编号:0258-7106(2011)02-0279-13

亚贵拉-沙让-洞中拉矿集区中新生代岩浆岩 Hf 同位素特征与岩浆源区示踪^{*}

高一鸣¹ 陈毓川¹ ,王成辉² ,侯可军¹

(1中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室,北京 100037;

2 中国地质科学院研究生部,北京 100037)

摘要选择西藏念青唐古拉地区的工布江达—墨竹工卡县亚贵拉-沙让-洞中拉铅锌钼铜银矿集区典型的中 新生代岩浆岩作为研究对象,详细研究了岩体中锆石的 Hf 同位素组成。亚贵拉燕山期石英斑岩(λr_3^3)焙石的¹⁷⁶Hf/¹⁷⁷Hf 比值为 0.282 090~0.282 480 $\epsilon_{Hf}(t)$ 为 -7.750~-21.449, T_{DM2} 为 1 679~2 543 Ma 亚贵拉喜马拉雅期石英 斑岩(λr_3^1)焙石的¹⁷⁶Hf/¹⁷⁷Hf 为 0.282 413~0.282 805 $\epsilon_{Hf}(t)$ 为 -11.463~2.460, T_{DM2} 为 980~1 864 Ma 亚贵拉喜 马拉雅期花岗岩(γ_3^3)焙石的¹⁷⁶Hf/¹⁷⁷Hf 比值为 0.282 601~0.282 800 $\epsilon_{Hf}(t)$)值在 -2.279~2.182 之间, T_{DM2} 为 996 ~1 279 Ma 亚贵拉喜马拉雅晚期花岗斑岩(γr_3^2)焙石的¹⁷⁶Hf/¹⁷⁷Hf 比值为 0.282 600~0.282 830 之间, $\epsilon_{Hf}(t)$ 为 -5.676~3.128 之间, T_{DM2} 为 900~1 461 Ma ;沙让喜马拉雅期角闪闪长岩($\delta \psi k$)锆石的¹⁷⁶Hf/¹⁷⁷Hf 比值为 0.282 700~0.282 790 $\epsilon_{Hf}(t)$ 值为 -1.536~1.618, T_{DM2} 为 1 019~1 219 Ma ;洞中拉燕山期花岗斑岩锆石的¹⁷⁶Hf/¹⁷⁷Hf 比值为 0.282 700~0.282 142~0.282 396 $\epsilon_{Hf}(t)$ 为 -19.744~ -10.620, T_{DM2} 为 1 857~2 430 Ma。通过与驱龙铜矿含矿 斑岩、林子宗火山岩 Hf 同位素特征对比研究,认为 :① 亚贵拉两期次侵入的石英斑岩体($\lambda r_3^2, \lambda r_4^2$)具有不同的 Hf 同 位素地球化学特征。② 亚贵拉燕马拉雅期石英斑岩(λr_3^2)与洞中拉燕山期石英斑岩的锆石 Hf 同位素特征相似, 1⁷⁶Hf/¹⁷⁷Hf 比值、 $\epsilon_{Hf}(t)$ 值、两阶段 Hf 模式年龄(T_{DM2})75%之事志地壳物质 亚贵拉喜山期石英斑岩(λr_4^2)466 Ma) 亚贵拉花岗岩(γr_5^2)62 Ma) 亚贵拉花岗斑岩(γr_5^2)17 Ma)沙让角闪闪长岩($\delta \phi k$)53 Ma) 林子宗火山岩和驱 龙含矿岩体的 Hf 同位素组成暗示其形成于古老地壳与亏损地幔的混染,不同地质体锆石 Hf 同位素组成的差异可 能与幔源岩浆中混入古老地壳物质的不同比例有关。

关键词 地球化学; 锆石 Hf 同位素; 亏损地幔; 古老地壳; 洞中拉-亚贵拉-沙让; 冈底斯-念青唐古拉; 西藏 中图分类号: P618.4; P618.5

Zircon Hf isotopic characteristics and constraints on petrogenesis of Mesozoic-Cenozoic magmatic rocks in Nyainqentanglha region, Tibet

GAO YiMing¹, CHEN YuChuan¹, WANG ChengHui² and HOU KeJun¹

(1 MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 2 Graduate School of CAGS, Beijing 100037, China)

Abstract

In this paper, the Mesozoic-Cenozoic magmatic rocks in Yaguila-Sharang-Dongzhongla ore-forming area serve as the object for zircon Hf isotope study by means of LA-MC-ICP-MS. Hf isotopic compositions of the zircons from Yanshanian Yaguila quartz porphyry ($\lambda \pi_5^2$) show that the ratio of ¹⁷⁶ Hf/¹⁷⁷Hf is 0.282 090

^{*} 本文为国家 973 项目(编号:2011CB403103),青藏专项项目(编号:1212010012005)资助的成果 第一作者简介 高一鸣,男,1981年生,博士,主要从事矿床学研究。Email:rob8153@126.com 收稿日期 2010-12-07;改回日期 2011-02-18。张绮玲编辑。

 ~ 0.282 480, the $\epsilon_{\rm Hf}(t)$ value is $-7.750 \sim -21.449$, and the $T_{\rm DM2}$ value is $1.679 \sim 2.543$ Ma; Hf isotopic compositions of the zircons from Himalayan Yaguila quartz porphyry $(\lambda \pi_6^1)$ show that the ratio of ${}^{176}\text{Hf}/{}^{177}\text{Hf}$ is $0.282 413 \sim 0.282 805$, the $\epsilon_{\text{Hf}}(t)$ value is $-11.463 \sim 2.46$, and the T_{DM2} value is $980 \sim 1.864$ Ma; Hf isotopic compositions of the zircons from Himalayan Yaguila granite (γ_5^3) show that the ratio of 176 Hf/ 177 Hf is $0.282\ 601 \sim 0.282\ 800$, the $\epsilon_{\rm Hf}(t)$ value is $-2.279 \sim 2.182$, and the $T_{\rm DM2}$ value is $996 \sim 1\ 279\ {\rm Ma}$; Hf isotopic compositions of the zircons from late Himalayan Yaguila granite-porphyry show that the ratio of ¹⁷⁶Hf/ ¹⁷⁷Hf is 0.282 600~0.282 830, the $\epsilon_{\text{Hf}}(t)$ value is $-5.676 \sim 3.128$, and the T_{DM2} value is 900~1 461 Ma; Hf isotopic compositions of the zircons from Himalayan Sharang hornblende diorite show that the ratio of ¹⁷⁶Hf/ ¹⁷⁷Hf is 0.282 700~0.282 790, the $\epsilon_{\rm Hf}(t)$ value is $-1.536 \sim 1.618$, and the $T_{\rm DM2}$ value is 1 019~1 219 Ma; Hf isotopic compositions of the zircons from Yanshanian Dongzhongla quartz porphyry show that the ratio of 176 Hf/ 177 Hf is 0.282 142 \sim 0.282 396, the $\epsilon_{\rm Hf}(t)$ value is $-19.744 \sim -10.620$, and the $T_{\rm DM2}$ value is 1.857 - 2.430 Ma. Based on a comparison with the Hf isotopic compositions of the zircons from porphyry of the Qulong ore deposit and Linzizong volcanic rock, the authors have reached some conclusions: ① The characteristics of Hf isotope of two intrusion stages of Yaguila quartz porphyry $(\lambda \pi_5^3)(\lambda \pi_6^1)$ are different from each other. The characteristics of Hf isotope of Yanshanian Yaguila ($\lambda \pi_3^2$) and Dongzhongla quartz porphyries are similar to each other, suggesting that the rocks were formed by the crust base materials. 2 The Hf isotope of Yaguila and Sharang Himalayan igneous rocks $(\lambda \pi_0^1, \gamma_0^1, \gamma_0^2, \delta \psi k)$, Linzizong volcanic rock and Qulong quartz porphyry shows the rock is the combination of the crust base materials and the depleted mantle, The different $\varepsilon_{\rm Hf}(t)$ value of these igneous rocks may because of the different proportion of the crust base materials or the depleted mantle during the hybridization of them.

Key words: geochemistry, zircon Hf isotope, depleted mantle, ancient crust, Dongzhongla-Yaguila-Sharang, Nyainqentanglha, Gangdese, Tibet

冈底斯-念青唐古拉地区是中国铅锌、铜、银、钼 等资源潜力巨大的有色、贵金属成矿集中区。 自 2008 年新一轮资源评价和重点普查项目开展和青藏 专项实施以来 在念青唐古拉的墨竹工卡县-工布江 达县一带目前已经发现蒙亚啊铅锌(银)矿、龙马拉 铅锌(银)矿、洞中拉铅锌铜(银)矿、洞中松多铅锌铜 银多金属矿、亚贵拉铅锌银钼多金属矿、沙让钼矿, 规模均达中、大型。洞中拉-洞中松多等矽卡岩型铅 锌银 铜 矿 亚贵拉矽卡岩型-斑岩型钼铅锌(银)矿 及沙让斑岩钼矿,从西到东形成了一个东西向展布 成带的矿集区,矿化与中新生代岩浆岩密切相关。 虽然目前在本区已发现了亚贵拉式斑岩型钼矿(65 Ma (高一鸣等, 2010), 沙让式斑岩型钼矿(50~54 Ma (唐菊兴等,2009),但种种迹象表明,从碰撞前 俯冲期的亚贵拉石英斑岩(λπξ) 130 Ma,高一鸣等, 2009),洞中拉石英斑岩(λπ⅔)(127 Ma ,未刊资料), 到碰撞期内亚贵拉喜马拉雅早期石英斑岩(λπ 66 Ma **(** 未刊资料), 亚贵拉花岗岩(γ¹₆ ,62 Ma **)** 未刊资 料),沙让花岗斑岩(γοπ 53 Ma)(秦克章等 ,2008 ;郑

有业等 2008),沙让角闪闪长岩(δψk .53 Ma),高一 鸣等 ,2011),再到碰撞期伸展阶段的亚贵拉花岗斑 岩(γπ³,17 Ma)(未刊资料),这些中酸性岩浆岩,都 有可能有较大的成矿潜力。在念青唐古拉地区内构 成一套完整的对应于俯冲-碰撞-碰撞过程的伸展等 构造演化阶段的矿床成矿亚系列 ,即燕山晚期与中 酸性岩浆活动有关的 Cu、Mo、Pb、Zn、Fe、W 矿床成 矿亚系列 ;喜马拉雅早期古近纪与酸性岩浆活动有 关的 Mo、Pb、Zn、W、 Cu、Ag、Au 矿床成矿亚系列 :喜 马拉雅晚期新近纪与酸性岩浆活动有关的 Cu、Mo、 Pb、Zn、Au、Ag、W 矿床成矿亚系列。因此,区内中-新生代中酸性岩浆岩对成矿的贡献还需要进一步深 入探讨,准确识别区内中-新生代岩浆岩的成岩时 代、岩浆源区等信息,是判断其成矿潜力的关键因 素。本文选取矿集区内与成矿关系密切的一系列中 -新生代岩浆岩 ,在准确测年的基础上 ,进行了岩体 锆石 Hf 同位素地球化学研究 ,试图通过 Hf 同位素 示踪探究其岩浆源区,推演其成岩成矿动力学过程 和构造背景,为下一步找矿部署提供一些有益的启 示。

1 区域地质背景

冈底斯-念青唐古拉地区(图1)南界为雅鲁藏布 江结合带,北界为班公湖-怒江结合带。其独特的大 地构造位置,以及中生代以来南、北两大板块之间裂 离、俯冲、碰撞作用引起的强烈火山-岩浆活动和复 杂的地质构造演化历程,造成了地球圈层间物质、能量交换,并伴随着复杂的成矿作用。研究区洞中拉-洞中松多-亚贵拉-沙让矿集区属于扎雪—金达铅锌 多金属成矿亚带,其位于念青唐古拉成矿带的东部, 大地构造位置主要位于隆格尔-唐古拉复合火山岩 浆弧,北侧为班戈-崩错火山岩浆弧,南为叶巴火山 弧(潘桂棠等,2006)。

图 1 洞中拉-亚贵拉-沙让矿集区地质简图(据河南地调院修编)

1—第四系;2—古新统帕那组中酸性火山岩;3—中二叠统洛巴堆组;4—上石炭统—下二叠统来姑组第三段;5—上石炭统—下二叠统来姑组
 第二段;6—下石炭统诺错组;7—下奥陶统松多岩群雷库龙组;8—下奥陶松多岩群马布库岩组;9—古新世石英闪长岩;10—古新世花岗斑岩;
 岩;11—晚白垩世花岗岩;12—晚白垩世辉绿岩;13—晚白垩世石英闪长斑岩;14—晚白垩世花岗斑岩;15—花岗斑岩脉;16—矿床位置
 Fig. 1 Simplified geological map of the Sharang-Yaguila- Dongzhongla ore concentration area (modified after Henan Institute of Geological Survey)

1—Quaternary ; 2—Intermediate-acid volcanic rock of Paleocene Pana Formation ; 3—3rd Member of Middle Permian Luobadui Formation ;
 4—3rd Member of Upper Carboniferous-Lower Permian Laigu Formation ; 5—2nd Member of Upper Carboniferous-Lower Permian Laigu Formation ;
 6—Lower Carboniferous Ruocuo Formation ; 7—Lower Ordovician Leikulong Formation ;
 8—Lower Ordovician Mabukuyan Formation ;
 9—Paleocene quartz diorite ;
 10—Paleocene granitic porphyry ;
 11—Late Cretaceous granitoid ;
 12—Late Cretaceous diabase ;
 13—Late Cretaceous quartz diorite porphyry ;
 14—Late Cretaceous granitic porphyry ;
 15—Granitic porphyry vein ;
 16—Location of ore deposit

念青唐古拉成矿带处于滇藏地层大区南部,由 前震旦系念青唐古拉群变质杂岩构成的陆壳结晶基 底,晚古生界石炭系—新生界的地层均较发育,其中 尤以三叠系—白垩系地层分布最广,出露最多。研 究区地层属冈底斯—腾冲地层区,拉萨—察隅地层 分区,主要出露前奥陶系松多岩群(AnOs)下石炭 统诺错组(C₁n)上石炭统—下二叠统来姑组 (C₂P₁*l*)中二叠统洛巴堆组(P₂*l*)及始新统帕那组 (E₂*p*)。

松多岩群(AnOs)分布于工作区的南部,呈近东 西向带状分布于杭列拉-沙让断裂带以南,为一套厚 度巨大、原岩以陆源碎屑岩为主中间夹有中基性火 山岩、火山碎屑岩及少量碳酸盐岩的变质岩系,主要 岩性有灰色—银灰色石英岩、石英云母片岩、石英片 岩、角闪片岩及角岩等,与上覆地层下石炭统诺错 组、上石炭统-下二叠统来姑组为断层接触。

诺错组(C₁n)分布于工作区的西南部,为一套灰 色板岩夹结晶灰岩、角岩和变玄武岩、安山岩、流纹 英安岩等火山岩,厚200~1100m,与下伏地层前奥 陶系松多岩群、上覆地层上石炭统—下二叠统来姑 组均为断层接触。

来姑组(C₂P₁*l*)分布于工作区中部朗阿拉—亚 贵拉一带,为一套陆缘碎屑岩夹碳酸盐岩沉积建造, 下部为灰色含砾砂质板岩、变长石石英砂岩、含生物 碎屑长石砂岩等,上部为含砾泥质粉砂岩夹粉砂质 泥岩,顶部为含泥质灰岩,厚 600~4 849 m,与诺错 组呈断层接触,在来姑组上部的细碎屑岩与碳酸盐 岩岩性转换部位常分布有层状铅锌多金属矿化。

洛巴堆组(P₂1)分布于洞中拉—洞中松多一带, 为一套碳酸盐岩建造,其下部为生物碎屑泥晶灰岩, 局部夹中基性火山岩,中部为泥晶灰岩夹含燧石结 核生屑灰岩,上部为生物碎屑灰岩夹岩屑砂岩、玄武 安山岩、凝灰质砂岩,厚1000~2000 m,与来姑组 呈整合接触。

帕那组(E₂p)为一套巨厚的以中酸性为主的火 山岩建造,厚可达1012.20m,不整合覆盖于上石炭 统一下二叠统来姑组和中生代岩体之上,在工作区 中部分布较为集中,构成一个古近纪火山岩盆地。

矿集区侵入岩主要为中-新生代燕山晚期—喜 马拉雅期中酸性侵入岩,侵位于上石炭统—下二叠 统来姑组和洛巴堆组。主要岩性为花岗岩、斑状中 粒花岗岩、二长花岗岩、中粒黑云母二长花岗岩、花 岗闪长岩、石英闪长岩等,局部见有辉绿玢岩及花岗 斑岩、石英斑岩。工作区火山岩主要为中酸性火山 岩,分布于工作区中部的亚贵拉—多其木一带,呈近 东西向带状展布,不整合覆盖于上石炭统—下二叠 统来姑组及燕山晚期中酸性侵入岩之上。岩石类型 复杂,主要有凝灰岩、玄武岩、安山岩、英安岩、粗安 岩、流纹岩以及相应的火山碎屑岩。

2 矿集区地质概况

研究区洞中拉-洞中松多矿床、亚贵拉、沙让等 矽卡岩型铅锌多金属矿、斑岩钼矿,东西向展布,集 中在一个较小的范围内(图1)。亚贵拉矿床为典型 的斑岩-矽卡岩型铅锌银、钼多金属矿床,沙让为斑 岩型钼矿床,洞中拉-洞中松多为矽卡岩型铅锌铜银 矿床。总体上矿集区具有岩体内部以辉钼矿化为 主,岩体与围岩接触带以矽卡岩-角岩中的 Pb-Zn-Cu-Ag 矿化为主的分带性(图2)。

矿集区主要的赋矿层位是上石炭统—下二叠统 来姑组灰岩和二叠系的洛巴堆组灰岩,灰岩多为角 岩或碳质板岩间的夹层。中酸性岩浆岩为成矿提供 了流体和热源,灰岩和岩浆流体发生交代作用,形成 矽卡岩,也为赋矿层位。角岩、碳质板岩作为流体的 盖层,促使含矿流体严格沿层间流动,交代大理岩形 成矽卡岩,并使矿物质沉淀,起到了地球化学障的功 能,所以矿集区内铅锌(铜银)矿主要受灰岩(大理 岩)与黑色岩系的层序界面和地球化学障的控制,或 受灰岩(大理岩)和黑色岩系的层间构造控制,主要 的含矿岩系组合是灰岩(大理岩)+黑色板岩、凝灰 岩、砂板岩(图1)。

区域北部逆冲褶皱系南缘控制着工布江达—墨 竹工卡县铅锌多金属矿带的亚贵拉、蒙亚啊、龙马 拉、洞中拉、洞中松多等矿床,形成了推覆-滑覆构造 形成的层间扩容空间控矿或层间构造控矿的局面。 此外,接触带构造也成为控制矽卡岩型铅锌多金属 矿的重要控矿构造。

区内中酸性岩浆岩密集分布,在矿化带的1~4 km 范围内均发育燕山晚期-喜马拉雅早期侵位的中 酸性岩浆岩(图1)。

亚贵拉燕山晚期白垩纪石英斑岩(λπ³₃),其最新 锆石 SHRIMP 测年结果为 130 Ma 左右(高一鸣等, 2009)岩石呈灰色,具斑状结构,基质呈霏细结构, 块状构造,斑晶矿物主要有石英、长石等,石英斑晶 呈他形粒状,零散分布,基质矿物主要由隐晶质长英

图 2 亚贵拉(a)沙让(b)洞中拉(c)矿床岩体取样位置示意图(据河南地调院、四川冶金地勘局六六地质队修编) 1—第四系;2—上石炭统-下二叠统来姑组;3—前奥陶系松多岩群;4—喜马拉雅期石英斑岩;5—燕山期石英斑岩;6—燕山期花岗岩; 7—花岗斑岩;8—花岗岩;9—花岗闪长岩;10—角闪闪长岩;11—闪长岩;12—灰岩;13—板岩;14—Mo矿体;15—Pb-Zn矿体;16—取 样位置

Fig. 2 Sampling positions of magmatic rocks from Yaguila(a), Sharang b) and Dongzhongla(c) ore deposits

(after Henan Institute of Geological Survey and Sichuan Bureau of Metallurgical and Geological Exploration) 1—Quaternary; 2—C₂-P₁ Laigu Formation; 3—Ordovician Songduo Group; 4—Himalayan quartz porphyry; 5—Yanshanian quartz porphyry; 6—Yanshanian granite; 7—Plagioclase granite porphyry; 8—Granite; 9—Granodiorite; 10—Hornblende diorite; 11—Diorite; 12—Limestone; 13—Slate; 14—Mo ore body; 15—Pb-Zn ore body; 16—Sampling position

质矿物组成,岩体分布于矿区北部,呈一大型岩基 (图2A)。岩体与围岩接触带,发育矽卡岩化、角岩 化、铅锌矿化。

亚贵拉喜马拉雅期古新世石英斑岩体(λπ¹₆),其 最新锆石 SHRIMP 测年结果为 66 Ma 左右(未刊资 料) 岩石呈灰色,具斑状结构,基质呈霏细结构,块 状构造,斑晶矿物主要有石英、长石等,石英斑晶呈 他形粒状,零散分布,基质矿物主要由隐晶质长英质 矿物组成,其分布于矿区中部,沿 F₁ 断裂带呈一小 岩枝露出地表(图 2A),为斑岩钼矿的含矿主岩体。 岩体与围岩接触带,发育矽卡岩化、角岩化铅锌矿 化。

亚贵拉喜马拉雅期花岗岩(y⁴) 岩体主要分布于 矿区北西,呈不规则岩株状分布(图 2A),最新锆石 SHRIMP 测年结果为 62 Ma 左右(未刊资料),岩石 呈灰白色,中细粒花岗结构,块状构造,主要矿物为 斜长石、微斜长石、石英,少量黑云母,斜长石呈半自 形晶,板柱状,个别呈聚片双晶,多为更长石;微斜长 石呈半自形晶,板柱状;石英呈不规则粒状分布,黑 云母呈片状。岩体与围岩接触带,发育矽卡岩化、铅 锌矿化;亚贵拉喜马拉雅期花岗斑岩(γπ³),其最新 的锆石 SHRIMP 测年结果为 17 Ma 左右(未刊资 料)岩石强烈泥化,呈灰白色,具斑状结构,基质呈 霏细结构,块状构造。斑晶矿物主要为斜长石、石英 等,少量钾长石。斜长石斑晶,呈半自形,板柱状,强 烈绢云母化,石英斑晶呈他形粒状,零散分布,基质 主要由隐晶质长英质矿物组成。岩体为一隐伏岩体 分布于矿区南部。

沙让喜马拉雅期古近纪角闪闪长岩(δψk),其最 新角闪石 Ar-Ar测年结果为 53 Ma 左右(高一鸣等, 2010),角闪闪长岩主要分布于矿区北东、南东的广 大地区(图 2B),区域上角闪闪长岩与二叠系蒙拉组 呈侵入接触,与矿区矿化有着较为密切的关系,矿区 南东与含矿斑岩体紧密接触的角闪闪长岩发育矿 化,沿岩石劈理及节理裂隙充填有辉钼矿化硅化石 英脉及辉钼矿细脉,辉钼矿呈脉状、星点状及薄膜状 产出。岩石呈灰黑色,具半自形粒状结构,块状构造,矿物成分主要为:斜长石 55%、角闪石 33%、黑云母 1%、石英 5%、磷灰石 1%及不透明矿物 5%。 岩石中黄铁矿较发育;洞中拉-洞中松多燕山期石英 斑岩($\lambda \pi_5^3$)最新锆石 U-Pb 定年结果为(126.9±1.1) Ma(n = 22,MSWD = 0.96,未刊资料)(图 2C)。其 与亚贵拉矿区燕山晚期白垩纪石英斑岩($\lambda \pi_5^3$)类似, 岩石呈灰色,具斑状结构,基质呈霏细结构,块状构 造,斑晶矿物主要有石英、长石等,石英斑晶呈他形 粒状,零散分布,基质矿物主要由隐晶质长英质矿物 组成。现在还没有证据表明铅锌矿化与该岩体有 关,但矿体与该岩体的空间关系密切。

3 取样和分析方法

本文各岩体的取样位置见图 2A、2B、2C。从岩 石中分选出的单颗粒锆石均较完整,多为柱状自形 晶,长度约100~200 µm,宽度约90~150 µm,长宽 比约为1:1~2:1 均发育典型的震荡环带结构。在 精确测年基础上(高一鸣等,2009;唐菊兴等,未刊 资料)作了岩体锆石 Hf 同位素测试 ,测试是在中国 地质科学院矿产资源研究所国土资源部成矿作用与 资源评价重点实验室 Neptune 多接收等离子质谱和 Newwave UP213 紫外激光剥蚀系统(LA-MC-ICP-MS)上进行的,实验过程中采用 He 作为剥蚀物质载 气 根据锆石大小 ,剥蚀直径采用 55 µm ,测定时使 用锆石国际标样 GI1 和 Plesovice 作为参考物质 分 析点与 U-Pb 定年分析点为同一位置。相关仪器运 行条件及详细分析流程见侯可军(2007)。分析过程 中锆石标准 GJ1 和 Plesovice 的¹⁷⁶Hf/¹⁷⁷Hf 测试加权 平均值分别为 0.282007 ± 0.000007 (2σ, n = 36)和 0.282476 ± 0.000004 (2 σ , n = 27),与文献报道值 (侯可军,2007;Morel et al.,2008;Sláma et al., 2008 在误差范围内完全一致。

4 结果和讨论

亚贵拉燕山期石英斑岩($\lambda \pi_3^3$) 浩石的 Hf 同位素 分析结果列于表 1。其中,¹⁷⁶ Hf/¹⁷⁷ Hf 比值分布于 0.282 090~0.282 480 之间,对应的 $\epsilon_{\text{Hf}}(t)$ 均为负 值,变化于 – 7.750~ – 21.449 之间(表 1 ,图 3);两 阶段 Hf 模式年龄(T_{DM2})集中于 1 679~2 543 Ma (表 1)。亚贵拉喜马拉雅期石英斑岩($\lambda \pi_6^1$) 浩石的 Hf 同位素分析结果列于表 2。其中,¹⁷⁶Hf/¹⁷⁷Hf 比 值分布于 0.282 413~0.282 805 之间,对应的 ϵ_{Hf} (*t*) 值变化于 – 11.463~2.460(表 2,图 3);两阶段 Hf 模式年龄(T_{DM2})集中于 980~1 864 Ma(表 2)。 亚贵拉喜马拉雅期花岗岩(γ_3^3) 浩石的 Hf 同位素分 析结果列于表 3。其中,¹⁷⁶Hf/¹⁷⁷Hf 比值分布于 0.282 601~0.282 800 之间,对应的 ϵ_{Hf} (*t*) 值变化于 – 2.279~2.182 之间(表 3 图 3);两阶段 Hf 模式年 龄(T_{DM2})集中于 996~1 279 Ma(表 3)。

亚贵拉喜马拉雅晚期花岗斑岩($\gamma \pi_6^3$) 浩石的 Hf 同位素分析结果列于表 4。其中,¹⁷⁶Hf/¹⁷⁷Hf 比值分 布于 0.282 600~0.282 830 之间,对应的 $\epsilon_{Hf}(t)$ /值 变化于 -5.676~3.128 之间(表 4 图 3);两阶段 Hf 模式年龄(T_{DM2})集中于 900~1 461 Ma 之间(表 4)。

沙让喜马拉雅期角闪闪长岩($\delta \psi k$) 浩石的 Hf 同 位素分析结果列于表 5。其中,¹⁷⁶Hf/¹⁷⁷Hf 比值分布 于 0.282 700~0.282 790 之间,对应的 $\varepsilon_{Hf}(t)$ / 值变 化于 – 1.536~1.618 之间;两阶段 Hf 模式年龄 (T_{DM2})集中于 1 019~1 219 Ma 之间(表 5)。

洞中拉燕山期石英斑岩锆石的 Hf 同位素分析 结果列于表 6。其中,¹⁷⁶ Hf/¹⁷⁷ Hf 比值分布于 0.282 142~0.282 396 之间,对应的 $\epsilon_{Hf}(t)$ 均为负 值,变化于 – 19.744~ – 10.620 之间(表 6 图 3);两 阶段 Hf 模式年龄(T_{DM2})集中于 1 857~2 430 Ma (表 6)。

鉴于 Zr 和 Hf 具有相似的地球化学性质,因此 锆石具有较高的 Hf 含量(1%~2%的 HfO₂),同时 Lu 的含量极低,从而导致¹⁷⁶Lu/¹⁷⁷Hf 的比值非常低 (通常小于0.002)。再者,锆石形成后随时间积累 的由放射性同位素¹⁷⁶Lu 衰变而形成的¹⁷⁶Hf 很少, 因此所测样品的¹⁷⁶Hf/¹⁷⁷Hf 比值基本上可以代表 其形成时体系的 Hf 同位素组成,因此锆石可以记录 岩浆源区不同性质的源岩特征。通过与锆石 U-Pb 定年相结合,则能够为揭示地壳演化和示踪岩浆源 区提供重要信息。

吴福元等(2007)认为,不同地球化学储源库具 有明显不同的 Hf 同位素组成,球粒陨石和亏损地幔 的¹⁷⁶Hf/¹⁷⁷Hf 比值较大 $_{e_{H}}(t)$ 值为零或正值;而地 壳的¹⁷⁶Hf/¹⁷⁷Hf 比值相对较小 $_{e_{H}}(t)$ 值为负值。

	Tuble I	III Isotopie (composition	or the zh cons	nom ruga	ina ransnan p	errou quartz	porphyry	
样品号及 测点	U-Pb 年齢 /Ma	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu / ¹⁷⁷ Hf	2σ	$\epsilon_{\rm Hf}$ (t)	$T_{\rm DM1}$ /Ma	T _{DM2} /Ma	$f_{\rm Lu/Hf}$
zk309									
1.1	131.0	0.282110	0.000110	0.001860	0.000030	-20.749	1647	2499	-0.9440
2.1	130.0	0.282240	0.000040	0.001930	0.000070	-16.046	1460	2202	-0.9418
3.1	123.0	0.282260	0.000050	0.001960	0.000070	- 15, 434	1430	2159	-0.9409
4.1	133.0	0.282170	0.000050	0.001620	0.000050	-18.682	1557	2371	-0.9513
5.1	133.0	0.282290	0.000030	0.000860	0.000030	-14.095	1348	2082	-0.9740
6.1	129.0	0.282180	0.000060	0.001730	0.000020	-18.248	1540	2340	-0.9478
7.1	132.0	0.282210	0.000030	0.001400	0.000040	-16.978	1480	2263	-0.9578
8.1	131.0	0.28224	0.000020	0.000880	0.000030	- 15, 926	1419	2196	-0.9735
9.1	127.0	0.28227	0.000020	0.00093	0.000020	-15.027	1382	2137	-0.9720
10.1	131.0	0.282250	0.000030	0.000880	0.000060	-15.778	1413	2187	-0.9734
11.1	132.0	0.282270	0.000020	0.002370	0.000150	- 15, 214	1444	2151	-0.9285
12.1	128.0	0.282250	0.000050	0.001410	0.000020	- 15, 820	1430	2187	-0.9576
13.1	128.0	0.282200	0.000060	0.001230	0.000020	-17.426	1488	2288	-0.9630
vøl-v-1				0.001200	0.000-0		1.00		0.7000
1.1	123.0	0.282360	0.000020	0.000620	0.000010	-12.009	1251	1943	-0.9812
2.1	125.9	0.282300	0.000030	0.001240	0.000040	-14.065	1353	2075	-0.9625
3.1	130.4	0.282190	0.000030	0.001510	0.000050	- 17, 772	1514	2312	-0.9545
4.1	130.3	0.282320	0.000020	0.000860	0.000000	- 13, 350	1316	2033	-0.9741
5.1	140.9	0.282320	0.000020	0.001390	0.000090	- 12 959	1327	2035	-0.9581
6.1	127.4	0.282420	0.000210	0.001680	0.000020	-9.939	1203	1815	-0.9494
7.1	126.6	0.282240	0.000020	0.000950	0.000030	- 16, 136	1426	2206	-0.9715
8.1	129.3	0.282300	0.000030	0.000880	0.000030	0.100	1343	2076	-0.9736
9.1	132 0	0.282280	0.000030	0.001180	0.000040	-14.734	1383	2122	-0.9644
10 1	120.0	0.282300	0.000020	0.000780	0.000010	- 14, 238	1340	2082	-0.9766
10.1	126.0	0.282350	0.000020	0.001380	0.000010	-12,236	1285	1960	-0.9585
12.1	120.1	0.282260	0.000020	0.001300	0.000020	-15,388	1406	2160	-0.9642
r2.1	120.5	0.202200	0.000020	0.001190	0.000020	15.500	1400	2100	0.9042
1 1	126.9	0.282300	0.000030	0.001250 0	0.000050	-14,037	1353	2074	-0.9624
1.1	120.9	0.282340	0.000030	0.001250	0.000030	-12,380	1333	1074	-0.9024
2.1	132.0	0.282270	0.000020	0.000930	0.000020	-15,021	1205	2138	-0.9656
5.1 4.1	129.8	0.282270	0.000020	0.001140	0.000040	-14,103	1368	2138	-0.9030
4.1 5.1	129.1	0.282300	0.000030	0.001300	0.000030	-13.80	1344	2080	-0.9529
5.1	125.5	0.282350	0.000030	0.001130	0.000020	-12,09	1344	1053	- 0. 9660
0.1	127.0	0.282350	0.000020	0.001150	0.000000	-11,075	1274	1955	-0.9600
7.1 9.1	131.3	0.282330	0.000020	0.001100	0.000030	-7.750	1273	1947	-0.9049
0.1	130.1	0.282460	0.000390	0.001500	0.000020	- 12 175	1112	1079	-0.9548
9.1	120.1	0.282330	0.000030	0.001320	0.000070	-12.173 -21.440	1209	2543	-0.9342
10.1	130.0	0.282090	0.000100	0.001000	0.000010	-21.449 -13.460	1338	2037	-0.9082
11.1	120.1	0.282320	0.000020	0.001300	0.000030	-15.400	1336	2037	-0.9349
-l-406 2	151.5	0.282230	0.000030	0.001180	0.000030	15.504	1415	2174	0.9045
2K400-5	129 0	0. 282200	0.000020	0.000(10	0.000000	10 071	1210	1075	0.0016
1.1	128.0	0.282390	0.000020	0.000610	0.000000	-10.8/1	1210	1875	-0.9816
2.1	113.1	0.282370	0.000020	0.000990	0.000030	- 11.883	1248	1928	-0.9/03
3.1	119.7	0.282330	0.000050	0.001780	0.000010	- 13.111	1327	2010	-0.9464
4.1	117.3	0.282360	0.000050	0.001310	0.000020	- 12. 273	1277	1955	-0.9604
5.1	131.5	0.282350	0.000020	0.001560	0.000070	- 12.306	1298	1968	-0.9531
6.1	129.5	0.282210	0.000040	0.001160	0.000060	- 17, 189	1477	2275	-0.9652
7.1	136.4	0.282200	0.000090	0.001420	0.000060	- 17, 498	1505	2299	-0.9574
8.1	131.4	0.282200	0.000140	0.002340	0.000110	- 17.505	1535	2295	- 0.9295
9.1	128.0	0.282310	0.000030	0.001150	0.000060	- 13. 714	1338	2054	-0.9653
10.1	127.6	0.282320	0.000020	0.000920	0.000030	- 13.094	1306	2015	-0.9722
11.1	125.4	0.282350	0.000060	0.001650	0.000090	- 12. 148	1289	1953	-0.9503
12.1	136.1	0.282280	0.000040	0.001220	0.00080	-14.589	1382	2116	-0.9631

表 1 亚贵拉燕山期石英斑岩锆石 Hf 同位素组成 Table 1 Hf isotopic compositions of the zircons from Yaguila Yanshan period quartz porphyr

 $\Xi : * \epsilon_{H} (t) = 10 \ 000 \{ (\ ^{176} H f / \ ^{177} H f)_{S} - (\ ^{176} L u / \ ^{177} H f)_{S} \times (\ e^{\lambda t} - 1) \} (\ ^{176} H f / \ ^{177} H f)_{CHUR, 0} - (\ ^{176} L u / \ ^{177} H f)_{CHUR} \times (\ e^{\lambda t} - 1)] - 1 \}$

 $T_{\rm DM1} = 1/\lambda \times \ln\{1 + [(^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm S} - (^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm DM} \, \text{M}(^{176}{\rm Lu}/^{177}{\rm Hf})_{\rm S} - (^{176}{\rm Lu}/^{177}{\rm Hf})_{\rm DM} \,]\}$

 $T_{\rm DM2} = 1/\lambda \times \ln\{1 + [(^{176}{\rm Hf}/^{177}{\rm Hf})_{S}, t - (^{176}{\rm Hf}/^{177}{\rm Hf})_{DM,t} \mathcal{N}(^{176}{\rm Hf}/^{177}{\rm Hf})_{C} - (^{176}{\rm Hf}/^{177}{\rm Hf})_{DM}]\} + t$

球粒陨石及亏损地幔现在的¹⁷⁶Hf/¹⁷⁷Hf和¹⁷⁶Lu/¹⁷⁷Hf同位素比值分别为0.282772和0.0332.0.28325和0.0384(Blichert-Toft et al., 1997; Griffin et al., 2000) $\lambda = 1.867 \times 10^{-11} a^{-1} (1^{76} Lu/^{177} Hf)_{C} = 0.015$, t =告石结晶年龄。

表 2 亚贵拉喜马拉雅期石英斑岩锆石 Hf 同位素组成

 Table 2
 If isotopic compositions of zircons from Himalayan Yaguila quartz porphyry

样品号及 测点	U-Pb 年龄 /Ma	¹⁷⁶ Hf⁄ ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu / ¹⁷⁷ Hf	2σ	ε _{HI} (<i>t</i>)	$T_{\rm DM1}$ /Ma	$T_{\rm DM2}$ /Ma	$f_{\rm Lu/Hf}$
pd6									
1.1	65.4	0.282643	0.000065	0.007273	0.000344	-3.449	1035	1355	-0.7809
2.1	7.8	0.282496	0.000047	0.003310	0.000162	-8.440	1139	1675	-0.9003
3.1	67.7	0.282736	0.000016	0.002125	0.000005	0.103	754	1132	-0.9360
4.1	66.0	0.282736	0.000028	0.002251	0.000069	0.066	757	1133	-0.9322
5.1	64.0	0.282751	0.000029	0.006009	0.000306	0.390	820	1110	-0.8190
6.1	67.0	0.282711	0.000032	0.004353	0.000288	-0.898	842	1195	-0.8689
7.1	68.5	0.282459	0.000049	0.004118	0.000257	-9.753	1222	1758	-0.8760
8.1	64.2	0.282752	0.000025	0.005060	0.000190	0.471	795	1105	-0.8476
9.1	68.0	0.282672	0.000029	0.002470	0.000148	-2.159	855	1276	-0.9256
10.1	67.7	0.282713	0.000029	0.007327	0.000162	-0.912	917	1195	-0.7793
11.1	66.6	0.282532	0.000035	0.006900	0.000682	-7.323	1207	1601	-0.7922
12.1	66.0	0.282678	0.000022	0.002753	0.000059	-1.985	852	1264	-0.9171
13.1	67.3	0.282565	0.000044	0.006756	0.000185	-6.129	1146	1526	-0.7965
14.1	66.4	0.282634	0.000032	0.004127	0.000135	-3.611	954	1367	-0.8757
15.1	70.0	0.282674	0.000031	0.004312	0.000161	-2.125	897	1275	-0.8701
16.1	65.0	0.282481	0.000062	0.007899	0.000106	-9.194	1333	1718	-0.7621
17.1	66.8	0.282607	0.000060	0.004541	0.000028	- 4.579	1008	1429	-0.8632
18.1	64.0	0.282727	0.000025	0.002737	0.000197	-0.309	780	1155	-0.9176
19.1	66.1	0.282708	0.000034	0.005114	0.000296	-1.044	865	1203	-0.8460
20.1	65.5	0.282701	0.000031	0.003958	0.000274	- 1.234	847	1215	-0.8808
21.1	69.0	0.282705	0.000022	0.002524	0.000106	-0.965	807	1201	-0.9240
22.1	65.8	0.282802	0.000022	0.003604 🔦	0.000085	2.355	685	986	-0.8914
23.1	66.2	0.282805	0.000018	0.003478	0.000157	2.460	679	980	-0.8952
pd402				158	M				
1.1	66.6	0.282713	0.000076	0.004577 〇	0.000138	-0.837	844	1190	-0.8621
2.1	67.0	0.282738	0.000026	0.004900	0.000254	0.062	812	1133	-0.8524
3.1	66.6	0.282679	0.000090 <	0.008047	0.000348	-2.197	999	1276	-0.7576
4.1	68.0	0.282708	0.000024	0.002549	0.000216	-0.87	803	1194	-0.9232
5.1	64.3	0.282636	0.000049	0.004931	0.000303	-3.595	973	1364	-0.8515
6.1	67.7	0.282697	0.000041	0.004109	0.000335	-1.342	857	1224	-0.8762
7.1	66.2	0.282413	0.000108	0.005331	0.000279	- 11.463	1338	1864	-0.8394
8.1	68.0	0.282671	0.000042	0.004649	0.000148	-2.300	912	1285	0.8600
9.1	64.7	0.282602	0.000042	0.008662	0.000220	-4.953	1154	1449	-0.7391
10.1	67.0	0.282506	0.000088	0.00466	0.000221	-8.153	1169	1655	-0.8596
11.1	66.5	0.282565	0.000035	0.004225	0.00009	-6.042	1063	1521	-0.8727
12.1	66.3	0.282663	0.000049	0.009901	0.000360	-2.843	1092	1316	-0.7018
13.1	65.0	0.282583	0.000042	0.003343	0.000125	-5.418	1010	1481	-0.8993
14.1	65.2	0.282682	0.000022	0.002671	0.000089	-1.886	846	1257	-0.9196
15.1	65.4	0.282757	0.000025	0.002857	0.000043	0.797	737	1086	-0.9139
16.1	64.9	0.282736	0.000023	0.003347	0.000072	-0.010	780	1137	-0.8992
17.1	67.2	0.282734	0.000019	0.001445	0.000010	0.052	743	1135	-0.9565
18.1	67.5	0.282693	0.000024	0.003667	0.000275	-1.469	852	1232	-0.8895
19.1	67.1	0.282766	0.000021	0.002300	0.000063	1.145	714	1065	-0.9307
20.1	64.3	0.282648	0.000019	0.001374	0.00002	-3.051	865	1331	-0.9586

 $T_{\rm DMI} = 1/\lambda \times \ln\{1 + [(1^{76} \rm Hf^{177} \rm Hf \}_{\rm S} - (1^{76} \rm Hf^{177} \rm Hf)_{\rm DM} \, M(1^{76} \rm Lu^{177} \rm Hf)_{\rm S} - (1^{76} \rm Lu^{177} \rm Hf)_{\rm DM} \,]\}$

 $T_{\rm DM2} = 1/\lambda \times \ln\{1 + [(^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm S}, t - (^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm DM, t}\}/(^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm C} - (^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm DM}]\} + t$

球粒陨石及亏损地幔现在的¹⁷⁶Hf/¹⁷⁷Hf 和¹⁷⁶Lu/¹⁷⁷Hf 同位素比值分别为 0.282772 和 0.0332 ρ .28325 和 0.0384(Blichert-Toft et al., 1997; Griffin et al., 2000) $\lambda = 1.867 \times 10^{-11} a^{-1} (1^{176} Lu/^{177} Hf)_{c} = 0.015$, t =锆石结晶年龄。

287

表 3 亚贵拉喜马拉雅期花岗岩锆石 Hf 同位素组成 Table 3 Hf isotopic compositions of zircons from Himalayan Yaguila granite

$ \begin{array}{c} ygl2 \\ 1.1 & 61.0 & 0.28278 & 0.000049 & 0.003051 & 0.000081 & -0.422 & 765 & 1161 & -0.9460 \\ 2.1 & 64.0 & 0.282707 & 0.000018 & 0.001321 & 0.000191 & -0.287 & 749 & 1153 & -0.9617 \\ 4.1 & 65.0 & 0.282772 & 0.000020 & 0.00178 & 0.000121 & -0.287 & 749 & 1153 & -0.9617 \\ 5.1 & 65.9 & 0.282704 & 0.00020 & 0.00178 & 0.000021 & 1.516 & 685 & 1037 & -0.9462 \\ 5.1 & 63.0 & 0.282714 & 0.00020 & 0.00178 & 0.000021 & -0.482 & 754 & 1165 & -0.9525 \\ 7.1 & 63.0 & 0.282734 & 0.000020 & 0.00178 & 0.000038 & -0.430 & 721 & 1105 & -0.9525 \\ 7.1 & 63.0 & 0.282734 & 0.000020 & 0.00176 & 0.00038 & 0.430 & 721 & 1105 & -0.9562 \\ 7.1 & 63.0 & 0.282734 & 0.000021 & 0.001264 & 0.000126 & -0.656 & 779 & 1175 & -0.9562 \\ 1.1 & 63.0 & 0.282734 & 0.000019 & 0.001244 & 0.000128 & -2.263 & 833 & 1279 & -0.9536 \\ 10.1 & 63.0 & 0.282724 & 0.000021 & 0.00175 & 0.000023 & -2.279 & 830 & 1279 & -0.9603 \\ 12.1 & 63.0 & 0.282721 & 0.000021 & 0.00175 & 0.00023 & -2.279 & 830 & 1279 & -0.9603 \\ 13.1 & 64.0 & 0.282711 & 0.000011 & 0.00175 & 0.000021 & 0.334 & 724 & 1113 & -0.9611 \\ 15.1 & 63.0 & 0.282741 & 0.000020 & 0.00181 & 0.000174 & -0.784 & 758 & 1165 & -0.9598 \\ 18.1 & 61.0 & 0.282718 & 0.000020 & 0.00181 & 0.000174 & -0.784 & 758 & 1165 & -0.9598 \\ 18.1 & 61.0 & 0.282748 & 0.000020 & 0.00181 & 0.000174 & -0.474 & 758 & 1165 & -0.9598 \\ 18.1 & 61.0 & 0.282748 & 0.000020 & 0.001948 & -0.474 & 758 & 1165 & -0.9598 \\ 19.1 & 64.0 & 0.282738 & 0.000020 & 0.001974 & 0.000059 & -1.822 & 866 & 1252 & -0.771 \\ 14.1 & 62.0 & 0.282730 & 0.000020 & 0.001974 & 0.000090 & -0.452 & 751 & 1164 & -0.9640 \\ 2.1 & 61.0 & 0.282730 & 0.000020 & 0.001790 & 0.000070 & -0.452 & 751 & 1165 & -0.9562 \\ 2.5.1 & 61.0 & 0.282730 & 0.000020 & 0.00170 & 0.000070 & -0.452 & 755 & 1161 & -0.9460 \\ 2.1 & 61.0 & 0.282730 & 0.000020 & 0.00170 & 0.000000 & -0.353 & 754 & 1165 & -0.9562 \\ 7.1 & 62.0 & 0.282730 & 0.000020 & 0.00170 & 0.000000 & -0.352 & 771 & 1165 & -0.9460 \\ 2.1 & 61.0 & 0.282730 & 0.000020 & 0.00170 & 0.000000 & -0.555 & 771 & 1164 & -0.9618 \\ 1.1 & 61$	样品号及 测点	U-Pb 年龄 /Ma	¹⁷⁶ Hf / ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu / ¹⁷⁷ Hf	2σ	ε _Η (<i>t</i>)	T _{DM1} /Ma	$T_{\rm DM2}$ /Ma	$f_{\rm Lu/Hf}$
	ygl2									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1	61.0	0.28278	0.000049	0.003051	0.000081	-0.422	765	1161	-0.9460
3.1 63.0 0.282717 0.000018 0.001321 0.000019 -0.287 749 1153 -0.9617 4.1 65.9 0.282704 0.000020 0.001787 0.000034 -0.285 752 1149 -0.9525 5.1 65.9 0.282704 0.000020 0.001726 0.000030 0.430 721 1105 -0.9662 7.1 63.0 0.282745 0.00017 0.00134 0.000018 0.523 719 1102 -0.9598 9.1 61.0 0.282734 0.00019 0.00125 0.00008 -2.273 833 1279 -0.9552 11.1 62.0 0.282731 0.000120 0.001755 0.000024 -2.279 830 1279 -0.9563 12.1 63.0 0.282714 0.000120 0.001755 0.00021 -2.279 830 1279 -0.9563 13.1 64.0 0.282714 0.000120 0.001750 0.00021 -0.314 724 1113 -0.9618 14.1 63.0 0.282714 0.000020 <t< td=""><td>2.1</td><td>64.0</td><td>0.282601</td><td>0.000044</td><td>0.002365</td><td>0.000101</td><td>-0.262</td><td>757</td><td>1150</td><td>-0.9463</td></t<>	2.1	64.0	0.282601	0.000044	0.002365	0.000101	-0.262	757	1150	-0.9463
4.1 62.0 0.282772 0.00020 0.001787 0.000034 -0.2855 722 1149 -0.9525 5.1 65.9 0.282704 0.000020 0.001726 0.000021 1.516 685 1037 -0.9462 7.1 63.0 0.282711 0.00017 0.00134 0.000029 -0.482 754 1165 -0.9563 8.1 61.0 0.282733 0.00024 0.001264 0.000066 -0.565 779 1175 -0.9376 10.1 63.0 0.282731 0.00018 0.00125 0.000024 -2.263 833 1279 -0.9552 12.1 63.0 0.282711 0.000120 0.00144 0.00019 0.33 751 1134 -0.9621 13.1 64.0 0.282710 0.00020 0.00144 0.000021 0.33 751 1134 -0.9621 14.1 63.0 0.282748 0.00020 0.00170 0.000021 0.33 751 1134 -0.9603 15.1 62.0 0.282748 0.000021 0.00176 0.000021	3.1	63.0	0.282717	0.000018	0.001321	0.000019	-0.287	749	1153	-0.9617
5.1 65.9 0.28274 0.00020 0.00128 0.000021 1.516 685 1037 -0.9462 6.1 63.0 0.282711 0.000017 0.001344 0.000029 -0.482 754 1105 -0.9563 8.1 62.0 0.282745 0.000019 0.001244 0.000026 -0.253 719 1175 -0.9576 10.1 63.0 0.282744 0.000018 0.00125 0.000028 -2.263 833 1279 -0.9552 11.1 63.0 0.282711 0.000021 0.00125 0.000023 -2.279 830 1279 -0.9633 13.1 64.0 0.282711 0.000021 0.001451 0.000033 751 1134 -0.9421 14.1 63.0 0.282741 0.000020 0.001127 0.000120 -0.342 724 11134 -0.9643 15.1 62.0 0.282740 0.000020 0.001120 0.00024 -0.2744 788 1184 -0.9618 16.1 61.5 0.282740 0.000020 0.001740	4.1	62.0	0.282772	0.000020	0.001787	0.000034	-0.285	752	1149	-0.9525
6.1 6.3.0 0.282791 0.000026 0.000170 0.00018 0.230 721 1105 -0.9662 7.1 63.0 0.282715 0.000017 0.001334 0.000028 -0.882 719 1105 -0.9598 9.1 61.0 0.282733 0.00018 0.00125 0.000026 -0.656 779 1175 -0.9552 11.1 62.0 0.282744 0.000018 0.00125 0.000041 0.120 734 1126 -0.9552 11.1 62.0 0.282731 0.000021 0.00125 0.000021 -2.279 830 1279 -0.9603 13.1 64.0 0.282714 0.000022 0.001517 0.000021 -0.334 724 1113 -0.9618 16.1 61.5 0.282718 0.000024 0.001794 0.000059 -1.822 806 1252 -0.9518 16.1 61.2 0.282718 0.00024 0.001790 0.000064 -0.165 744 <t< td=""><td>5.1</td><td>65.9</td><td>0.282704</td><td>0.000020</td><td>0.001828</td><td>0.000021</td><td>1.516</td><td>685</td><td>1037</td><td>-0.9462</td></t<>	5.1	65.9	0.282704	0.000020	0.001828	0.000021	1.516	685	1037	-0.9462
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.1	63.0	0.282794	0.000026	0.001726	0.000030	0.430	721	1105	-0.9562
8.1 62.0 0.282743 0.000014 0.000168 0.523 719 1102 -0.9598 9.1 61.0 0.282733 0.000021 0.001025 0.000028 -2.263 833 1279 -0.9552 11.1 62.0 0.282731 0.000021 0.00125 0.000028 -2.263 833 1279 -0.9603 13.1 64.0 0.282731 0.000020 0.01454 0.000029 -0.334 723 1134 -0.9621 15.1 62.0 0.282714 0.000012 0.001237 0.000120 -0.784 769 1184 -0.9618 16.1 61.5 0.282744 0.000024 0.00137 0.000120 -0.784 769 1144 -0.9518 18.1 62.0 0.282748 0.000026 0.001794 0.000064 -0.474 758 1165 -0.9598 18.1 62.0 0.282740 0.000026 0.01790 0.000060 -0.452 738 1143 -0.9503	7.1	63.0	0.282711	0.000017	0.001334	0.000029	-0.482	754	1165	-0.9663
	8.1	62.0	0.282745	0.000019	0.001464	0.000018	0.523	719	1102	-0.9598
	9.1	61.0	0.282733	0.000024	0.001264	0.000066	-0.656	779	1175	-0.9376
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.1	63.0	0.282724	0.000018	0.001025	0.000028	-2.263	833	1279	-0.9552
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.1	62.0	0.282684	0.000019	0.001230	0.000041	0.120	734	1126	-0.9596
	12.1	63.0	0.282731	0.000021	0.001755	0.000023	-2.279	830	1279	-0.9603
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	13.1	64.0	0.282721	0.000020	0.001454	0.000049	0.033	751	1134	-0.9421
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.1	63.0	0.282741	0.000022	0.001591	0.000021	0.334	724	1113	-0.9621
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15.1	62.0	0.282771	0.000018	0.002137	0.000120	-0.784	769	1184	-0.9618
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.1	61.5	0.282704	0.000020	0.001812	0.000059	-1.822	806	1252	-0.9714
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17.1	62.0	0.282748	0.000024	0.001638	0.000048	-0.474	758	1165	-0.9598
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.1	62.0	0.282718	0.000018	0.001794	0.000004	-0.165	^{OD} 744	1143	-0.9584
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19.1	64.0	0.282736	0.000026	0.001938	0.000055	-1.42	793	1226	-0.9660
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20.1	62.0	0.282686	0.000022	0.001780	0.000006	-0.152	738	1143	-0.9703
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.1	63.0	0.282755	0.000023	0.001297	0.000027	0.534	754	1167	-0.9683
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.1	64.0	0.282740	0.000020	0.001770	0.000080	-0.766	770	1184	-0.961
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.1	65.0	0.282720	0.000020	0.001560	0.000020	2.182	649	996	-0.9652
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.1	61.0	0.282720	0.000020	0.001430 🔨	0.000040	0.755	711	1086	-0.9562
ygl31.162.00.2827200.000200.0017900.00040 -0.422 7651161 -0.9460 2.161.00.2827300.000200.0017800.00020 -0.262 7571150 -0.9463 3.162.00.2827300.000200.0012700.00020 -0.287 7491153 -0.9617 4.158.00.2827300.000200.0017900.000050 -0.285 7521149 -0.9525 5.162.00.2827800.000200.0017900.0000100.4307211105 -0.9663 8.163.00.2827500.000200.0011200.000100 -0.482 7541165 -0.9663 8.163.00.2827500.000200.001300.00010 -0.523 7191102 -0.9596 9.161.00.2827200.000200.0014900.000050 -2.263 8331279 -0.9552 11.161.80.2827300.000200.0013200.00010 -2.279 8301279 -0.9562 11.161.80.2827300.000200.0013200.000010 -2.279 8301279 -0.9562 11.161.00.2827300.000200.0013200.000010 -2.279 8301279 -0.9562 11.161.80.2827400.000200.0013200.000000 -0.333 7511134 -0.9414 12.161.00.2827300.000200.0012700.00	25.1	62.0	0.282730	0.000020	0.002080	0.000070	-0.422	765	1161	-0.9460
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ygl3				18	724				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1	62.0	0.282720	0.000020	0.001790	0.000040	-0.422	765	1161	-0.9460
3.1 62.0 0.282730 0.00020 0.001270 0.00020 -0.287 749 1153 -0.9617 4.1 58.0 0.282730 0.00020 0.001580 0.00050 -0.285 752 1149 -0.9525 5.1 62.0 0.282780 0.00020 0.001790 0.00040 1.516 685 1037 -0.9462 6.1 59.0 0.282750 0.00020 0.001450 0.00010 0.430 721 1105 -0.9562 7.1 62.0 0.282720 0.000020 0.001120 0.00030 -0.482 754 1165 -0.9563 8.1 63.0 0.282720 0.00020 0.00120 0.00010 0.523 719 1102 -0.9598 9.1 61.0 0.282740 0.00020 0.00120 -0.656 779 1175 -0.9376 10.1 62.0 0.282670 0.00020 0.001320 -0.00010 0.120 734 1126 -0.9596 12.1 61.0 0.282730 0.000020 0.001320 0.00010 -12279 830 1279 -0.9603 13.1 65.0 0.282740 0.00020 0.00120 0.00020 0.334 724 1113 -0.9421 14.1 62.0 0.282740 0.00020 0.00020 0.334 724 1113 -0.9621 15.1 62.0 0.282740 0.00020 0.00120 0.000000 -1.822 806 <	2.1	61.0	0.282730	0.000020	0.001780	0.000020	-0.262	757	1150	-0.9463
4.158.0 0.282730 0.00020 0.001580 0.00050 -0.285 752 1149 -0.9525 5.1 62.0 0.282780 0.00020 0.001790 0.00040 1.516 685 1037 -0.9462 6.1 59.0 0.282750 0.00020 0.001450 0.000010 0.430 721 1105 -0.9562 7.1 62.0 0.282720 0.00020 0.001120 0.00030 -0.482 754 1165 -0.9663 8.1 63.0 0.282750 0.00020 0.00130 0.00010 0.523 719 1102 -0.9598 9.1 61.0 0.282720 0.00020 0.00120 -0.656 779 1175 -0.9576 10.1 62.0 0.282670 0.00020 0.00140 0.00050 -2.263 833 1279 -0.9552 11.1 61.8 0.282730 0.00020 0.001320 0.00010 -1.279 830 1279 -0.9603 13.1 65.0 0.282740 0.00020 0.00120 0.00010 -2.279 830 1279 -0.9603 13.1 62.0 0.282710 0.00020 0.00120 0.00020 0.334 724 1113 -0.9618 16.1 64.0 0.282730 0.00020 0.00120 0.334 724 1113 -0.9518 15.1 62.0 0.282730 0.00020 0.001300 -0.474 758 1165 -0.9562 1	3.1	62.0	0.282730	0.000020	0.001270	0.000020	-0.287	749	1153	-0.9617
5.1 62.0 0.282780 0.00020 0.001790 0.00040 1.516 685 1037 -0.9462 6.1 59.0 0.282750 0.000020 0.001450 0.00010 0.430 721 1105 -0.9562 7.1 62.0 0.282720 0.00020 0.001120 0.00030 -0.482 754 1165 -0.9663 8.1 63.0 0.282720 0.00020 0.001330 0.00010 0.523 719 1102 -0.9598 9.1 61.0 0.282720 0.00020 0.00270 0.00012 -0.656 779 1175 -0.9376 10.1 62.0 0.282670 0.00020 0.001300 0.00010 -1.20 734 1126 -0.9596 12.1 61.0 0.282730 0.00020 0.001320 0.00010 -1.20 734 1126 -0.9596 12.1 61.0 0.282730 0.00020 0.001320 0.00010 -1.279 830 1279 -0.9603 13.1 65.0 0.282740 0.00020 0.00120 0.00020 0.334 724 1113 -0.9421 14.1 62.0 0.282710 0.00020 0.001270 0.00000 0.334 724 1113 -0.9618 15.1 62.0 0.282710 0.00020 0.001270 0.00000 -1.822 806 1252 -0.9714 17.1 62.0 0.282730 0.000020 0.000020 -0.474	4.1	58.0	0.282730	0.000020	0.001580	0.000050	-0.285	752	1149	-0.9525
6.1 59.0 0.282750 0.000020 0.001450 0.000010 0.430 721 1105 -0.9562 7.1 62.0 0.282720 0.000020 0.001120 0.00030 -0.482 754 1165 -0.9663 8.1 63.0 0.282750 0.000020 0.00130 0.00010 0.523 719 1102 -0.9598 9.1 61.0 0.282720 0.000020 0.00270 0.000120 -0.656 779 1175 -0.9376 10.1 62.0 0.282670 0.000020 0.001490 0.00050 -2.263 833 1279 -0.9552 11.1 61.8 0.282740 0.000020 0.001340 0.00010 0.120 734 1126 -0.9596 12.1 61.0 0.282730 0.000020 0.00120 0.00010 -2.279 830 1279 -0.9603 13.1 65.0 0.282730 0.000020 0.00120 0.00020 0.333 751 1134 -0.9421 14.1 62.0 0.282710 0.000020 0.00120 0.333 751 1134 -0.9621 15.1 62.0 0.282730 0.000020 0.00120 0.334 724 1113 -0.9621 15.1 62.0 0.282730 0.000020 0.00120 -0.784 769 1184 -0.9618 16.1 64.0 0.282730 0.000020 0.001340 0.000050 -0.474 758 11	5.1	62.0	0.282780	0.000020	0.001790	0.000040	1.516	685	1037	-0.9462
7.1 62.0 0.282720 0.000020 0.001120 0.00030 -0.482 754 1165 -0.9663 8.1 63.0 0.282750 0.00020 0.001330 0.00010 0.523 719 1102 -0.9598 9.1 61.0 0.282720 0.00020 0.00270 0.000120 -0.656 779 1175 -0.9376 10.1 62.0 0.282670 0.00020 0.001490 0.00050 -2.263 833 1279 -0.9552 11.1 61.8 0.282740 0.00020 0.001340 0.00010 0.120 734 1126 -0.9596 12.1 61.0 0.282730 0.00020 0.001320 0.00010 -2.279 830 1279 -0.9603 13.1 65.0 0.282710 0.00020 0.00120 0.00020 0.334 724 1113 -0.9421 14.1 62.0 0.282710 0.00020 0.001270 0.000020 0.334 724 1113 -0.9618 15.1 62.0 0.282710 0.00020 0.001270 0.000000 -1.822 806 1252 -0.9714 17.1 62.0 0.282730 0.00020 0.001340 0.000000 -1.822 806 1252 -0.9714 17.1 62.0 0.282730 0.00020 0.001340 0.000020 -0.474 758 1165 -0.9584 19.1 63.0 0.282730 0.00020 0.001380 0.000020 $-0.$	6.1	59.0	0.282750	0.000020	0.001450	0.000010	0.430	721	1105	-0.9562
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.1	62.0	0.282720	0.000020	0.001120	0.000030	-0.482	754	1165	-0.9663
9.1 61.0 0.282720 0.00020 0.00270 0.000120 -0.656 779 1175 -0.9376 10.1 62.0 0.282670 0.000020 0.001490 0.000050 -2.263 833 1279 -0.9552 11.1 61.8 0.282740 0.000020 0.001340 0.000010 0.120 734 1126 -0.9596 12.1 61.0 0.282670 0.000020 0.001320 0.00010 -2.279 830 1279 -0.9603 13.1 65.0 0.282730 0.000020 0.001260 0.00020 0.333 751 1134 -0.9421 14.1 62.0 0.282710 0.00020 0.001260 0.00020 0.334 724 1113 -0.9621 15.1 62.0 0.282710 0.00020 0.001270 0.000010 -0.784 769 1184 -0.9618 16.1 64.0 0.282680 0.00020 0.00020 -0.00000 -1.822 806 1252 -0.9714 17.1 62.0 0.282730 0.00020 0.001340 0.00020 -0.474 758 1165 -0.9584 19.1 63.0 0.282730 0.00020 0.00130 0.00020 -1.42 793 1226 -0.9660 20.1 61.0 0.282730 0.00020 0.00130 0.00020 -1.42 793 1226 -0.9663 21.1 60.0 0.282710 0.00020 0.00130 0.00020 $-0.$	8.1	63.0	0.282750	0.000020	0.001330	0.000010	0.523	719	1102	-0.9598
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.1	61.0	0.282720	0.000020	0.002070	0.000120	-0.656	779	1175	-0.9376
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.1	62.0	0.282670	0.000020	0.001490	0.000050	-2.263	833	1279	-0.9552
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.1	61.8	0.282740	0.000020	0.001340	0.000010	0.120	734	1126	-0.9596
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.1	61.0	0.282670	0.000020	0.001320	0.000010	-2.279	830	1279	-0.9603
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13.1	65.0	0.282730	0.000020	0.001920	0.000060	0.033	751	1134	-0.9421
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14.1	62.0	0.282740	0.000020	0.001260	0.000020	0.334	724	1113	-0.9621
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15.1	62.0	0.282710	0.000020	0.001270	0.000010	-0.784	769	1184	-0.9618
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.1	64.0	0.282680	0.000020	0.000950	0.000000	-1.822	806	1252	-0.9714
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.1	62.0	0.282720	0.000020	0.001340	0.000050	-0.474	758	1165	-0.9598
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.1	59.0	0.282730	0.000020	0.001380	0.000020	-0.165	744	1143	-0.9584
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.1	63.0	0.282690	0.000020	0.001130	0.000020	-1.42	793	1226	-0.9660
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.1	61.0	0.282730	0.000020	0.000980	0.000010	-0.152	738	1143	-0.9703
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.1	60.0	0.282720	0.000020	0.001050	0.000020	-0.534	754	1167	-0.9683
23.1 63.0 0.282800 0.00020 0.001160 0.00020 2.182 649 996 -0.9652 24.1 62.0 0.282760 0.000020 0.001460 0.00003 0.755 711 1086 -0.9562	22.1	63.0	0.282710	0.000020	0.00130	0.000000	-0.766	770	1184	-0.9610
24.1 62.0 0.282760 0.000020 0.001460 0.00003 0.755 711 1086 -0.9562	23.1	63.0	0.282800	0.000020	0.001160	0.000020	2.182	649	996	-0.9652
	24.1	62.0	0.282760	0.000020	0.001460	0.00000	0.755	711	1086	-0.9562

 $T_{\rm DMI} = 1/\lambda \times \ln\{1 + [(1^{76} \text{Hf}/1^{77} \text{Hf})_{2} - (1^{76} \text{Hf}/1^{77} \text{Hf})_{2M} \text{M}(1^{76} \text{Lu}/1^{77} \text{Hf})_{2} - (1^{76} \text{Lu}/1^{77} \text{Hf})_{2M}]\}$

 $T_{\rm DM2} = 1/\lambda \times \ln\{1 + [(1^{176} {\rm Hf} / {}^{177} {\rm Hf})_{S} , t - (1^{176} {\rm Hf} / {}^{177} {\rm Hf})_{DM,t}]/[(1^{176} {\rm Hf} / {}^{177} {\rm Hf})_{C} - (1^{176} {\rm Hf} / {}^{177} {\rm Hf})_{DM}]\} + t$

球粒陨石及亏损地幔现在的¹⁷⁶Hf/¹⁷⁷Hf 和¹⁷⁶Lu/¹⁷⁷Hf 同位素比值分别为 0.282772 和 0.0332 ρ .28325 和 0.0384(Blichert-Toft et al., 1997; Griffin et al., 2000) $\lambda = 1.867 \times 10^{-11} a^{-1} (1^{76} Lu/^{177} Hf)_{C} = 0.015$, t =告石结晶年龄。

	Table 4 III Isotopic compositions of zircons from fate finnanayan faguna granne-porphyry (ZKS01)									
样品号及 测点	U-Pb 年龄 /Ma	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu / ¹⁷⁷ Hf	2σ	ε _Η (<i>t</i>)	T _{DM1} /Ma	T _{DM2} ∕Ma	$f_{\rm Lu/Hf}$	
1.1	17.6	0.282770	0.000020	0.001530	0.000080	0.291	693	1082	-0.9540	
2.1	17.6	0.282760	0.000020	0.000870	0.000030	-0.203	701	1114	-0.9737	
3.1	17.3	0.282740	0.000020	0.002260	0.000050	-0.646	745	1141	-0.9318	
4.1	17.6	0.282730	0.000030	0.003290	0.000110	-1.159	788	1174	-0.9008	
5.1	17.6	0.282730	0.000020	0.003090	0.000130	-1.122	783	1172	-0.9068	
6.1	17.1	0.282670	0.000040	0.001840	0.000090	-3.329	846	1312	-0.9446	
7.1	17.6	0.282740	0.000020	0.001960	0.000100	-0.700	742	1145	-0.9409	
8.1	17.1	0.282680	0.000020	0.001720	0.000060	-3.058	832	1295	-0.9482	
9.1	17.6	0.282790	0.000010	0.001170	0.000030	1.170	651	1026	-0.9646	
10.1	17.4	0.282750	0.000020	0.001320	0.000020	-0.488	720	1132	-0.9604	
11.1	17.6	0.282760	0.000020	0.002530	0.000080	0.052	722	1097	-0.9237	
12.1	17.4	0.282760	0.000020	0.001620	0.000040	0.102	702	1094	-0.9512	
13.1	18.1	0.282730	0.000020	0.002200	0.000060	-1.195	767	1177	-0.9338	
14.1	17.6	0.282760	0.000030	0.001740	0.000090	-0.095	713	1107	-0.9474	
15.1	17.5	0.282750	0.000020	0.001460	0.000020	-0.385	719	1125	-0.9559	
16.1	17.2	0.282600	0.000090	0.003910	0.000130	-5.676	997	1461	-0.8822	
17.1	17.5	0.282810	0.000020	0.001620	0.000020	1.662	639	994	-0.9512	
18.1	17	0.282720	0.000020	0.001360	0.000040	-1.370))	756	1188	-0.9592	
19.1	17.8	0.282740	0.000020	0.001320	0.000030	-0.597	725	1139	-0.9602	
20.1	17.8	0.282750	0.000020	0.002630	0.000280	-0.359	741	1123	-0.9209	
21.1	17.0	0.282740	0.000020	0.002300	0.000090	0.947	758	1160	-0.9307	
22.1	16.4	0.282730	0.000020	0.001430	0.000040	- 1.010	743	1164	-0.9568	
23.1	17.2	0.282830	0.000020	0.001360 \land	0.000050	2.487	601	941	-0.9589	
24.1	16.8	0.282770	0.000020	0.002520	0.00010	3.128	593	900	-0.9242	

表 4 亚贵拉喜马拉雅晚期花岗斑岩(ZK501)浩石 Hf 同位素组成 If isotopic compositions of zircons from late Himalayan Yaguila granite-porphyry(ZK50)

注: * $\epsilon_{H}(t) = 10.000$ { (1⁷⁶Hf/¹⁷⁷Hf), -(1⁷⁶Lu/¹⁷⁷Hf), ×(e^{λt} - 1.)) (1⁷⁶Hf/¹⁷⁷Hf)_{CHUR,0} -(1⁷⁶Lu/¹⁷⁷Hf)_{CHUR}×(e^{λt} - 1.)] - 1 }

 $T_{\rm DMI} = 1/\lambda \times \ln\{1 + [(^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm S} - (^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm DM} \ J(^{176}{\rm Lu}/^{177}{\rm Hf})_{\rm S} - (^{176}{\rm Lu}/^{177}{\rm Hf})_{\rm DM}]\}$

 $T_{\rm DM2} = 1/\lambda \times \ln\{1 + [(^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm S}, t - (^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm DM3} M(^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm C} - (^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm DM}]\} + t$

球粒陨石及亏损地幔现在的¹⁷⁶Hf/¹⁷⁷Hf 和¹⁷⁶Lu/¹⁷⁷Hf 同位素比值分别为 0.282772 和 0.0332 0.28325 和 0.0384(Blichert-Toft et al., 1997; Griffin et al., 2000) $\lambda = 1.867 \times 10^{-11} a^{-1}$ (¹⁷⁶Lu/¹⁷⁷Hf) c = 0.015, t =锆石结晶年龄。

表 5 沙让喜马拉雅期角闪闪长岩锆石(sr4)Hf 同位素组成 Table 5 Hf isotopic compositions of zircons from Himalayan Sharang hornblende diorite(sr4)

样品号及 测点	U-Pb 年龄 /Ma	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu / ¹⁷⁷ Hf	2σ	ε _Η (<i>t</i>)	T _{DM1} /Ma	T _{DM2} /Ma	$f_{\rm Lu/Hf}$
1.1	47.7	0.282790	0.000020	0.001690	0.000020	1.471	674	1029	-0.9490
2.1	48.8	0.282710	0.000020	0.001800	0.000010	-1.310	790	1208	-0.9457
3.1	52.7	0.282740	0.000020	0.002090	0.000010	0.070	742	1123	-0.9371
4.1	50.6	0.282710	0.000020	0.001300	0.000030	-1.299	781	1208	-0.9609
5.1	51.5	0.282770	0.000020	0.003120	0.000090	0.970	723	1064	-0.9059
6.1	47.9	0.282790	0.000020	0.002760	0.000060	1.594	687	1022	-0.9168
7.1	46.0	0.282790	0.000020	0.001330	0	1.618	660	1019	-0.9600
8.1	50.1	0.282730	0.000020	0.002020	0.000030	-0.416	759	1152	-0.9392
9.1	50.2	0.282730	0.000020	0.002190	0.000000	-0.622	771	1165	-0.9341
10.1	45.4	0.282700	0.000020	0.002630	0.000010	-1.536	813	1219	-0.9207
11.1	45.8	0.282730	0.000010	0.001310	0.000010	-0.474	744	1152	-0.9607
12.1	47.7	0.282790	0.000020	0.001690	0.000020	1.471	674	1029	-0.9490

 $\Xi : * \epsilon_{H}(t) = 10 \ 000 \{ (\ ^{176}\text{Hf} / \ ^{177}\text{Hf} \)_{5} - (\ ^{176}\text{Lu} / \ ^{177}\text{Hf} \)_{5} \times (\ e^{\lambda t} - 1 \) \ M (\ ^{176}\text{Hf} / \ ^{177}\text{Hf} \)_{HUR \ 0} - (\ ^{176}\text{Lu} / \ ^{177}\text{Hf} \)_{HUR} \times (\ e^{\lambda t} - 1 \) \] - 1 \}$

 $T_{\rm DMI} = 1/\lambda \times \ln\{1 + [(1^{176} \text{Hf}/1^{177} \text{Hf})_{2} - (1^{176} \text{Hf}/1^{177} \text{Hf})_{2M} \text{/} (1^{176} \text{Lu}/1^{177} \text{Hf})_{2} - (1^{176} \text{Lu}/1^{177} \text{Hf})_{2M}]\}$

 $T_{\rm DM2} = 1/\lambda \times \ln\{1 + [(^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm S}, t - (^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm DM, t}\}/(^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm C} - (^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm DM}]\} + t$

球粒陨石及亏损地幔现在的¹⁷⁶Hf/¹⁷⁷Hf和¹⁷⁶Lu/¹⁷⁷Hf同位素比值分别为0.282772和0.0332 0.28325和0.0384(Blichert-Toft et al., 1997;

Griffin et al. , 2000) λ =1.867×10⁻¹¹a⁻¹ (¹⁷⁶Lu/¹⁷⁷Hf)_C=0.015 , t=锆石结晶年龄 其余表相同。

Fig. 3 $\epsilon_{\text{Hf}}(t)$ versus U-Pb ages of zircons from Yaguila, Sharang, Dongzhongla, Qulong ore deposits and Linzizong volcanic rock (after Lee et al., 2006; Yang, 2008)

表 6 洞中拉石英斑岩锆石(dzl)Hf 同位素组成

 Table 6
 Hf isotopic compositions of zircons from Yanshanian Dongzhongla quartz porphyry(dzl)

样品号及	U-Pb 年龄	176 T TC /177 T TC	2-	1761 /1771.10	2-	\sim	$T = /M_{\odot}$	T / M_{\odot}	£
测点	/Ma	Hi/Hi/Hi	20	The Loy the Hi	20	eHf(1)	1 DM1/ IVIA	1 DM2/ IVIA	J Lu/Hf
1.1	127.0	0.282324	0.000044	0.001268	0.000023	- 13. 152	1319	2018	-0.9618
2.1	130	0.282214	0.000043	0.001992	0.000014	-17.070	1503	2267	-0.9400
3.1	129	0.282293	0.000023	0.001329	0.000033	-14.234	1366	2088	-0.9600
4.1	123	0.282142	0.000084	0.002095	0.000038	-19.744	1610	2430	-0.9369
5.1	128	0.282300	0.000029	0.001653	0.000047	-14.011	1366	2073	-0.9502
6.1	123	0.282326	0.000037	0.001335	0.000039	-13.181	1319	2017	-0.9598
7.1	122	0.282300	0.000024	0.001385	0.000053	-14.141	1358	2077	-0.9583
8.1	128	0.282341	0.000020	0.000952	0.000009	-12.509	1284	1978	-0.9713
9.1	130	0.282283	0.000021	0.001019	0.000020	-14.530	1368	2108	-0.9693
10.1	128	0.282291	0.000023	0.000889	0.000034	-14.290	1353	2091	-0.9732
11.1	129	0.282324	0.000017	0.000748	0.00004	-13.097	1302	2016	-0.9775
12.1	127	0.282332	0.000020	0.001068	0.00007	-12.851	1301	1999	-0.9678
13.1	126	0.282155	0.000033	0.001750	0.000064	-19.190	1576	2397	-0.9473
14.1	130	0.282322	0.000030	0.000988	0.000024	-13.165	1313	2021	-0.9702
15.1	123	0.282357	0.000025	0.003004	0.000139	-12.210	1334	1955	-0.9095
16.1	127	0.282364	0.000042	0.001314	0.000013	-11.740	1264	1929	-0.9604
17.1	126	0.282328	0.000029	0.001130	0.000044	-13.042	1309	2011	-0.9660
18.1	124	0.282180	0.000034	0.001610	0.000036	-18.347	1535	2343	-0.9515
19.1	126	0.282310	0.000020	0.001030	0.000020	-13.621	1329	2047	-0.9691
20.1	125	0.282396	0.000023	0.000932	0.000006	-10.620	1207	1857	-0.9719

 $\dot{\Xi}: \ ^{*}\varepsilon_{\rm Hf}(t) = 10,000 \ \left[(\ ^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm S} - (\ ^{176}{\rm Lu}/^{177}{\rm Hf})_{\rm S} \times (e^{\lambda t} - 1) \right] / \left[(\ ^{176}{\rm Hf}/^{177}{\rm Hf})_{\rm CHUR,0} - (\ ^{176}{\rm Lu}/^{177}{\rm Hf})_{\rm CHUR} \times (e^{\lambda t} - 1) \right] - 1 \}$

 $T_{\rm DMI} = 1/\lambda \times \ln \{1 + [(1^{76} \rm Hf/^{177} \rm Hf)_{\rm S} - (1^{76} \rm Hf/^{177} \rm Hf)_{\rm DM}]/[(1^{76} \rm Lu/^{177} \rm Hf)_{\rm S} - (1^{76} \rm Lu/^{177} \rm Hf)_{\rm DM}]\}$

 $T_{\rm DM2} = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S}, \ t - (176 \,\text{Hf}/177 \,\text{Hf})_{\rm DM, t} \right] / \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm C} - (176 \,\text{Hf}/177 \,\text{Hf})_{\rm DM} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S}, \ t - (176 \,\text{Hf}/177 \,\text{Hf})_{\rm DM, t} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S}, \ t - (176 \,\text{Hf}/177 \,\text{Hf})_{\rm DM, t} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S}, \ t - (176 \,\text{Hf}/177 \,\text{Hf})_{\rm DM, t} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S}, \ t - (176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S}, \ t - (176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S}, \ t - (176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S}, \ t - (176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right\} \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right\} \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right\} \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right\} \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right\} \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right\} \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right\} \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right\} \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm S} \right\} \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf}\right] \right\} \\ + t = 1/\lambda \times \ln \left\{ 1 + \left[(176 \,\text{Hf}/177 \,\text{Hf})_{\rm$

球粒陨石及亏损地幔现在的¹⁷⁶Hf/¹⁷⁷Hf和¹⁷⁶Lu/¹⁷⁷Hf同位素比值分别为 0.282772 和 0.0332, 0.28325 和 0.0384 (Blichert-Toft et al., 1997; Griffin et al., 2000), $\lambda = 1.867 \times 10^{-11} a^{-1}$, (¹⁷⁶Lu/¹⁷⁷Hf)_C=0.015, t=锆石结晶年龄。

亚贵拉燕山期石英斑岩($\lambda \pi_3^3$)与洞中拉燕山期 石英斑岩($\lambda \pi_3^3$)的锆石 Hf 同位素特征相似,¹⁷⁶Hf/ ¹⁷⁷Hf 比值在误差范围内一致,具有接近的 $\epsilon_{Hf}(t)$ 值, 且均为较低的负值,两个岩体的两阶段 Hf 模式年龄 (T_{DM2})(1 207~2 543 Ma)均远远大于岩体锆石 U-Pb 年龄(130 Ma 左右)暗示其源区可能为古老地壳 物质。

亚贵拉喜马拉雅期石英斑岩($\lambda \pi_6^1$),花岗岩(γ_6^1) 花岗斑岩($\gamma \pi_6^3$),沙让角闪闪长岩($\delta \phi k$),林子宗火山 岩以及驱龙含矿斑岩均显示出 Hf 同位素组成的不 均一性,具有较宽的 $\epsilon_{Hf}(t)$ 变化范围,且其变化范围 的上限均达到了正值,指示了形成岩体的两个可能 端员,即古老地壳和亏损幔源之间的相互作用,代表 了一种岩浆混合作用过程。亚贵拉喜马拉雅期石英 斑岩($\lambda \pi_6^1$),花岗岩(γ_6^1)和沙让角闪闪长岩($\delta \phi k$)具有 较林子宗火山岩及驱龙含矿斑岩相对较低的¹⁷⁶ Hf/ ¹⁷⁷ Hf比值和 $\epsilon_{Hf}(t)$ 值,可能与古老地壳物质混入幔 源物质的不同比例有关。考虑到亚贵拉石英斑岩体 ($\lambda \pi_6^1$),钼矿主岩)的成岩年龄为 66 Ma 左右,其很可 能与与林子宗火山岩一样,是印度-亚洲大陆碰撞期 大规模岩浆活动的响应,产出环境是同碰撞环境。

5 结 论

(1) 亚贵拉两期次侵入的石英斑岩体($\lambda \pi_{s}^{3}$) ($\lambda \pi_{b}^{1}$)具有不同的 Hf 同位素地球化学特征。亚贵拉 燕山期石英斑岩($\lambda \pi_{s}^{3}$)与洞中拉燕山期石英斑岩 ($\lambda \pi_{s}^{3}$)的锆石 Hf 同位素特征相似,¹⁷⁶Hf/¹⁷⁷Hf 比值、 $\epsilon_{H}(t)$ 值、两阶段 Hf 模式年龄(T_{DM2})暗示其源区可 能为古老地壳物质。

(2) 亚贵拉喜马拉雅期石英斑岩(λπ¹) 66 Ma) 亚贵拉花岗岩(γ¹) 62 Ma) 沙让角闪闪长岩(δψk) (53 Ma) 亚贵拉花岗斑岩(γπ³) 17 Ma) 林子宗火山 岩以及驱龙含矿斑岩的¹⁷⁶ Hf/¹⁷⁷ Hf 比值、ε_{Hf}(*t*) 值、两阶段Hf模式年龄(*T*_{DM2}) 暗示它们形成于古老 地壳与亏损地幔的混染,不同地质体中锆石 Hf 同位 素组成的差异与古老地壳物质中混入幔源岩浆的不 同比例有关。

References

of chondrites and the evolution of the mantle-crust system [J]. Earth Planet. Sci. Lett. 148, 243-258.

- Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O 'Reilly S Y and Shee S R. 2000. The Hf isotope composition of cratonic mantle : LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites J. Geochim. Cosmochim. Acta, 64 :133-147.
- Gao Y M , Chen Y C , Tang J X , Yan C H , Du X , Li X F and Gao M. 2009. SHRIMP Zircon U-Pb dating of quartz porphyry from the Yaguila Pb-Zn , Mo deposit in Gongbujiangda County , Tibet and its geological implication[J]. Acta Geologica Sinica , 83(10): 1436-1444(in Chinese with English abstract).
- Gao Y M, Chen Y C and Tang J X. 2010. SHRIMP zircon U-Pb and amphibole 40Ar-39Ar dating of amphibole diorite from Sharang porphyry molybdenum deposit in Gongbo 'gyamda County, Tibet, and its geological implications. J]. Mineral Deposits, 29(2):323-331(in Chinese with English abstract).
- Gao Y M , Chen Y C , Tang J X , Qu W J , Yan C H , Du X , LiX F , Gao Ming and Cai Z C. 2011. Re-Os dating of molybdenite from the Yaguila porphyry molybdenum deposit in Gongbujiangda Country , Tibet and its geological significance. [J]. Geological Bulletin of China , (in Press).
- Hou K J , Li Y H , Zou T R , Qu X M , Shi Y R , Xie G Q. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications J J. Acta Petrologica Sinica , 23(10): 2595-2604 (in Chinese with English abstract).
- Lee H Y, Chung S L, Wang Y B, Zhu D C, Yang J H, Song B, Liu D Y and Wu F Y. 2007. Age, petrogenesis and geological significance of the Linzizong volcanic successions in the Linzhou basin southern Tibet : Evidence from zircon U-Pb dates and Hf isotopes J] Acta Petrologica Sinica, 23:494-500 (in Chinese with English abstract).
- Morel M L A , Nebel O , Nebel-Jacobsen Y J , et al. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICP-MS[J]. Chemical Geology , 255 : 231-235.
- Pan G T , Mo X X , Hou Z Q , Zhu D C , Wang L Q , Li G M , Zhao Z D , Geng Q R , Liao Z L. 2006. Spatial-temporal framework of the Gangdese orogenic belt and its evolutior[J]. Acta Petrologica Sinica , 22(3) 521-531(in Chinese with English abstract).
- Qin K Z , LI G M , Zhao J X , Li J X , Xue G Q , Yan G , Su D K , Xiao B , Chen L and Fan X. 2008. Discovery of sharang large-scale porphyry molybdenum deposit ,the first Single Mo deposit in Tibet and its significance J J. Geology in China , 35(6):1101-1112 (in Chinese with English abstract).
- Sláma J , Kosler J , Condon D J , Crowley J L , Gerdes A , Hanchar J M , Horstwood M S A , Morris G A , Nasdala L , Norberg N , Schaltegger U , Schoene B , Tubrett M N and Whitehouse M J. 2008. Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology , 249 : 1-35.
- Tang J X , Chen Y C , Wang D H , Wang C H , Xu Y P , Qu W J , Huang W and Huang Y. 2009b. Re-Os dating of molybdenite from the Sharang porphyry molybdenum deposit in Gongbujiangda Coun-

try , Tibet and its geological significance J]. Acta Geologica Sinica , 83(5):698-704 (in Chinese with English abstract).

- Wu F Y , Li X H , Zheng Y F and Gao S. 2007. Lu-Hf isotopic systematic and their applications in petrology. J J. Acta Petrologica Sinica , 23(2):185-220(in Chinese with English abstract).
- Yang Z M. 2008. The Qulong giant porphyry copper deposit in Tibet : Magmatism and mineralization (dissertation for Doctor degree I D]. Supervisor : Hou Z Q. Beijing : Institute of Geology ; Chinese Academy of Geological Sciences. 82p(in Chinese with English abstract).
- Zheng Y Y , Zhang Y G , Gao S B , Gong F Z , Qu W J and Pang Y C.
 2008. The discovery and significance of the Sharang porphyry molybdenum deposit and its rock-forming and ore-forming age restriction
 [A]. In : Chen Y C , ed. The proceeding of the 9th national conference of mineral deposits , China[C]. Beijing : Geol. Pub. House.
 674-676 (in Chinese with English abstract).

附中文参考文献

- 高一鸣 陈毓川 唐菊兴等. 2009. 西藏工布江达县亚贵拉铅锌、钼多 金属矿床石英斑岩锆石 SHRIMP 定年及其地质意义[J]. 地质 学报. 83(10):1436-1444.
- 高一鸣,陈毓川,唐菊兴.2010.西藏工布江达县沙让斑岩钼矿床角 闪闪长岩锆石 SHRIMP 定年,角闪石 Ar-Ar 定年及其地质意义 [J].矿床地质,29(2):323-331.
- 高一鸣,陈毓川,唐菊兴. 2011. 西藏工布江达县亚贵拉铅锌钼矿床

辉钼矿铼-锇测年及其地质意义[_].地质通报(待刊).

- 侯可军. 2007. LA-MC-ICP-MS 锆石 Hf 同位素的分析方法及地质应 用[J]: 岩石学报 23(10) 2595-2604.
- 李皓扬,钟孙霖,王彦斌,朱弟成,杨进辉,宋彪,刘敦一,吴福元. 2007. 藏南林周盆地林子宗火山岩的时代、成因及其地质意义: 锆石 U-Pb 年龄和 Hf 同位素证据]]. 岩石学报,23:494-500.
- 潘桂棠,莫宣学,侯增谦,朱弟成,王立全,李光明赵志丹,耿全如,廖忠礼.2006.冈底斯造山带的时空结构及演化[]]岩石 学报,22(3):521-531.
- 秦克章,李光明,赵俊兴,李金祥,薛国强,严 刚,粟登奎,肖 波,陈 雷,范 新.2008.西藏首例独立钼矿-冈底斯沙让大型 斑岩钼矿的发现及其意义[J],中国地质,35(6):1101-1112.
- 唐菊兴 陈毓川,王登红,王成辉,许远平,屈文俊,黄 卫,黄 勇. 2009. 西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄 及其地质意义[J]. 地质学报,83(5):698-704.
- 吴福元 李献华,郑永飞,高山. 2007. Lu-Hf 同位素体系及其岩石 学应用[J]. 岩石学报 23(2):185-220.
- 杨志明. 2008. 西藏驱龙超大型斑岩铜矿床-岩浆作用及矿床成因 (博士论文]D],导师:侯增谦. 北京:中国地质科学院地质研究 所. 82页.
- 郑有业,张刚阳,高顺宝,龚福志,屈文俊,庞迎春.2008. 西藏沙让斑 岩型钼矿床的发现意义及成岩成矿时代约束[A]. 见:陈毓川, 主编,第九届全国矿床会议论文集[C]. 北京 地质出版社.674-676.