攀枝花铁矿床稀土元素特征*

Characteristics of Rare Earth Elements of Panzhihua Iron Deposit

温春齐1 曹志敏2 罗小军1 霍 艳1

(1 成都理工大学地球科学学院,四川 成都 610059; 2 青岛海洋大学,山东 青岛 266003) Wen Chunqi¹, Cao Zhimin², Luo Xiaojun¹ and Huo Yan¹

(1 Chengdu University of Technology, Chengdu 610059, Sichuan ,China; 2 Ocean University of Qingdao, Qingdao 266003, Shandong, China)

摘 要 通过对攀枝花铁矿床母岩辉长岩岩石、铁矿石及钛磁铁矿和黄铁矿矿物的稀土元素中子活化测 试分析及计算的有关参数统计表明,从围岩→赋矿岩石→铁矿石→钛磁铁矿→黄铁矿,其稀土元素总量(Σ REE)、轻重稀土比值(LREE/HREE)、含量比值(La/Yb、Ce/Yb、Eu/Sm等)、标准化比值(La_{cn}/Yb_{cn}、Ce_{cn}/Yb_{cn}) 及异常系数 δEu、δCe平均值均具逐渐降低的趋势,而中稀土、重稀土百分量却具有逐渐增高的特征,显示 其成岩、成矿过程是一个轻稀土元素逐渐亏损,而中稀土、重稀土元素相对富集的过程。

关键词 稀土元素 稀土参数 铁矿床 攀枝花

攀枝花铁位于著名的攀枝花—西昌成矿带上。该成矿带内存在一套古老变质岩系,发育着一系列历史 悠久、规模巨大的南北向或近于南北向断裂或断裂带。沿着南北向断裂或断裂带发育有不同时期、不同类 型的岩浆岩,形成一个规模宏伟的岩浆杂岩带。区内出露岩浆岩主要有辉长岩、正长岩、花岗岩、混合岩 及伟晶岩脉、花岗岩脉。与矿化有关的岩浆岩为辉长岩体⁰。到目前为止,在区内发现含矿岩体 25 个,其 中攀枝花、白马、太和、红格四个岩体赋存有大型钒钛磁铁矿矿床(《中国矿床》编委会,1994)。

1 矿床一般特征 0

攀枝花钒钛磁铁矿赋存于北东-南西向展布的辉长岩体中,矿体亦呈北东-南西向展布。矿床自北东向 南西由朱家包包、尖山、兰家火山和营盘山四个矿段组成。其中以朱家包包铁矿床规模最大。

矿体赋存于辉长岩体中下部,呈层状、似层状产出,产状与岩层产状一致。根据岩石韵律结构特征, 自下而上分为IX、WI、WI、VI、V、IV、III、II、I等9个矿层,其中WI、VI矿层较大。

矿石中矿石矿物主要为钛磁铁矿、钛铁矿及少量硫化物,脉石矿物主要为硅酸盐矿物(如斜长石、辉 石为主,含少量角闪石、橄榄石)及少量磷酸盐(如氟磷灰石)、碳酸盐矿物等;矿石中伴生有益成分除 铁、钛、钒外,还有钴、镍、铜、铬、锰、镓、钪等,有害成分有硫、磷等。矿石的构造主要有浸染状、 条带状、块状、流层状、斑杂状构造等;矿石的结构主要有粒状镶嵌结构、嵌晶、海绵陨铁结构、反应边、 交代结构、压碎结构、自形、半自形和他形粒状结构。

根据矿体形态、产状和矿石结构、组分及地球化学特征研究,我们认为矿床的形成至少经历了3个矿化期,即岩浆期、热液期和表生期,其中主要成矿期为岩浆期⁹。

^{*}本文得到国家自然科学基金(NSFC 40072037)和国家重点基础研究发展规划项目(973-G1999043200)资助

第一作者简介 温春齐,男,1945年生,博士,教授,从事矿床学教学与科研。

[●] 地质矿产部四川地质矿产勘查开发局攀枝花地质队.1998.四川省攀枝花市攀枝花钒钛磁铁矿朱家包包矿区生产勘探地质报告.

❷ 温春齐等. 2002. 攀枝花钒钛磁铁矿矿床地质特征.

岩石、矿石稀土元素特征 2

根据攀枝花铁矿床特征,本次对矿体围岩——辉长岩(2件)、钛磁铁矿矿石(4件)进行了中子活化 稀土元素分析,其结果及部分计算参数见表 1:经 C1 球粒陨石(Anders E and Grevesse N, 1989)标准化后 所作的的稀土元素分布型式如图1所示。

表1 攀枝花铁矿床稀土元素及部分参数值

戽			w _{B, 实测值} /10 ⁻⁶								计算参数值											
号	样号	名称	La	Ce	Nd	Sm	Eu	Tb	Yb	Lu	ΣREE	L/H	La/ Sm	Sm/ Nd	Eu/ Sm	La/ Yb	Ce/ Yb	La _{cn} / Yb _{cn}	Ce _{cn} / Yb _{cn}	δEu	δ Ce	备注
1	P-2	辉长岩	44.1	106	80.8	17.9	4.98	3.06	3.93	0.46	325.53	5.52	2.46	0.22	0.28	11.21	26.95	7.76	7.26	0.858	0.809	围岩岩石
2	P8-2	辉长岩	6.73	9.63	7.68	2.35	0.81	0.44	1.25	0.12	37.92	3.37	2.86	0.31	0.34	5.384	7.70	3.73	2.075	1.042	0.618	矿层中的脉石
3	P8-3	铁矿石	0.31	0.66	0.78	0.15	0.03	0.05	0.18	0.02	3.24	1.85	2.07	0.19	0.2	1.72	3.67	1.19	0.99	0.456	0.673	WI矿层下部
4	P8-5	铁矿石	2.1	4.22	3.39	1.01	0.43	0.29	0.12	0.01	15.72	3.27	2.08	0.30	0.43	17.5	35.17	12.12	9.47	1.25	0.742	WI矿层中部
5	P8-7	铁矿石	8.84	6.05	9.32	2.06	0.72	0.29	0.74	0.05	35.53	4.87	4.29	0.22	0.35	11.95	8.18	8.27	2.20	1.053	0.306	WW矿层上部
6	P4-2	铁矿石	5.48	4.82	6.23	1.18	0.26	0.29	0.65	0.05	24.65	3.90	4.64	0.19	0.22	8.43	7.41	5.84	2.00	0.652	0.381	IV矿层
7	P9-1	钛磁铁矿	5.05	2.3	5.12	1.69	0.33	0.62	1.96	0.11	26.84	1.44	2.99	0.33	0.19	2.58	1.17	1.78	0.32	0.585	0.208	IX矿层
8	9S-1	钛磁铁矿	1.09	2.51	5.06	0.55	0.18	0.14	0.13	0.01	12.83	5.12	1.982	0.11	0.33	8.385	19.31	5.80	5.20	0.922	0.424	IX矿层
9	P8-4	钛磁铁矿	1.48	1.85	2.71	0.88	0.26	0.31	1.48	0.19	14.72	1.15	1.68	0.32	0.29	1.0	1.25	0.69	0.34	0.861	0.434	₩矿层
10	P8-1	钛磁铁矿	5.05	8.04	5.45	0.96	0.23	0.36	0.70	0.06	26.67	3.85	5.26	0.181	0.24	7.21	11.49	4.99	3.09	0.702	0.707	₩矿层
11	P6-1	钛磁铁矿	5.76	5.83	10.2	1.47	0.24	0.48	1.25	0.14	34.44	3.21	3.92	0.14	0.16	4.61	4.66	3.19	1.26	0.487	0.350	VI矿层
12	P5-2	钛磁铁矿	3.41	5.68	3.77	1.03	0.14	0.18	0.2	0.02	18.04	4.97	3.311	0.27	0.14	17.05	28.4	11.80	7.65	0.399	0.736	V矿层
13	P4-2b	钛磁铁矿	5.83	2.23	8.22	1.45	0.29	0.43	0.89	0.06	27.13	2.92	4.021	0.18	0.2	6.55	2.506	4.53	0.67	0.596	0.149	IV矿层
14	B02-1	黄铁矿	0.32	0.3	0.77	0.22	0.06	0.07	0.11	0.01	3.03	1.54	1.45	0.29	0.273	2.91	2.73	2.014	0.735	0.678	0.306	VI矿层大脉
15	6SS-2	黄铁矿	0.28	0.36	0.72	0.18	0.03	0.06	0.2	0.02	3.01	1.34	1.56	0.25	0.167	1.40	1.80	0.969	0.485	0.397	0.406	VI矿层细脉
	. O IV	tet I . D. derzierr		12-11-1	х »У п.э.,	1 7	1. 1. 1	- A m	Heat. A	1 6	> > >	× 1 V			77.40	TITS I	11.11			vala -		

注:① 样品由成都理工大学核技术学院中子活化分析室周蓉生分析;② 计算稀土总量(ΣREE)及轻重稀土比值(LREE/HREE)时Pr,Gd,Dy, Ho,Er、 Tm的估计值采用内插外推法(陈德潜等,1990) 求得; ③ 球粒陨石标准据Anders et al. (1989);异常系数 δEu=2×Eu_{en}/(Sm_{en}+Gd_{en}); δCe=2× Cecn/(Lacn+Prcn)

2.1 辉长岩的稀土元素

从表1统计的有关参数可见,攀枝花铁矿围岩稀土元素总量ΣREE变化较大(变异系数为58.5%),仅 就2件样品而言,其变化范围从37.9×10⁻⁶~325.5×10 20 ⁻⁶,平均值为 181.7×10⁻⁶; 但LREE/HREE比值变化较 10 小, 变化范围从 3.37~5.52, 平均值为 4.45, 显示轻稀 50 土富集的特点; 在稀土元素分布型式图(Bou M.1991) (图1)上总体呈右倾型。稀土元素含量比值La/Sm变化 样品/球粒陨石 (2.86 和 3.20)相近, 平均值为 2.66; Eu/Sm比值 (0.28 10 和 0.34, 平均值为 0.31)、Sm/Nd比值(0.22 和 0.31, 平 5 均值为 0.26) 变化亦不大: La/Yb比值(5.38 和 11.21, 平均值为 8.30)、Ce/Yb比值(7.70 和 26.95, 平均值为 17.32)变化较大。标准化Lacn/Ybcn值分别为 3.73 和 7.76, 1 平均值为 5.74; Ceen/Yben值分别为 2.08 和 7.26, 平均值 为 4.67。异常系数 δEu为 0.86 和 1.04, 平均值为 0.95; 0.4 δCe为 0.62 和 0.81 (平均 0.71);显示岩石中Eu为弱不 亏损到低正铕异常,而Ce稍有亏损的特征。

据外围渡口务本、红格岩体和白马岩体6件辉长岩 岩石稀土元素(杨瑞瑛等, 1985)资料统计,辉长岩稀

元素变化范围

土元素总量 SREE变化亦大(从 24.0×10⁻⁶~261.3×10⁻⁶), 平均值为 177.0×10⁻⁶, 与攀枝花成矿岩体辉长岩 的稀土元素总量(181.7×10⁻⁶)基本一致; LREE/HREE比值变化较小, 变化范围 4.00~9.22, 平均值为 7.82, 轻、重稀土比值明显高于攀枝花成矿岩体(4.45); 与攀枝花成矿岩体一样为轻稀土富集型。

2.2 矿石的稀土元素

4 件铁矿石的稀土元素总量 Σ REE变化大,从 3.24×10⁻⁶~35.53×10⁻⁶,平均值为(19.78±13.68)×10⁻⁶,明显低于辉长岩的稀土元素总量(181.7×10⁻⁶);铁矿石的LREE/HREE比值变化较大(变异系数为69.2%),从 1.85~4.88,平均值为 3.47±1.27,显示轻稀土富集特点;铁矿石稀土元素含量La/Sm比值为2.07~4.64,平均值为3.27±1.39;Eu/Sm比值为0.2~0.426,平均值为0.30±0.11;显示轻重稀土富集的La/Yb比值为1.7~17.5,平均值为9.90±6.61;Ce/Yb比值为3.67~35.17,平均值为13.61±12.56。球粒陨石标准化值La_{cn}/Yb_{cn}变化较大,为1.19~12.12,平均值为6.85±4.58;Ce_{cn}/Yb_{cn}值为0.99~9.47,平均值为3.67±3.91,表明铁矿石具有轻稀土富集的特点。异常系数*δ*Eu变化为0.46~1.25,平均值为0.85±0.36;*δ*Ce变化为0.31~0.74,平均值为0.53±0.21,显示铁矿石具Eu负异常和弱正异常及明显的Ce负异常特点。在稀土元素分布型式图(图1)上,铁矿石稀土元素的上限近于辉长岩稀土元素的下限。

3 矿物的稀土元素特征

本次对攀枝花铁矿床中的钛磁铁矿矿物(7件)和黄铁矿矿物(2件)进行了中子活化稀土元素分析, 其结果如表1所示;经C1球粒陨石标准化后所作的矿物的稀土元素分布型式如图2所示。

3.1 钛磁铁矿稀土元素特征

矿石中的钛磁铁矿测试统计分析表明,稀土元素总量ΣREE变化不是太大(变异系数为 34.3%),从

12.83×10⁻⁶~34.44×10⁻⁶, 平均值为(22.95±7.88)×10 ⁻⁶,明显低于辉长岩的稀土元素总量为 181.7×10⁻⁶, 而与矿石的稀土元素总量(19.78±13.68)×10⁻⁶相近, 显示钛磁铁矿与矿石的亲缘关系; 钛磁铁矿的 LREE/HREE比值变化不大(变异系数为 48.2%),从 1.15~5.128, 平均值为3.24±1.56, 显示轻稀土略有富 集特点; 钛磁铁矿稀土元素含量La/Sm比值为 1.68~ 5.26, 平均值为 3.31±1.24; Eu/Sm比值为 0.14~0.33, 平均值为 0.22±0.07; 显示轻重稀土富集的La/Yb比值 为 1.00~17.05, 平均值为 6.77±5.23; Ce/Yb比值为 1.17~19.31, 平均值为 9.83±10.54。稀土元素球粒陨 石Lacn/Ybcn标准化值变化较大,为0.69~11.81,平均值 为 4.69 ± 3.62; Cecn/Ybcn 值为 0.34~7.65, 平均值为 2.65 ±2.84, 表明钛磁铁 矿也略具轻稀土富集的特点。 异常系数 δEu变化从 0.49~0.92, 平均值为 0.65±0.19, 变异系数为 29.3%; δCe 变化从 0.15~0.43, 平均值 为 0.43 ± 0.30, 变异系数为 52.5%; 在稀土元素分布型

式图(图2)上,亦表明钛磁铁矿明显具负Eu异常和负Ce异常的特点,但明显不同于沉积变质型和接触交代型的钛磁铁矿稀土元素的特点(温春齐,1989);与大洋中脊玄武岩中钛磁铁矿(Schock H H,1979)相比有相似之处,但稀土参数平均值均偏低。

3.2 黄铁矿稀土元素特征

2 件黄铁矿中子活化分析(表 1)测试统计分析表明,稀土元素总量变化很小(变异系数为 4.7%), 从 3.03×10⁻⁶~3.01×10⁻⁶,平均值为(3.02±0.01)×10⁻⁶,明显低于辉长岩、矿石及钛磁铁矿的稀土元素 总量;黄铁矿的LREE/HREE比值变化不大(变异系数为 9.6%)且为低值(平均值为 1.44±0.14);稀土元 素含量比值La/Sm为 1.46~1.56,平均值为 1.51±0.07;Eu/Sm比值为 0.17~0.27,平均值为 0.22±0.07;显 示轻重稀土富集的La/Yb比值为 1.4~2.91,平均值为 2.15±1.07;Ce/Yb比值为 1.80~2.72,平均值为 2.26 ±0.65。稀土元素球粒陨石(La/Yb) cn标准化值变化较大,为 0.97~2.01,平均值为 1.49±0.74;Ce_{cn}/Yb_{cn} 值为 0.48~0.73,平均值为 0.61±0.18,表明黄铁矿不具明显轻稀土富集的特点。异常系数 δEu变化较大 (变异系数为 37.0%),从 0.40~0.68,平均值为 0.54±0.20; δCe变化从 0.30~0.41,平均值为 0.36±0.07 (变异系数为20.1%);表明黄铁矿更具负Eu异常和明显负Ce异常的特点。

4 讨论与结论

对攀枝花铁矿床各类样品稀土元素参数平均值如表 2。通过分析研究认为:

表 2 攀枝花钒钛磁铁矿各类样品稀土元素参数平均值

类型	样数	LREE	HREE	ΣREE	L/H	LR%	MR %	HR%	La/Yb	Ce/Yb	La/Sm	Eu/Sm	LanYbn	Ce _a /Yb _a	δEu	δCe
外围	6	158.21	18.81	177.02	7.82	84.73	12.18	3.09	23.1	47.57	3.198	0.65	15.99	12.81	1.981	0.732
岩石	4	152.42	29.30	181.72	4.45	79.06	14.50	6.43	8.30	17.33	2.66	0.31	5.74	4.67	0.950	0.713
铁矿石	4	15.81	3.97	19.78	3.47	74.34	17.34	8.32	9.90	13.61	3.27	0.30	6.85	3.66	0.853	0.525
银磁知	7	16.73	6.23	22.95	3.24	71.69	16.88	11.44	6.77	9.83	3.31	0.22	4.69	2.65	0.650	0.430
黄珠矿	2	1.78	1.24	3.02	1.44	57.49	26.92	15.58	2.16	2.26	1.50	0.22	1.49	0.61	0.538	0.355

注: (1) 矿区外围辉长岩体岩石据杨瑞瑛等(1985)资料统计; (2) L/H 为轻重稀土比值, LR%为轻稀土百分量, MR%为中稀土百分量, HR%为重稀土百分量。

(1)该矿床稀土元素总量(ΣREE/10⁻⁶)变化较大(3.01~325.53)。各类样品中,其平均值以辉长岩 最高(为181.72)与外围辉长岩ΣREE平均值(177.02)相近;次为铁矿石(19.78)和钛磁铁矿(22.98),两 者平均值相近;而黄铁矿平均值(3.02)最低。由此显示本区成岩成矿过程是一个稀土元素总量降低的过程。

(2) 轻重稀土元素(LREE/HREE)比值平均值,从外围辉长岩,到矿区辉长岩、铁矿石,再到钛磁铁矿、黄铁矿,随着成岩、成矿过程的继续,LREE/HREE具有逐渐降低的趋势;经统计稀土元素三分量,随着成岩成矿过程的继续,LREE百分比具有逐渐降低的趋势,而中稀土、重稀土却具有逐渐增大的趋势。显示本区成岩成矿过程是一个轻稀土元素逐渐亏损,而中稀土、重稀土却逐渐相对富集的演化过程(表 2)。

(3)元素含量比值如 La/Yb、Ce/Yb、La/Sm 在成矿过程中亦具有逐渐降低的趋势,但岩石、铁矿石 及钛磁铁矿其相应比值都相近,表明可能属同一成矿期产物;而黄铁矿的同类比值显然较低,暗示其属另 一成矿期产物。稀土元素标准化比值如 Lacn/Ybcn、Cecn/Ybcn 亦具有相似特点。

(4) 异常系数,从外围辉长岩、矿区辉长岩、铁矿石、钛磁铁矿到黄铁矿,其异常系数 δEu、δCe 平 均值具有规律性降低的趋势。

综上所述,通过对攀枝花铁矿各类稀土元素测试分析研究认为,攀枝花铁矿床形成过程中,稀土元素 具有明显的规律性变化:从岩石、铁矿石、钛磁铁矿、黄铁矿,其ΣREE、LREE/HREE、La/Yb、Ce/Yb、 La/Sm、Lacn/Ybcn、Cecn/Ybcn 及 δEu、δCe 等计算参数平均值均具有逐渐降低,而中稀土、重稀土却具 有增高的趋势,显示其成岩-成矿过程是一个统一的系统。按稀土元素特征,可将其成岩-成矿过程分为 3 个期次:即成岩期(形成辉长岩体)、主成矿期(岩浆期形成铁矿)和次成矿期(热液期形成硫化物矿)。 主成矿期形成的铁矿石和钛磁铁矿,其稀土元素的各种计算参数及其平均值十分相近,在稀土元素分布型 式图上其分布范围也相近,显示其为同一成矿期的产物。与外围辉长岩岩石的同类值相比,除中稀土、重 稀土百分量平均值高于岩石外,其余均明显低于岩石,但矿层中的辉长岩(P8-2)却与铁矿石、钛磁铁矿 的稀土元素参数值相似,显示矿层中的岩石、铁矿石和钛磁铁矿是同期产物。热液期形成的黄铁矿与主成 矿期相比,显示其为次成矿期产物。

野外期间得到攀枝花矿业公司及朱家包包铁矿胡国辉科长、杜永平高工的大力支持,室内研究得到徐 新煌教授的热心帮助,在此深表谢意。

参考文献

- 陈德潜,陈 刚.1990. 实用稀土元素地球化学[M]. 北京:冶金工业出版社.
- 温春齐. 1989. 铜官山铁铜矿床中显微球粒磁铁矿的发现及其成因意义[J]. 矿床地质, 8(4): 61~65.
- 杨瑞瑛,黄忠祥,李继亮.1985.攀西裂谷火成岩组合的微量元素地球化学[J].中国科学,B辑,9:844~854.
- 《中国矿床》编委会. 1994. 中国矿床[M]. 北京: 地质出版社.401~407.
- Anders E. and Grevesse N. 1989. Abundances of the elements meteortic and solar[J]. Geochimica et Cosmochimica Acta 53 (1): 197~214.
- Schock, H. H. 1979. Distribution of rare-earth and other trace elements in magnetites[J]. Chemcal Geology ,26 (1/2): 119~133.

Bou M. 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 93 (3/4): 219~230.