文章编号 10258-7106(2009)05-0621-12

安徽金寨银山钼-铅-锌多金属矿床 Re-Os 和 有关岩浆岩⁴⁰Ar-³⁹Ar 年龄测定^{*}

徐晓春1楼金伟2陆三明2谢巧勤1,褚平利1,尹 滔1

(1 合肥工业大学资源与环境工程学院,安微 合肥 230009;2 安徽省公益性地质调查管理中心,安微 合肥 230001)

摘 要 近年,在安徽金寨银山地区,发现了钼-铅-锌多金属矿床,赋矿岩石为中酸性岩浆岩。岩浆岩中的黑云 母和角闪石单矿物的⁴⁰Ar-³⁹Ar 同位素地质年龄测定表明,矿区内的中粒二长花岗岩、细粒二长花岗岩和细晶闪长岩 脉分别形成于(136.8±1.6)Ma、(130.4±1.2)Ma 和(125.4±1.0)Ma,为燕山晚期早白垩世侵入岩。根据岩体产 状和接触关系,赋矿石英正长(斑)岩和爆发角砾岩的形成晚于二长花岗岩和细晶闪长岩脉。矿区内,钼矿体和铅锌 矿体主要呈脉状产于不同岩性的岩浆岩体中,钼矿体主要发育于爆发角砾岩中心附近的石英正长斑岩中,铅锌矿体 则主要赋存在二长花岗岩体中。钼矿床中辉钼矿的 Re-Os 同位素模式年龄为(112.6±1.3)Ma 和(113.5±1.3) Ma。根据矿体与岩浆岩的相互关系以及同位素地质年龄测定,矿区内的钼-铅-锌多金属矿床与石英正长斑岩的形成 时间接近,成矿与浅成-超浅成偏碱性岩浆的侵入和相关的热液作用有关,属于斑岩-隐爆角砾岩型矿床。结合前人 的研究成果,笔者认为.该区的岩浆岩和钼-多金属矿床形成于中国东部大规模岩石圈减薄、拆沉和热侵蚀的地球动 力学背景,大别造山带应力场由挤压转化至伸展阶段以后;区内的钼-多金属矿床归属东秦岭-大别钼成矿带的东延 部分,是中国东部 EW 向大规模成矿带的组成部分。

关键词 地球化学 洞位素地质年龄 相-铅-锌多金属矿床 岩浆岩 银山地区 淦寨 安徽 中图分类号:P618.65;P618.4;P618.43 文献标志码 A

Re-Os ages of molybdenum-lead-zinc polymetallic deposits and ⁴⁰Ar-³⁹Ar ages of related magmatic rocks in Yinshan area, Jinzhai, Anhui Province

XU XiaoChun¹, LOU JinWei², LU SanMing², XIE QiaoQin¹, CHU PingLi¹ and YIN Tao¹ (1 Resources and Environment Engineering School, Hefei University of Technology, Hefei 230009, Anhui, China; 2 Public Management Center of Geological Investigation of Anhui Province, Hefei 230001, Anhui, China)

Abstract

In recent years, molybdenum-lead-zinc polymetallic deposits were discovered in Yinshan area, Jinzhai, Anhui Province. The ore bodies are hosted mainly in Yanshanian magmatic rocks. Dating results of 40 Ar/ 39 Ar isotopic ages of biotite and hornblende in magmatic rocks show that medium-grained adamellite, fine-grained adamellite and fine-granined diorite in the ore district were formed respectively in (136.8±1.6) Ma, (130.4± 1.2) Ma and (125.4±1.0) Ma, suggesting that they are Early Cretaceous products formed during late Yanshanian movement. According to their attitudes and relationship, quartz-syenite (porphyry) and explosion-breccia were formed later than adamellite and diorite. Regional magmatism evolved from high potassium calc-alkaline to alkaline. Molybdenum and lead-zinc deposits occur in the veined form in different lithologic magmatic rocks, and molybdenum deposits mainly occur in quartz syenite (porphyry) distributed in the center of explosion-breccia.

* 本文得到国家自然科学基金项目(40972063)资助

第一作者简介 徐晓春,男,1961年生,博士,教授,博士生导师,主要从事矿床学研究。Email:xuxiaoch@sina.com

收稿日期 2009-02-18;改回日期 2009-08-12。许德焕编辑。

The Re-Os isotopic model ages of molybdenite in molybdenum deposits are (112.6 ± 1.3) Ma and (113.5 ± 1.3) Ma, which are considered to be the ages of regional molybdenum deposits. Geological characteristics and isotopic ages show that the molybdenum-lead-zinc polymetallic deposits may genetically related to the emplacement and hydrothermal activities of the late stage quartz syenite (porphyry). These deposits should thus belong to shallow-seated or ultra-shallow-seated porphyry-explosion-breccia deposits. In combination with the achievements made by previous researchers, the authors hold that the molybdenum-lead-zinc polymetallic deposits and related magmatic rocks were formed in a geodynamic setting of regional large-scale lithospheric thinning, delamination and thermal erosion in East China, and also in a regional stress field formed during the conversion of the Dabie orogenic belt to the extension stage. The molybdenum polymetallic deposits are controlled by the EW-trending structures, and belong to the East Qinling-Dabie molybdenum belt, a part of the larger EW-trending metallogenic belt in eastern China.

Key words: geochemistry, isotopic age, molybdenum-lead-zinc polymetallic deposit, magmatic rock, Yinshan area, Jinzhai, Anhui Province

大别造山带的俯冲造山作用及其地球动力学过 程长期以来一直受到国内外地质学家们的广泛关注 (Okay et al. ,1989 ;Hacker et al. ,1998 ;Li et al. , 2000 徐树桐等 ,2002),同时 ,该造山带内的金属成 矿作用也日益受到重视(彭智等,2005;杨泽强, 2007)。业已开展的地质调查和勘探工作成果表明, 大别造山带中生代岩浆活动强烈,钼、金、银、铅、锌 矿化明显 ,尤其是在该带北侧的北淮阳构造带西段 (河南段),发育有大型金和银矿床❶❷(高廷臣, 1993) 近年又发现了汤家坪大型斑岩型钼矿床(杨 泽强 2007)。在北淮阳构造带的东段(安徽段),也 显示出良好的找矿前景,发现了较强的金、银及钼-铅-锌矿化^❸ 近年 ,在银山地区 ,经勘查进一步证实 该区可能存在规模较大的钼矿床。但以往对该区的 多金属矿床及相关岩浆岩的研究工作却做得较少, 有关岩浆岩和金属矿床同位素地质年龄的报道则更 少。因此 本文对安徽金寨银山地区的岩浆岩及相 关矿床进行了同位素地质年代学研究 ,以期确定该 区岩浆演化及其与多金属矿床的成因关系 ,为区域 找矿提供必要的资料和依据。

- 1 矿区地质特征
- 1.1 区域地质背景 安徽金寨银山地区位于大别造山带的北侧,北

淮阳构造带东段(安徽段)的西部,桐柏-桐城断裂带 (F4和F5)与商城-麻城断裂带(F9)交汇部位的北东 侧,亦即桐柏-桐城断裂与泗河断裂(商城-麻城断裂 的派生断裂)交汇而构成的"入"字型构造的锐角处 (图1)。

区内,出露的地层为中元古界卢镇关岩群的变 火山-沉积岩,其岩性主要为黑云斜长片麻岩、角闪 斜长片麻岩和花岗片麻岩,强烈的岩浆侵入作用将 其肢解而呈残留体产出(图2);褶皱构造不发育,主 要发育断裂和裂隙构造,尤以 NE-NEE 向断裂最为 发育,其次为 NW 向断裂(图2);岩浆岩分布广泛, 主要为燕山期,以中酸性岩为主,岩石种类繁多;发 育以钼和铅锌为主的多金属矿床,伴生有金和(或) 银等(陆三明等 2005 彭智等 2005)。

1.2 岩浆岩特征

银山地区中生代岩浆活动强烈,形成大面积分 布的岩浆岩。区内主要岩体为商城花岗岩体的南延 部分,岩性以二长花岗岩为主,有少量花岗岩、花岗 闪长岩、闪长岩、石英正长岩和石英正长斑岩等。花 岗岩按其结构和矿物组成又可分为细粒二长花岗 岩、中粒二长花岗岩和似斑状花岗岩。岩浆岩的岩 石化学成分显示出高钾富碱的特征(图3、图4),大 多数岩石属高钾钙碱性系列,部分属于橄榄玄粗岩 系列,反映出岩浆岩由钙碱性向碱性过渡的特征。

根据区域内诸岩浆岩体间的相互关系,前人将

❷ 中国地质大学. 1995. 河南省大别山北坡金银及多金属矿成矿地质条件及成矿预测. 内部资料.

①河南地质调查三队. 1993. 桐柏-大别造山带(北坡)金矿地质、地球物理、地球化学找矿模型、评价指标的研究及预测. 内部资料.

❸ 安徽省地质矿产局 313 地质队,1992、安徽省金寨地区浅变质岩系金、多金属矿产成矿与找矿预测,内部资料。

图 1 大别造山带地质略图(据杨泽强 2007 修改)

1—中新生代地层 (K-E);2—二郎坪群 (Pt₃-Pz);3—龟山岩组(Pt₂g) 南湾组(Dn);4—肖家庙岩组(Z-Ox);5—秦岭岩群(Pt₂qn),卢镇关 岩群(Pt₂lz);6—桐柏-大别变质杂岩(Ar₃-Pt₁);7—红安岩群(Pt₃);8—榴辉岩;9—白垩纪火山岩(K);10—石炭系;11—燕山期花岗岩;
12—晋宁期花岗岩;13—地质界线;14—断裂带及编号;15—钼矿床;Ⅰ—华北地块;Ⅱ—北淮阳构造带;Ⅲ—大别造山带;Ⅳ—扬子地块 Fig. 1 Geological sketch map of Dabie orogenic belt(modified from Yang, 2007)

1—Mesozoic-Cenozoic strata (K-E); 2—Erlangping Group (Pt₃-Pz); 3—Guishanyan Formation (Pt₂g), Nanwan Formation (Dn); 4—Xiaojiamiao Rock Formation (Z-Ox); 5—Qinling Rock Group (Pt₂qn)/Luzhenguan Rock Group (Pt₂lz); 6—Tongbei-Dabie metamorphic complex (Ar₃-Pt₁); 7—Hong 'an Rock Group (Pt₃); 8—Eclogite ; 9—Cretaceous volcanic rock (K); 10—Carboniferous ; 11—Yanshanian granite ; 12— Granite of Jinning Stage ; 13—Geological boundary ; 14—Faulted zone and its serial number ; 15—Molybdenum deposit ; I—North China block ; II—North Huaiyang tectonic belt ; III—Dabie orogenic belt ; IV—Yangtze block

区域内的燕山期岩浆活动划分为4个侵入期次^{●●}: 第1次岩浆作用所形成的侵入体为银山畈中细粒花 岗闪长岩,其黑云母 K-Ar 同位素年龄为145 Ma[●]; 第2次侵入体为含斑中粒二长花岗岩和中粒二长花 岗岩,其中,吴老湾岩体的锆石 U-Th-Pb 表面年龄为 122 Ma,通城店岩体的黑云母 K-Ar 年龄为121 Ma; 第3次侵入体为金刚山中细粒二长花岗岩,其 U-Pb 一致曲线法年龄为130 Ma;第4次侵入体为银山复 式杂岩体,岩性为石英正长岩、石英正长斑岩和爆发 角砾岩[●]。这些同位素年龄因其测定方法各异,故准 确性不高,而且,第3次侵入体的年龄大于第2次侵 入体,明显未反映出真实的先后关系,但大体上显示 了第1期侵入体的形成时代为晚侏罗世,后3个期 次岩浆岩的形成时代均为早白垩世。银山地区岩浆 岩的主要岩性为中粒二长花岗岩、细粒二长花岗岩

和石英正长(斑)岩等,相应为第2、第3和第4次侵入体,均形成于早白垩世。

623

1.3 矿床地质特征

银山地区发育以钼和铅锌为主的多金属矿床, 伴生有金和(或)银等。该矿区内多金属矿化范围较 大,陆三明等[®]将其划分为5个矿段:西部仓房矿段、 中部银山矿段、北部洪家大山矿段、南部八斗垄矿段 (图2)和东部石门寨矿段。矿体主要呈脉状产出,以 NEE 向至近 EW 向为主,其次为 NW 向,银山矿段 的局部矿体呈环形围绕爆发角砾岩中心分布。该矿 区内现已发现矿脉近百条,主脉带在银山矿段、仓房 矿段和洪家大山矿段。

该矿区内,钼-铅-锌矿体的赋存对各类围岩无选 择性,但严格受断裂和裂隙控制,以沿裂隙充填为 主,部分以细脉状和浸染状产于石英正长斑岩体中,

[●] 安徽省地质矿产局 313 地质队. 1992. 安徽省金寨地区浅变质岩系金、多金属矿产成矿与找矿预测. 内部资料.

¹⁰ 陆三明,彭海辉,王波华. 2001. 安徽省金寨县鲜花岭-银山地区铅锌矿普查地质报告. 内部资料.

❸ 河南地质调查三队,1993. 桐柏-大别造山带(北坡)金矿地质、地球物理、地球化学找矿模型、评价指标的研究及预测. 内部资料.

⑦河南省地质矿产厅区调队.1994.中华人民共和国区域地质调查报告,1:5万商城幅、达权店幅.

图 2 银山矿区地质图(据安徽省地质矿产局 313 地质队 2000●修改)

第四系(Q);2-斜长片麻岩(G);3-斜长角闪岩(φ');4-角闪辉石岩(φ);5-闪长岩(δ);6-花岗闪长岩(γδ);7-二长花岗岩(ηγ);
 石英闪长岩(δ₀);9-石英斑岩/花岗斑岩(λπ/γπ);10-正长斑岩(ξπ);11-爆发角砾岩(vbc);12-硅化脉;13-钼矿体;14-铅锌矿体;15-钻孔;16-断层及编号;17-破碎蚀变带;18-采样位置及样品号

Fig. 2 Geological map of Yinshan ore district (modified from No. 313 Geological Party, Bureau of Geology and Mineral Resources Exploration of Anhui Province, 2000)

1—Quaternary (Q); 2[—]Plagiogneiss (G); 3—Plagio-amphibolite (φ'); 4—Amphibole pyroxenite (φ); 5—Diorite (δ); 6—Granodiorite (γδ); 7—Damellite (ηγ); 8—Quartz-diorite (δο); 9—Quartz-porphyry/granitic porphyry(λπ/γπ); 10—Syenite porphyry(ξπ); 11—Explosion-braccia (vbc); 12—Silicated vein; 13—Molybdenum ore body; 14—Lead-zinc ore body; 15—Drill hole; 16—Faults and its serial number; 17—Fracturealteration zone; 18—Sampling position and its serial number

矿体呈不规则状。

铅锌矿床的赋矿围岩主要为二长花岗岩、花岗 闪长岩、石英正长斑岩、隐爆角砾岩等,围岩蚀变强 烈,常发育硅化、绢云母化、绿泥石化、绿帘石化、碳 酸盐化等。铅锌矿化与银矿化呈正比关系,通常铅 含量高则银含量也高。

钼矿床的主要围岩为石英正长(斑)岩、爆发角 砾岩。通常,在地表,钼矿化较弱,甚或以铅锌矿化

图 4 银山矿区岩浆岩 SiO₂ 与 K₂O 关系图解 (数据引自**1) ② ③ ④**)

为主,向深部,钼矿化逐渐增强。在银山矿段,钼矿 化在爆发角砾岩筒中的最大控制深度达600m,在石 英正长斑岩体中的控制深度达570m。经勘查,银山 矿段内的钼工业矿体均为隐伏矿体,厚数米至数十 米,最厚达66.88m,为不连续的多层状(图5),单个 钻孔的累计工业矿体厚度大于130m,钼含量一般为 0.02%~0.07%,单样最高品位达0.19%,并伴生 有Ga、In、Cd等。爆发角砾岩中的辉钼矿主要赋存 在胶结物内,形成针点状或斑点状浸染型矿石;而石 英正长岩体内的辉钼矿则主要呈细脉状沿裂隙充 填,构成稀疏网脉状浸染型矿石。在花岗岩及闪长 岩中,辉钼矿呈细脉状产出。钼矿床的围岩蚀变主 要为钾化、硅化、绢云母化、绿泥石化、绿帘石化等。

625

根据矿物共生组合及矿物的相互穿插关系,可 将成矿作用划分为热液期和表生期。热液成矿期又 可划分为 3 个成矿阶段 :早阶段,主要形成他形晶辉 钼矿,同时形成黄铁矿、辉铋矿及磁铁矿等,斜长石 发生钾长石化 ;中阶段,形成类似海绵陨铁结构的浸 染状铅锌矿石,矿石中的黄铁矿、黄铜矿多呈粗粒集 合体产出,而方铅矿(Ⅱ),闪锌矿(Ⅱ),赤铁矿等则 呈细小颗粒产出,石英以细小粒状与矿石矿物一起 呈细脉状产出,赋矿围岩发育有绿泥石化、绿帘石 化、绢云母化等;晚阶段,形成黄铁矿、黄铜矿、方铅 矿(Ⅲ),闪锌矿(Ⅲ),脉石矿物为石英和方解石,常 发育碎裂结构。

2.1 测定方法

为了确定研究区内岩浆岩的形成时代和演化序 列,了解钼-多金属矿床的形成年龄及其与岩浆岩的 关系,本次研究运用岩浆岩全岩 K-Ar 法、岩浆岩中 单矿物⁴⁰Ar-³⁹Ar 法及矿石中辉钼矿 Re-Os 法进行了 同位素地质年龄测定。

用于岩浆岩全岩 K-Ar 法年龄测定的样品采自 洪家大山矿段的细晶闪长岩和中粒二长花岗岩 以及 银山矿段钻孔孔深 510 m 处的石英正长斑岩(图 2)。

- 安徽省地质矿产局 313 地质队. 2000. 中华人民共和国区域地质调查报告,1:5 万南溪幅、七邻幅.
- ❷ 陆三明,彭海辉,王波华.2001. 安徽省金寨县鲜花岭-银山地区铅锌矿普查地质报告. 内部资料.
- 河南省地质矿产厅区调队. 1980. 中华人民共和国区域地质调查报告,1:20万商城幅.
- ④河南省地质矿产厅区调队. 1994. 中华人民共和国区域地质调查报告, 1:5 万商城幅、达权店幅.

1—Granite-gneiss; 2—Medium-granular adamellite; 3—Explosion-braccia; 4—Braccia quartz-syenite porphyry; 5—Quartz-syenite; 6—Quartz-syenite porphyry; 7—Diorite porphyrite; 8—Measured and inferred faults; 9—Measured and inferred geological boundry; 10—Molybdenum ore body; 11—Lead-zinc ore body; 12—Limits of molybdenum mineralization; 13—Drill hole and its serial number; 14—Sampling position and its serial number

细晶闪长岩呈脉状侵位于中粒二长花岗岩中,洪家 大山铅锌矿体即赋存于细晶闪长岩脉旁侧的中粒二 长花岗岩中。样品分析在北京大学造山带与地壳演 化教育部重点实验室进行,分析方法参照有关文献 (王松山等,1979)。在置信水平95%时,K和放射 性成因Ar的含量相对标准偏差小于1%。 用于岩浆岩中单矿物⁴⁰Ar-³⁹Ar 法年龄测定的黑 云母和角闪石样品分别采自洪家大山矿段的中粒二 长花岗岩、细粒二长花岗岩和细晶闪长岩(图2)。样 品分析在中国地质科学院国家地质实验测试中心 Ar-Ar 同位素年代学实验室进行,分析方法参见有关 文献(陈文等,2002)。中子照射在中国原子能科学 研究院的"游泳池"核反应堆中进行,监控标准样 ZBH-25 黑云母同时接受中子照射。样品的阶段加 热使用电子轰击炉。质谱分析在 MM-1200B 质谱计 上进行。所有的数据在回归到时间零点值后再进行 质量歧视校正、大气氩校正、空白校正和干扰元素同 位素校正 β^7 Ar 经过放射性衰变校正 β^0 K 衰变常数 = 5.543×10⁻¹⁰a⁻¹ 年龄误差以 1σ 给出。

用于 Re-Os 年龄测定的辉钼矿样品采自银山矿 段银山钼矿床 5 号勘探线剖面 501 钻孔孔深 510~ 525 m 处,为石英正长斑岩体内的矿石(图5),其中 的辉钼矿呈细脉浸染状产出。样品分析在中国地质 科学院国家地质实验测试中心进行,测试仪器为 TJA X-series 电感耦合等离子质谱仪(ICP-MS),Re-Os 同位素的化学分离和分析方法参见有关文献(杜 安道等,1994;屈文俊等,2003)。Re 和 Os 含量的不 确定度包括样品和稀释剂的称量误差、稀释剂的标 定误差、质谱测量的分馏校正误差、待分析样品同位 素比值测量误差,置信水平 95 %。模式年龄的不确 定度还包括衰变常数的不确定度(1.02 %),置信水 平 95 %。模式年龄按下式计算:

 $t = 1/\lambda [\ln(1 + {}^{187}\text{Os}/{}^{187}\text{Re})]$

其中 ℋ¹⁸⁷Re 衰变常数)=1.666×10⁻¹¹a⁻¹。

实验全流程空白:Re为0.0022 ng,普通Os为0.0001 ng。

2.2 测定结果

2.2.1 岩浆岩全岩 K-Ar 同位素年龄

表1列出了洪家大山闪长岩、二长花岗岩、细晶 闪长岩和银山石英正长斑岩的全岩 K-Ar 同位素年 龄测定结果。所列数据表明,洪家大山闪长岩和二 长花岗岩的 K-Ar 年龄介于(103.3 ± 2.4) Ma 至 (122.6 ± 1.9) Ma 之间,与前人测定的通城店黑云 母花岗岩的 K-Ar 年龄(121 Ma)相近,也与吴老湾二 长花岗岩的锆石 U-Th-Pb 表面年龄(122 Ma)相近。 但与本次工作测定的岩石单矿物 Ar-Ar 坪年龄相比 明显偏小,反映其受到后期地质作用的影响。而采 自银山矿段钻孔中的赋矿石英正长斑岩的 K-Ar 年 龄为(31.5±0.7) Ma,明显小于区域岩浆岩的实际 侵位年龄,反映出这些石英正长斑岩受到更为强烈 的后期地质作用,尤其是成矿热液流体的蚀变作用 的强烈改造,其中的斜长石发生钾长石化,使岩石的 钾含量明显升高,同时,热液的改造使岩石中的矿物 重结晶,K衰变形成的 Ar 发生丢失,导致 K-Ar 表观 年龄减小。因此,欲准确厘定赋矿石英正长(斑)岩 的形成时代须选择更精确的测定年代的方法。

627

2.2.2 岩浆岩中单矿物 Ar-Ar 同位素年龄

表2列出了银山地区洪家大山中粒二长花岗 岩、细粒二长花岗岩和细晶闪长岩的 Ar-Ar 同位素 年龄分析结果。所列数据表明,洪家大山中粒和细 粒二长花岗岩及细晶闪长岩的 Ar-Ar 总年龄分别为 125.7 Ma、125.8 Ma、125.5 Ma,显示出这些数据与 前人得到的黑云母 K-Ar 年龄及本次研究所得到的 全岩 K-Ar 年龄相当,反映出 Ar-Ar 总年龄同样受到 了后期地质作用的影响。

图 6 是洪家大山中粒和细粒二长花岗岩中黑云 母及细晶闪长岩中角闪石的 Ar-Ar 坪年龄谱图和反 等时线图,显示其坪年龄和反等时线年龄分别为 (136.8±1.6) Ma 和(135.6±6.2) Ma、(130.4± 1.2) Ma 和(131.1±3.7) Ma、(125.4±1.0) Ma 和 (124.6±1.9) Ma,分别在误差范围内一致,而且,其 ⁴⁰Ar/³⁶Ar 初始比值分别为(302±95)(272±41)和 (297±53),与大气氩的⁴⁰Ar/³⁶Ar 比值(295.5)相 近。因此,这些年龄均有确切的地质意义,应基本上 代表黑云母或角闪石冷却结晶达到氩在封闭温度下 保存在矿物黑云母或角闪石中时的年龄。洪家大山 中粒和细粒二长花岗岩中黑云母的 Ar-Ar 坪年龄与 区域内第2次侵入体和第3次侵入体的形成时代大致

表 1 银山地区部分岩浆岩体全岩 K-Ar 年龄分析结果

Table 1	Analytical results o	f K-Ar isotop	ic ages of	magmatic r	ocks from	Vinshan area
I able I	mary ficar results o	I IX III ISOLOP	ic ages of	magman i	ocus nom	i monun ai cu

样号	岩体名称	岩性	K 含量/%	样品重量/g-	放射成因 ⁴⁰ Ar		³⁸ Ar/10 ⁻¹¹	40 . (38 .	38 A 136 A	主动在些小石
					10^{-10} mol/g	%	mole/g	¹⁰ Ar/ ³⁰ Ar	³⁰ Ar/ ³⁰ Ar	化パー 四マ ノ IVIa
1	银山	石英正长斑岩	5.76	0.0199	1.798	47.97	2.0976	0.3558 ± 0.0005	1585 ± 11	31.5 ± 0.7
18	洪家大山	闪长岩	1.75	0.0200	3.226	61.64	2.0970	0.4993 ± 0.0007	1532 ± 13	103.3 ± 2.4
20	洪家大山	中粒二长花岗岩	3.57	0.0199	6.847	73.08	2.0972	0.8891 ± 0.0011	1228 ± 9	107.3 ± 1.5
23	洪家大山	细晶闪长岩	2.03	0.0200	4.465	60.74	2.0974	0.7011 ± 0.0011	1068 ± 7	122.6 ± 1.9
2012		* ルートーン	ᄟᄂᄟᆂᅝᄱ	****		ᅰᅮᅖ				

测试单位及测试者 北京大学造山带与地壳演化教育部重点实验室苗国均、刘玉琳。

表 2 银山地区岩浆岩中黑云母和角闪石的⁴⁰ Ar-³⁹ Ar 年龄测定结果

 Table 2
 40 Ar-39 Ar isotopic age analyses of biotites and hornblrndes from magmatic rocks in Yinshan area

т∕с	(⁴⁰ Ar/ ³⁹ Ar) _m	(${}^{36}{\rm Ar}/{}^{39}{\rm Ar}$) _m	(³⁷ Ar/ ³⁹ Ar) _m	(³⁸ Ar/ ³⁹ Ar) _m	F	39 Ar/10 ⁻¹⁴ mol	³⁹ Ar 析出率1%	t∕Ma	±1σ/Ma
样品号	:16 洪家大山细粒	二长花岗岩中的	的黑云母;W=	50.00 mg J =	0.012318	;总年龄=125.7	Ma		
400	20.2501	0.0391	1.7616	0.0703	8.8348	42.70	0.06	186	11
500	24.5420	0.0800	3.3312	0.1087	1.1273	10.99	0.76	25	12
600	19.2618	0.0602	5.4718	0.1527	1.8651	11.03	0.92	41	25
700	8.8170	0.0285	2.0553	0.0311	0.5235	100.28	2.34	11.6	2.2
800	8.9880	0.0191	0.7540	0.0224	3.3909	219.29	5.44	73.8	1.6
900	7.5186	0.0059	0.1883	0.0167	5.7822	621.02	14.23	124.1	1.3
980	6.6471	0.0021	0.1238	0.0149	6.0240	995.20	28.31	129.1	1.3
1040	6.6345	0.0018	0.1615	0.0155	6.1032	573.64	36.43	130.8	1.3
1100	6.8225	0.0023	0.2354	0.0154	6.1559	405.20	42.17	131.9	2.2
1200	6.6367	0.0018	0.3157	0.0153	6.1159	1393.85	61.90	131.0	1.6
1250	6.4439	0.0012	0.3556	0.0176	6.1194	955.98	75.43	131.1	1.6
1320	7.4533	0.0050	0.8930	0.0151	6.0255	1588.82	97.91	129.2	1.6
1400	16.0709	0.0388	0.9723	0.0323	4.6668	147.39	100.00	100.8	4.2
样品号	20 洪家大山中粒	二长花岗岩中的	的黑云母;W=	50.00 mg J = 0	.012257 ;总	年龄 =125.8 M	a		
400	25.4504	0.0671	1.8755	0.2018	5.7593	6.96	0.07	123	30
500	16.3684	0.0311	1.0369	0.0466	7.2391	30.16	0.35	153.4	7.1
600	9.5726	0.0230	0.7276	0.0318	2.8156	48.84	0.81	61.2	5.7
700	3.5779	0.010	0.3543	0.0183	0.6553	507.54	5.58	14.4	1.2
800	9.7758	0.0234	0.2595	0.0190	2.8797	301.22	8.41	62.6	4.8
900	10.6807	0.0166	0.1064	0.0169	5.7686	415.48	12.32	123.2	1.8
980	10.1202	0.0159	0.0898	0.0165	5.4219	637.62	18.32	116.1	2.2
1040	12.6815	0.0237	0.1372	0.0198	5.6763	394.84	22.03	121.3	3.3
1120	9.2749	0.0095	0.2034	0.0172	6.4730	622.88	27.89	137.7	4.0
1200	7.7883	0.0044	0.3589	0.0180	6.5246	1302.72	40.14	138.8	2.4
1260	7.1168	0.0022	0.2035	0.0144	6.4877	2064.44	59.56	138.0	1.7
1300	7.2268	0.0030	0.2906	0.0153	6.3618	2262.33	80.83	135.5	1.4
1350	7.2873	0.0031	0.2271	0.0156	6.3960	1887.97	98.59	136.2	1.8
1400	20.6412	0.0547	0.4610	0.0374	4.5007	150.13	100.00	96.9	8.2
样品号	23 洪家大山细晶	闪长岩中的角间	闪石 ;W = 283	3.55 mg ; J = 0	.012472 ;总	年龄=125.5 Ma	ì		
500	12.6928	0.0250	2.5996	0.0821	5.4966	51.70	0.17	119.6	6.7
600	10.4802	0.0326	2.5283	0.0614	1.0289	34.75	0.29	23.0	8.4
700	7.2426	0.0223	3.7258	0.0850	0.9205	74.70	0.54	20.6	4.9
800	6.1952	0.0037	0.3283	0.0147	5.1353	905.99	3.56	112.0	2.1
880 040	6.3997 5.0816	0.0017	0.1928	0.0136	5.9051	1015.10	8.94	128.2	1.5
1000	5.9810 6.0415	0.0008	0.1803	0.0130	5.7402	2338.33	17.41	124.9	1.4
1000	6. 0262	0.0011	0.2702	0.0143	5.7237	1623 08	25.26	124.4	1.2
1140	6.0969	0.0012	1.9562	0.0140	5.8024	237277	33, 17	124.0	1.2
1200	6.1103	0.0017	3.5373	0.0137	5.8647	6774.73	55.76	127.3	2.7
1250	6.0156	1.9118	0.0144	5.8520	7023.48	79.18	127.1	1.4	2
1300	5.9953	0.0014	2.6985	0.0293	5.7813	5295.77	96.84	125.6	1.8
1350	6.4949	0.0033	3.7527	0.0184	5.8031	701.11	99.18	126.1	1.4
1400	9.3765	0.0136	4.2919	0.0325	5.6763	245.05	100.00	123.4	3.2

注 表中下标 m 代表样品中测定的同位素比值 ;F= *40Ar/39Ar ,是放射成因40Ar/39Ar 的比值。

相近。此外,洪家大山中粒和细粒二长花岗岩中黑 云母的 Ar-Ar 坪年龄谱(表 2)还显示出,低温下释放 气体的同位素年龄明显偏低,分别为 14.4~62.6 Ma(600~800℃ (20 号样品)和 11.6~73.8 Ma (500~800℃ (16 号样品),其³⁹Ar 析出率分别占 14.80%和9.46%,反映出这些岩石明显受到后期

地质作用的影响,因此,其黑云母的 K-Ar 年龄及 Ar-Ar 总年龄都明显偏低。洪家大山细晶闪长岩中角 闪石的 Ar-Ar 坪年龄谱则显示出低温下释放气体的 同位素年龄也明显偏低,为 20.6~23.0 Ma(表 2 中 的 23 号样品),但其³⁹Ar 析出率不到 1 %,因此,对 总年龄(125.5 Ma)的影响较小,其 Ar-Ar 总年龄与 坪年龄和反等时线年龄基本一致。

2.2.3 矿石辉钼矿 Re-Os 同位素年龄

表 3 列出了银山矿段银山钼矿床 2 个辉钼矿样 品的 Re-Os 同位素分析结果,计算所得的辉钼矿 Re-Os 模式年龄为(112.6±1.3) Ma 和(113.5±1.3) Ma,显示出该钼矿床的成矿时代为早白垩世。

表 3 银山钼矿床辉钼矿 Re-Os 同位素分析结果 Table 3 Re-Os isotopic analyses of molybdenite from ores of Yinshan molybdenum deposit

样号	样重/g	Re/ng/g	Os/ng/g	¹⁸⁷ Re/ng/g	¹⁸⁷ Os /ng/g	模式年龄/Ma
1	0.03005	15266	0.011	9596 ± 73	18.16 ± 0.14	113.5 ± 1.3
2	0.03018	15651	0.0278	9837 ± 77	18.47 ± 0.14	112.6 ± 1.3

测试单位及测试者 :中国地质科学院国家地质实验测试中心屈文俊、曾法刚。

3 讨 论

如前所述 ,前人根据岩体相互关系确定的区域 岩浆岩的形成时序是:花岗闪长岩→中粒二长花岗 岩→细粒二长花岗岩→石英正长(斑)岩,显示出区 域岩浆活动从中酸性向酸性再向偏碱性的演化趋 势。本次研究对银山地区岩浆岩中黑云母和角闪石 的⁴⁰Ar-³⁹Ar 同位素年龄测定表明,研究区内洪家大 山中粒和细粒二长花岗岩及细晶闪长岩脉分别形成 \mp (136.8±1.6) Ma_s (130.4±1.2) Ma π (125.4± 1.0) Ma(图6),为燕山晚期早白垩世侵入体。细晶 闪长岩脉的形成时间相对较晚,反映出在较大规模 酸性岩浆侵入之后,有偏中性的岩浆沿裂隙贯入。 Ar-Ar 坪年龄谱还显示 低温下释放气体的同位素年 龄明显偏低 ,反映出该区受到了多期岩浆侵入作用 乃至热液作用等后期地质作用的影响。在银山矿段 的银山复式杂岩体中 石英正长岩、石英正长斑岩和 隐爆角砾岩明显侵入到二长花岗岩体中(图5)显示 出前3者形成较晚。结合侵入体的地质产状及相互 关系 ,可大致确定该区岩浆作用的演化趋势为 :早 期 发育中酸性-酸性岩浆侵入作用 :晚期 发育偏碱 性浅成-超浅成岩浆侵入作用。

银山地区钼-铅-锌矿床的矿体主要呈脉状赋存 于各类围岩中,且主要赋存在燕山晚期的岩浆岩内。 矿体明显受断裂和裂隙的控制,总体呈 NEE 向和近 EW 向展布。以银山矿段为中心,在隐爆角砾岩和 石英正长斑岩中同时发育钼矿化和铅锌矿化,其四 周的二长花岗岩中则主要发育铅锌矿化。而且,银 山矿段浅部的二长花岗岩和隐爆角砾岩中以铅锌矿 化为主,向深部,隐爆角砾岩和石英正长斑岩中的钼 矿化逐渐增强。钼矿床中辉钼矿的 Re-Os 模式年龄 为(112.6±1.3) Ma 和(113.5±1.3) Ma,显示其成 矿时代为早白垩世。同位素年龄反映出,矿化与中 粒和细粒二长花岗岩的侵入作用之间有较长的时间 间隔,但可能与晚期石英正长斑岩和隐爆角砾岩的 形成时间大体相当。因此,区内钼-铅-锌矿床应形成 于中粒和细粒二长花岗岩侵位固结之后,与偏碱性 浅成-超浅成岩浆侵入作用及相关的热液作用有关, 这些矿床应属浅成-超浅成斑岩-隐爆角砾岩型矿床。

银山钼矿床内辉钼矿的 Re-Os 年龄与邻区河南 商城汤家坪大型钼矿床内辉钼矿的 Re-Os 年龄[模 式年龄为 112.3 Ma~118.5 Ma,等时线年龄为(113 ±7.9) Ma]相一致,也与同处北淮阳构造带的信阳 天目沟钼矿床辉钼矿的 Re-Os 模式年龄[(121.6 ± 2.1) Ma]及新县大银尖钼矿床辉钼矿的 Re-Os 模式 年龄[(122.1 ± 2.4) Ma](杨泽强,2007; Mao et al, 2008)相近,还与东秦岭嵩县雷门沟钼矿床和汝阳东 沟钼矿床辉钼矿的 Re-Os 模式年龄[(129.5 ± 2.6) Ma和(131.4 ± 1.4) Ma(114.1 ± 1.4) Ma和(115.1 ±2.0) Ma](李永峰等,2004; Mao et al.,2008)基本 一致,显示出整个东秦岭-大别山 EW 向成矿带均发 育该期钼成矿作用。

从区域构造-岩浆演化来看,三叠纪以前,华北 地台和扬子地台一直处于稳定发展阶段,印支期,华 北陆块与扬子陆块相向俯冲挤压碰撞造山(钟增球 等 2001)。早白垩世,受太平洋构造域的影响,中国 中东部从印支期以近 EW 向构造为主、NNE 至近 SN 向构造为次 进入以 NNE 至近 SN 向构造为主、 近 EW 向构造为次的区域构造-动力体制大转换(高 山等,1999)。Mao等(2008)通过研究东秦岭-大别 中生代钼成矿作用的 Re-Os 年龄认为,东秦岭-大别 成矿带是中国东部大规模 EW 向成矿带的组成部 分,中生代发育有3期花岗质岩浆作用和钼成矿作 用,钼成矿作用与花岗岩体的侵位和热液作用密切 相关 其中 时代为 131~112 Ma 的钼矿床及相关岩 浆作用的成矿地球动力学背景是中国东部大规模岩 石圈减薄、拆沉和热侵蚀。进入中生代早白垩世,大 别造山带的区域应力场逐渐由挤压阶段向伸展阶段 转化 地壳开始减薄 造山带边缘断裂走滑 其北缘 的信阳-商城-霍山一带发育有中生代陆相火山岩 (I—K2)以及断裂边缘的一系列断陷盆地;区域性的 岩石圈拆沉作用和地幔物质的上侵导致大别地区双 倍陆壳的重熔,俯冲大陆板片的断离引起了加厚下 地壳大别片麻杂岩的熔融,进而形成了该区的富钼 岩浆岩。但是,此时的构造应力未能完全改变郯庐 断裂西侧秦岭-大别造山带内的印支期 EW 向构造, 其岩浆-成矿作用仍然承袭早期的 EW 向构造,不仅 东秦岭-大别成矿带整体呈 EW 走向,而且,矿带内 的大多数钼及钼-多金属矿床和矿体也都呈近 EW 向产出。

4 结 论

安徽金寨银山地区岩浆岩中黑云母和角闪石单 矿物的 Ar-Ar 年龄测定结果表明,中粒二长花岗岩、 细粒二长花岗岩和细晶闪长岩脉分别形成于(136.8 ±1.6) Ma、(130.4±1.2) Ma 和(125.4±1.0) Ma, 为燕山晚期早白垩世侵入体。结合岩体的产状和接 触关系,石英正长斑岩和爆发角砾岩形成得最晚。 区域岩浆演化由高钾钙碱性系列向碱性系列过渡, 岩性为花岗闪长岩→二长花岗岩→石英正长(斑) 岩。

该地区内的钼矿体和铅锌矿体主要以脉状呈近 EW 向产于不同岩性的岩浆岩体中,钼矿床主要发 育于爆发角砾岩中心附近的石英正长斑岩中。辉钼 矿的 Re-Os 年龄测定结果表明,银山钼矿床的模式 年龄为(112.6±1.3) Ma 和(113.5±1.3) Ma,与区 内燕山晚期最晚阶段所形成的赋矿石英正长斑岩的 形成时间最为接近,由此推测,钼-多金属矿床属于 与浅成-超浅成偏碱性岩浆侵入作用及相关热液作 用有关的斑岩-隐爆角砾岩型矿床。

结合前人研究成果,从区域构造-岩浆-成矿演化 来看,该地区内的岩浆岩和钼-多金属矿床形成于中 国东部岩石圈减薄的地球动力学背景,而且是在大 别造山带的区域应力场转化至伸展阶段之际,钼-多 金属矿体主要以脉状呈近 EW 向产出,赋矿构造仍 然沿袭之前的印支期 EW 向构造。

References

- Chen W , Liu X Y and Zhang S H. 2002. Continuous laser stepwise heating 40Ar/39Ar dating technique[J]. Geological Review , 48 (Suppl):127-134(in Chinese).
- Du A D , He H L , Yin N W , Zou X Q , Sun Y L , Sun D Z , Chen S Z and Qu W J. 1994. A study on the rhenium-osmium geochronome-

try of molybdenites [J]. Acta Geologica Sinica , 68 (4) : 339-347 (in Chinese with English abstract).

631

- Du J G. 2000. On the Mesozoic magmatism and geochemistry of mineralization in Dabie orogenic bel(dissertation for doctor degree **J** D **]**. Hefei : Hefei University of Technology. 176µ(in Chinese).
- Du J G , Zhang P and Jiang J F. 1996. The division and comparison of the Beihuayang tectonic facies belt , Anhu[J]. Geology of Anhui , 6(1):19-27 (in Chinese with English abstract).
- Gao S , Zhang B R , Jin Z M and Kern H. 1999. Lower crustal delamination in the Qinling-Dabie orogenic bel[J] Science in China (Series D), 42(4):423-433 (in Chinese).
- Gao T C. 1993. Metallogenic model for the gold deposits in Tongbaishan-Dabieshan ductile shear , Henan province J J. Henan Geology , 11(3):161-168(in Chinese).
- Hacker B R , Ratschbacher L , Webb L , Ireland T , Walker D and Dong S. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen , Chind J]. Earth Planet. Sci. Lett. , 161 :215-230.
- Li F J, Wang C Q, Bai F J and Song Y L. 2004. Re-Os isotopic ages of Mo deposits in East Qinling and their geodynamic settings[J]. Mineral Resources and Geology, 18(6):571-577 (in Chinese with English abstract).
- Li S G , Jagoutz E , Chen Y Z and Li Q L. 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains , Central China[J]. Geochimica et Cosmochimica Acta , 64 (6):1077-1093.
- Lu S M , Xu X C and Peng Z. 2005. Geologic feature and genesis of multi-metal deposit of crypto-explosion breccia type in the east part of north Huaiyang tectonic zone J J. Geology and Prospecting , 41 (3): 7-11 (in Chinese with English abstract).
- Mao J W , Xie G Q , Bierlein F , et al. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in East Qinling-Diabie orogenic belt[J]. Geochimica et Cosmochimica Acta , 72 : 4607-4626.
- Okay A I , Xu S and Sengor A M C. 1989. Coesite from the Dabieshan eclogites , central China J J. Eur. J. Mineral. , 1:595-598.
- Peng Z , Lu S M and Xu X C. 2005. Regional metallogenic regularities of the gold-polymetallic deposits in eastern part of north Huaiyang tectonic zone[J]. Journal of Hefei University of Technology , 28 (4): 364-368 (in Chinese with English abstract).
- Qu W J and Du A D. 2003. Highly precise Re-Os dating of molybdenite by ICP-MS with Carius tube sample digestion [J]. Rock and Mineral Analysis, 22(4): 254-257 (in Chinese with English abstract).
- Wang S S , He J H , Li R M and Zhao D Z. 1979. Note on isotope dilution method for K-Ar dating J]. Chinese Jour. Geol. (formerly, Scientia Geologica Sinica), (2):139-150 (in Chinese).
- Xu S T , Liu Y C , Jiang L L , Wu W P and Chen G B. 2002. Architecture and kinematics of the Dabie mountains orogen[M]. Hefei: Press of University of Science and Technology of China (in Chinese).

- Yang Z Q. 2007. Re-Os isotopic ages of Tangjiaping molybdenum deposit in Shangcheng County, Henan and their geological significance [J] Mineral Deposits, 26(3):289-295 (in Chinese with English abstract).
- Zhong Z Q, Suo S T, Zhang H F and Zhou H W. 2001. Major constituents and texture of the Tongbai-Daibie collisional orogenic belt [J]. Earth Science , 26(6):560-567(in Chinese with English abstract).

附中文参考文献

- 陈 文,刘新宇,张思红. 2002. 连续激光阶段升温⁴⁰Ar/³⁹Ar 地质年 代测定方法研究 J]. 地质论评 *A*8(增刊):127-134.
- 杜安道,何红蓼,殷宁万,邹晓秋,孙亚利,孙德忠,陈少珍,屈文俊. 1994. 辉钼矿的铼-锇同位素地质年龄测定方法研究[J]. 地质学 报,68(4)339-347.
- 杜建国. 2000. 大别造山带中生代岩浆作用与成矿地球化学(博士论 文】D]. 合肥:合肥工业大学. 1-176.
- 杜建国 涨 鹏 差俊峰. 1996. 安徽北淮阳构造岩相带的划分与对 比[J]. 安徽地质 ((1):19-27.

- 高 山 涨本仁 金振民 Kern H. 1999. 秦岭-大别造山带下地壳拆 沉作用[J]. 中国科学 29(6) 532-541.
- 高廷臣. 1993. 河南桐柏山-大别山地区韧性剪切带成金模式[J]. 河 南地质,11(3):161-168.
- 李永峰,王春秋,白凤军,宋艳玲. 2004. 东秦岭钼矿 Re-Os 同位素年 龄及其成矿动力学背景 J]. 矿产与地质,18(6) 571-578
- 陆三明,徐晓春,彭 智. 2005. 北淮阳构造带东段隐爆角砾岩型多 金属矿床的地质特征及成因[J]. 地质与勘探 *A*1(3):7-11.
- 彭 智 ,陆三明 ,徐晓春. 2005. 北淮阳构造带东段金-多金属矿床区 域成矿规律[J]. 合肥工业大学学报 28(4) 364-368.
- 屈文俊 杜安道. 2003. 高温密闭溶样电感耦合等离子体质谱准确测 定辉钼矿铼-锇地质年龄[J]. 岩矿测试, 22(4) 254-257.
- 王松山,何娟华,李若梅,赵东植.1979.测定地质年代的钾-氩稀释 法[].地质科学(2):139-150.
- 徐树桐 刘贻灿,江来利,吴维平,陈冠宝. 2002. 大别造山带的构造 几何学和运动学[M]. 合肥:中国科学技术大学出版社.
- 杨泽强. 2007. 河南商城县汤家坪钼矿辉钼矿铼-锇同位素地质年龄 及地质意义[J]. 矿床地质 26(3) 289-295.
- 钟增球,索书田,张宏飞,周汉文. 2001. 桐柏-大别碰撞造山带的基本组成与结构[J]. 地球科学 26(6) 560-567.