发生的推覆 构造作用事件^[12,13]。

值得说明的是伟晶岩脉样品和钾化蚀变岩样品中均测到继承锆石或捕获锆石,其年龄为 2.48×10°~2.55×10°a,这与伟晶岩脉的围岩和蚀变岩的原岩均是新太古代的变质岩的地质 事实相一致。但是,被普遍认为重熔成因花岗岩的大桦背岩体¹⁻³¹中却未测出老的残留锆石, 这与胶东招掖地区重熔成因的玲珑和郭家岭花岗岩的情况明显不同,后者中含有大量继承锆 石^[14]。推测这可能有以下两个因素影响:一是大桦背岩体本身没有继承或捕获锆石;二是本次 分析未测到继承锆石。如果是第一种情况,那么有可能指示大桦背岩体与胶东地区岩体在成因 方面存在差异。背散射和二次电子图象分析未发现有明显的古老锆石存在,故认为第一种可能 性较大。详细的地质地球化学研究有助于解决这一问题。

5 结 论

(1) 矿化钾化岩及伟晶岩脉样品中均有大于2.5×10° a 的继承或捕获锆石存在,表明它 们的围岩 (乌拉山群) 的形成年龄应大于25亿年。

(2) 伟晶岩脉年龄为 (1836±5) × 10⁶ a, 形成于古元古代; 大桦背花岗岩年龄 (353±7) × 10⁶ a, 形成于海西早期; 矿化钾化岩的形成年龄表明本区存在小于或近于 (132±2) × 10⁶ a 的金矿化作用, 应属燕山晚期。这些年龄结果否定了前人普遍认为的本区大桦背岩体和 金矿化均形成于海西期, 同时也排除了金矿化与大桦背岩体和伟晶岩脉间有成因联系的可能 性。

(3) 大桦背岩体的形成年龄为华北地块与蒙古古陆块间的碰撞作用发生在海西早期提供 了进一步的年龄学证据。蚀变岩的年龄结果也指示本区控矿和容矿构造具有多期变形的演化 特征。

(4) SHRIMP 结果还指示大桦背花岗岩和中国胶东地区的重熔成因的玲珑花岗岩和郭家 岭花岗岩在岩石成因方面可能存有差异。 本研究项目得到中国-西澳经济技术研究基金的资助, 锆石样品的分离由冶金部天津地质研究院夏荷英女士完成, 锆石 U-Pb 分析是在西澳科廷 (Curtin) 工业大学、西澳地质调查所和西澳大学共同拥有的 SHR IMP (II) 上进行, 并由 Yum in Q iu 博士和 Neal M cN aughton 博士完成; 在野外工作中, 得到内蒙古黄金管理局、哈达门沟金矿的大力支持。在此对上述单位和个人表示感谢。

参考文献

- 1 郭砚田.内蒙古乌拉山"哈达门沟式"金矿床成矿地质特征.贵金属地质, 1992, 1 (2~3): 191~195.
- 2 聂凤军, 裴荣富, 吴良士等. 内蒙古乌拉山石英-钾长石脉型金矿床铅和硫同位素研究. 矿床地质, 1994, 13 (2): 106 ~ 117.
- 3 陈纪明,刘刚,李才春等.内蒙古乌拉山-大青山绿岩型金矿床地质.北京:地质出版社, 121.
- 4 中国人民武装警察部队黄金指挥部.内蒙古自治区哈达门沟伟晶岩金矿地质.北京:地质出版社,1995,85~87.
- 5 郎殿有. 内蒙古乌拉山金矿地质特征及成矿地质条件. 内蒙古地质, 1990, (2): 30~40.
- 6 孙大中. 前寒武纪地质年代学问题探讨. 中国区域地质, 1990, 6 (2): 289~ 300.
- 7 李献华, 刘颖, 涂湘林等. S型花岗岩中锆石 U-Pb 同位素体系的多阶段演化及其年代学意义---以桂北三防岩体为例. 矿物学报, 1996, 16 (2): 170~177.
- 8 邹天人,徐珏,夏凤荣.内蒙古自治区乌拉山金矿床的成因.矿床地质,1998,17 (增刊): 373~376.
- 9 莫测辉, 王秀璋, 关于侵入岩中金矿床成因研究若干问题的讨论. 地质论评, 1997, 43 (2): 139~147.
- 10 唐克东等. 中朝板块北侧褶皱带构造演化及成矿规律. 北京: 北京大学出版社, 1992, 277.
- 11 徐备,陈文斌.内蒙古北部华北板块与西伯利亚板块之间中生代造山带的结构及演化.中国科学 (D 辑), 1997, 27 (3): 227~232.
- 12 胡宝全,常忠耀,张文聪. 阴山 (包头段) 大型推覆构造基本特征及其与金矿区域成矿关系. 内蒙古地质, 1990, (1): 1~7.
- 13 郑亚东, G A Davis, 王琮等. 内蒙古大青山大型逆冲推覆构造. 中国科学 (D 辑), 1998, 28 (4): 289~ 295.
- 14 苗来成,罗镇宽,关康等,玲珑花岗岩锆石的离子质谱 U-Pb 年龄及其岩石学意义.岩石学报,1998,14 (2):198 ~ 205.
- 15 William s L S. Some observation on the use of zircon U-Pb geochronology in the study of granitic rocks. Trans. Royal Soc. Edinburgh: Earth Sci., 1992, 83: 447~ 369.
- 16 M iao E C, Luo Z K, Guan K, Huang J Z, W ang L G, M cNaughton N J, G roves D I. Zircon Sensitive H igh Resolution Ion M icroprobe (SHRIMP) study of granitoid intrusions in Zhaoye Gold Belt of Shandong Province and its im plication. Science in China, Series D, 1997, 40 (4): 361~369.
- 17 Wang L, Qiu Y M, McNaughton N J, Groves D I, Luo Z K, Huang J Z, Miao L C, Liu Y K. Constraint on crustal evolution and gold metallogeny in the NW Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews, 1998, 13: 275~ 291.
- 18 Qiu Y M, Groves D I, McNaughton N J, Dalstra H J. SHRIMP U-Pb in zircon and lead-isotope constraints on the tim ing and source of an Archaean granulite-hosted lode-gold deposit at Griffin's Find, Yilgarn Craton, Western Australia. Chronique De La Recherche Miniere, 1997, 529: 91~104.
- 19 Stein H J, Cathles L M. A special issue on the tim ing and duration of hydrothermalevents (preface). Econ. Geol., 1997, 92: 763~ 765.
- 20 Q iu Y M, Groves D I. Late A rchaean collision and delam ination in the Southwest Yilgarn Craton: the driving force for A rchaean orogenic lode gold m ineralization? Econ. Geol., 1999, 94 (1): 115~122.
- 21 Y in A, N ie S. A Phanerozoic palinspastic reconstruction of Ch ina and its neighbouring regions. In: Y in, A. and Harrison, M. (ed), The Tectonic Evolution of Asia. Cam bridge University Press, 1996, 442~486.

SHRIMP CHRONOLOGICAL STUDY OF THE GRANITOIDS AND MINERALIZATION IN THE HADAMENGOU GOLD DEPOSIT, INNER MONGOLIA

M iao Laicheng¹, Q iu Yum in², Guan Kang³, Neal M cnaughton², Q iu Youshou³, Luo Zhenkuan³ and David G roves²

 (1. China University of Geosciences, Beijing 100083; 2. Centre for Strategic Mineral Deposits, Department of Geology and Geophysics, the University of Western Australia, Nelands 6907, Australia; 3. Tianjin Gological Academy, Tianjin 300061)

Key words: Hadamengou, gold deposit, SHRIMP, chronology

Abstract

The Hadamengou gold deposit, located in Wulashan area of Inner Mongolia, namely the western part of the northern marginal zone of the North China Craton, is hosted in Archean metam orphic rocks of Wulashan Group. Dahuabei and Shadegai granites which intruded respectively into western and northern parts of the deposit are two major intrusions in the area. In addition, there is a swarm of pegmatite and diabase dikes. In this study, three zircon samples from the Dahuabeigranite, a pegmatite dike, and an altered rock, respectively, were analyzed by using the advanced Sensitive H igh Resolution Ion M icroProbe (SHRIMP) technique. The analytical results suggest that the pegmatite dike was formed at (1836 ± 6) × 10^6 a, the Dahuabei granite at $(353\pm7)\pm10^6$ a and the altered rock at $(132\pm2)\times10^6$ a. As the altered rock was m ineralized, the gold m ineralization in the area must have taken place at or after $(132\pm 2) \times 10^6$ a (Late Yanshanian). These dating results indicate that gold m ineralization in the area is at least 220×10^6 a younger than the Dahuabei granite and the pegmatite dikes. This rules out the possibility of direct genetic links between gold mineralization and the granite or pegmatite dikes. The age of the Dahuabei granite is consistent with the time of the collision between the North China and paleo-Mongolia blocks, which provides reliable chronological evidence for the collision. The above results suggest that, although Wulashan area and East Shandong are geographically far spaced, and the host rocks and ages of the gold deposits in the two regions are different, the gold mineralization in the two areas took place alm ost simultaneously. This further demonstrates that gold m ineralization is controlled by plate tectonics, not by petrology.