MINFRAI

DEPOSITS

编号:0258-7106(2011)02-0339-10

西藏甲玛中酸性侵入岩 LA-ICP-MS 锆石 U-Pb 定年及成矿意义^{*}

秦志鹏1 汪雄武1 多 吉12 唐晓倩1 周 云1 彭惠娟1

(1成都理工大学,四川成都 610059;2西藏自治区地质矿产勘查开发局,西藏拉萨 851400)

摘 要 文章研究了甲玛矿区内中酸性侵入岩的侵位时序及岩浆-成矿作用。以实测地质资料为基础,结合中酸性侵入岩的 LA-ICP-MS 锆石 U-Pb 定年,初步厘定了甲玛矿区内中酸性岩浆岩的侵位时序,从早至晚依次为:花岗斑岩(15.31~16.27 Ma)—石英闪长玢岩—二长花岗斑岩(14.81 Ma)—花岗闪长斑岩。以辉钼矿为例,甲玛矿床显示有3期成矿作用,各期成矿过程分别对应于花岗斑岩或石英闪长玢岩、二长花岗斑岩和花岗闪长斑岩3期不同强度的岩浆作用过程。甲玛矿床的形成是3期岩浆-成矿作用叠加的结果。

关键词 地球化学 ;LA-ICP-MS 锆石 U-Pb 定年 ;成矿意义 ;甲玛 ;西藏 中图分类号 : P597⁺.3 文献标志码 ;A

LA-ICP-MS U-Pb zircon age of intermediate-acidic intrusive rocks in Jiama of Tibet and its metallogenic significance

Co

QIN ZhiPeng¹, WANG XiongWu¹, DOR Ji^{1,2}, TANG XiaoQian¹, ZHOU Yun¹ and PENG HuiJuan¹ (1 Chengdu University of Technology, Chengdu 610059, Sichuan, China; 2 Tibet Bureau of Geology and Mineral Exploration and Development, Lhasa 851400, Tibet, China)

Abstract

This paper deals with the emplacement timing of the intermediate-acidic intrusive rocks in Jiama of Tibet and its metallogenic significance. Based on the measured geological data and LA-ICP-MS U-Pb zircon ages of the four intermediate-acidic intrusive rocks, the authors preliminarily regularized the timing sequence, which is from early to late in order of porphyry granite (15.31 Ma \sim 16.27 Ma)-quartz diorite porphyrite-adamellite porphyry (14.81 Ma)- granodiorite-porphyry; Exemplified by molybdenum, the Jiama ore deposit assumes three periods of metallogenesis, i. e., the ore-forming processes corresponding respectively to different degrees of magmatic activities of porphyry granite or quartz diorite porphyrite, adamellite porphyry and granodiorite-porphyry. The Jiama ore deposit resulted from the superposition of the three periods of magma-mineralization.

Key words: geolcemistry, LA-ICP-MS zircon U-Pb dating, metallogenic significance, Jiama, Tibet

西藏甲玛铜多金属矿床以矽卡岩-角岩型铜钼 底斯成矿带东段与斑岩成矿系统有关的最具代表性 铅锌(金、银)矿体为主,与驱龙斑岩铜矿毗邻,是冈 的超大型铜多金属矿床。矿区内岩浆岩发育,类型

^{*} 本文得到国家 973 项目(编号:2011CB403103)国土资源部科学基地协作研究(编号:200911007-02)青藏专项(编号: 1212010818089)技术开发项目(编号:E0804)教育部学科建设项目(编号:SZD0407)的共同资助

第一作者简介 秦志鹏,男,1983年生,在职博士生,矿床学专业。Email:qinyu83@Gmail.com 收稿日期 2010-11-25;改回日期 2011-02-14。许德焕编辑。

复杂, 砂卡岩的形成和成矿作用在时空上与岩浆活 动关系密切。其中, 二长花岗斑岩和花岗闪长斑岩 具埃达克岩的地球化学特征(应立娟等, 2009; 唐菊 兴等, 2010)。迄今, 对该区各类岩浆岩, 尤其是中酸 性岩浆岩的侵位时序的厘定还缺少确凿的证据。本 文旨在通过对甲玛矿区花岗斑岩及二长花岗斑岩 LA-ICP-MS 锆石 U-Pb 年龄的测定, 并结合野外资 料, 来厘定其成岩作用的演化时序, 并划分成矿作用 的阶段, 以揭示岩浆-成矿作用的关系。

1 矿床地质特征

甲玛铜多金属矿床位于冈底斯成矿带的东段, 拉萨地体南缘,冈底斯火山-岩浆弧内,局限产出于 第三纪 NS向正断层及裂谷系统(墨竹工卡-错那裂 谷)中(Harrsion et al., 1995; Coleman et al., 1995; Yin et al., 2000).

该矿区内出露的地层主要为被动陆缘期的碎屑 岩-碳酸盐岩系,包括上侏罗统多底沟组、下白垩统 林布宗组,以及少量第四系。NW 向褶皱组成的推 覆-滑覆构造系形成了该矿区的构造格局。

岩浆岩类型复杂,呈岩株或岩脉产出。岩石类 型有花岗斑岩、花岗闪长斑岩、二长花岗斑岩、石英 闪长玢岩和辉绿玢岩,以二长花岗斑岩、花岗闪长斑 岩为主。岩浆岩产状与区域构造密切相关,花岗斑 岩及辉绿玢岩受区域推覆构造的制约,呈近 EW 向 产于褶皱的转折端,其长轴方向与构造线及地层走 向一致;花岗闪长斑岩、二长花岗斑岩、石英闪长玢 岩受区域拉张环境及走滑断层的控制,整体呈 NW-SE 向、近 NS 向的雁列式展布(图1)。

在矿区范围内,花岗斑岩多被花岗闪长斑岩切穿(图2A)或被捕虏于石英闪长玢岩内(图2B);二长

图 1 甲玛矿床构造纲要图●

1-第四系;2-楚木龙组;3-林布宗组;4-多底沟组;5-硅帽;6-花岗斑岩;7-花岗闪长斑岩;8-二长花岗斑岩;9-石英闪长玢岩; 10-辉绿玢岩;11-砂卡岩;12-矿体;13-地层界线;14-角岩蚀变界线;15-正断层;16-逆断层;17-斜歪倒转背斜;18-斜歪倒转 向斜

Fig. 1 Tectonic map of the Jiama ore deposit

1—Quaternary: 2—Chumulong Formation (K₁c): 3—Linbuzong Formation (K₁l): 4—Duodigou Formation (J₃d): 5—Silicification zone:
6—Granitic porphyry: 7—Granodioritic porphyry: 8—Monzogranitic porphyry: 9—Quartz-dioritic porphyrite: 10—Diabase-porphyrite:
11—Skarn: 12—Ore body: 13—Stratigraphic boundary: 14—Hornfels alteration boundary: 15—Normal fault: 16—Reversed fault: 17—Inverted an tic-line: 18—Inverted syncline

●唐菊兴,王登红,钟钟惠,汪雄武,郭衍游,刘文周,应立娟,郭 娜,郭 科,郑文宝,秦志鹏,李 磊,凌 娟,叶 江,黎枫佶,姚晓峰,李志军,孙 艳,王 友,白景国,唐晓倩,张 丽,裴有哲,彭惠娟. 2009. 西藏自治区墨竹工卡县甲玛矿区外围铜多金属矿详查报告,内部资料.

花岗斑岩多含石英闪长玢岩的捕虏体(图 2C),但被 花岗闪长斑岩所切穿(图 2D)。此外,在花岗斑岩和 石英闪长玢岩内均发育不同程度的砂卡岩化(图 2E、F),而二长花岗斑岩则明显晚于含矿砂卡岩(图 3A)。花岗斑岩、花岗闪长斑岩、二长花岗斑岩和石 英闪长玢岩内均发育不同程度的 Cu、Mo 矿化(图 2D、3B、3C),以花岗斑岩为最。

2 样品特征

本次测试的样品为3件花岗斑岩(样品号及取 样位置分别为:TLW(X=16377836,Y=3285813,Z = 5072),XBS(X=16377086,Y=3284944,Z= 5203),DLF(X=16379542,Y=3286285,Z=4778)) 和一件二长花岗斑岩(样品号及取样位置为DFY(X =16380052,Y=3286290,Z=5066))。样品特征如 下:

花岗斑岩 浅灰白色,斑状结构,块状构造(图 3D),斑晶含量约占50%,主要矿物组合为石英 (60%)+钾长石(20%)+斜长石(12%)+黑云母 (6%)+角闪石(2%)(图3E),副矿物组成为磷灰石 +榍石+锆石+钛铁矿。岩石未见明显矿化。蚀变 不均,以后期绿泥石化和碳酸盐化为主。

二长花岗斑岩 灰白色,斑状结构,块状构造 (图 2C),斑晶含量约为 20%~40%,矿物组合为石 英(45%)+斜长石(25%)+钾长石(20%)+角闪

图 2 甲玛矿区内中酸性侵入岩的特征(1)

A. 花岗闪长斑岩脉切穿花岗斑岩(象背山地区); B. 石英闪长玢岩中的花岗斑岩捕虏体(ZK3216-286.5); C. 二长花岗斑岩中的石英闪长 玢岩捕虏体(ZK4802-89); D. 二长花岗斑岩与花岗闪长斑岩接触带内的两期石英-辉钼矿脉(ZK1620-485); E. 砂卡岩脉切穿花岗斑岩 (ZK815-582); F. 砂卡岩化石英闪长玢岩(ZK2007-104); γπ一花岗斑岩; γδπ一花岗闪长斑岩; δομ一石英闪长玢岩; ηγπ一二长花岗斑岩; SK一砂卡岩

Fig. 2 Characteristics of intermediate-acidic intrusive rocks in the Jiama ore deposit (1)

A. Granitic porphyry cut by granodioritic porphyry (Xiangbeishan district); B. Granitic porphyry xenolith in quartz-dioritic porphyrite (ZK3216-286.5); C. Quartz-dioritic porphyrite xenolith in monzogranitic porphyry (ZK4802-89); D. Two stage quartz-molybdenite vein in the contact zone between monzogranitic porphyry and granodioritic porphyry (ZK1620-485); E. Granitic porphyry cut by skarn vein (ZK815-582); F. Skarnization quartz-dioritic porphyrite (ZK2007-104); γπ—Granitic porphyry; γδπ—Granodioritic porphyry; δομ—Quartz-dioritic porphyrite; ηγπ—Monzogranitic porphyry; SK-Skarn

图 3 甲玛矿区内中酸性侵入岩的特征(2)

Λ. 二长花岗斑岩中的砂卡岩捕虏体(ZK2412-130.1); B. 花岗斑岩中的三期石英-辉钼矿脉(ZK813-617); C. 花岗闪长斑岩中的辉钼矿脉(ZK813-617); D. 花岗斑岩(ZK001-象背山); E. 花岗斑岩(ZK001-象背山)的矿物组合,d=4 mm,正交偏光; F. 二长花岗斑岩(ZK2412-130.1)的矿物组合,d=4 mm,正交偏光; γπ一花岗斑岩; γδπ 花岗闪长斑岩; ηγπ一二长花岗斑岩; SK一砂卡岩; Q一石英; PI-斜长石; Bio 黑云母; K-feld一钾长石

Fig. 3 Characteristics of intermediate-acidic intrusive rocks in the Jiama ore deposit (2)

A. Skarn xenolith in monzogranitic porphyry (ZK2412-130.1); B. Three stage quartz-molybdenite vein in granitic porphyry (ZK813-617);
 C. Molybdenite vein in granodioritic porphyry (ZK813-617); D. Granitic porphyry (ZK001-Xiangbeishan district); E. Mineral association of granitic porphyry, d= 4 mm, crossed nicols (ZK001-Xiangbeishan district); F. Mineral association of monzogranitic porphyry, d= 4 mm, crossed nicols (ZK001-Xiangbeishan district); Yπ Granitic porphyry; η/π Monzogranitic porphyry; SK—Skarn; Q—Quartz; Pl—Plagioclase; Bio—Biorite; K-feld—K-feldspar

石(10%)(图 3F),副矿物组成为磷灰石+榍石+锆 石+磁铁矿。岩石矿化不均,以 Cu、Mo 矿化为主, 多呈细脉状构造。岩石中岩浆混合现象发育,以不 规则产出的暗色铁镁质微粒包体(MME)、石英-黄铁 矿(角闪石)眼斑(图 3A)和斜长石发育不规则环带 和海绵多孔状结构为标志。

3 分析测试方法

将岩石样品机械破碎,采用浮选和电磁选方法 分选,在双目镜下挑选出锆石。然后,将这些锆石粘 贴在环氧树脂表面,抛光后对锆石进行透射光、反射 光及阴极发光显微照相。锆石的 U-Pb 同位素测试 在中国地质大学(北京)同位素室的 LA-ICP-MS 仪器(美国 Agilent 科技有限公司生产的 7500a型)上 完成,采用美国 New Wave 193 SS 激光器(分析点束 斑直径为 36 μm)。年龄计算时,以标准锆石 91500 为外标进行同位素比值校正,TEM 为监控标准样, 元素含量以国际标样 NIST612 为外标、Si 为内标进 行计算。测试结果详见表 1。

4 分析结果

4.1 锆石阴极发光特征

锆石 CL 图像如图 4 所示。该图中标出了多数 测点的序号及其²⁰⁶Pb/²³⁸U表面年龄值,有少量测点

		Table 1	LA-ICP- Xi	-MS U-Pb data of zirc angbeishang (XBS), 1	ons from Dongfengya Talongwei (TLW) grau	(DFY) monzogranite nite porphyry in the	e porphyry and Di Jiama ore deposit	ulifeng (DLF),		
重化化口		$w(B)/10^{-6}$			放射性同位素比值	直(误差 1g)		中	·龄(误差 1 ₀)/Ma	
医正置口	Pb	Th	n	²⁰⁷ Pb/ ²⁰⁶ Pb	$^{207}\mathrm{Pb}/^{235}\mathrm{U}$	$^{206}{ m Pb}/^{238}{ m U}$	²³⁸ U/ ²³² Th	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$
DFY-01	2.06	254.6	819.97	0.05425 ± 0.0074	0.01645 ± 0.00219	0.0022 ± 0.00007	3.22 ± 0.03	381 ± 240	17 ± 2	14.2 ± 0.5
DFY-02	3.86	963.33	1360.23	0.03938 ± 0.00345	0.01245 ± 0.00108	0.00229 ± 0.00004	1.41 ± 0.01	-326 ± 169	13 ± 1	14.7 ± 0.5
DFY-03	2.39	575.82	852.99	0.04992 ± 0.00457	0.01578 ± 0.00142	0.00229 ± 0.00005	1.48 ± 0.01	191 ± 162	16 ± 1	14.7 ± 0.5
DFY-04	1.76	236.37	739.38	0.05906 ± 0.00933	0.01668 ± 0.00257	0.00205 ± 0.00007	3.13 ± 0.03	569 ± 281	17 ± 3	13.2 ± 0.5
DFY-05	5.26	1327.46	1761.28	0.04336 ± 0.00307	0.01424 ± 0.00099	0.00238 ± 0.00004	1.33 ± 0.01	-104 ± 121	14.4 ± 1	15.3 ± 0.5
DFY-06	3.25	612.36	1199.39	0.04324 ± 0.00361	0.01378 ± 0.00113	0.00231 ± 0.00004	1.96 ± 0.02	-110 ± 145	14 ± 1	14.9 ± 0.5
DFY-07	1.05	385.76	322.54	0.05407 ± 0.01089	0.01729 ± 0.00343	0.00232 ± 0.00008	0.84 ± 0.01	374 ± 352	17 ± 3	14.9 ± 0.5
DFY-08	3.39	1001.27	1112.62	0.04357 ± 0.00365	$0,0141\pm 0.00116$	0.00235 ± 0.00004	1.11 ± 0.01	-93 ± 147	14 ± 1	15.1 ± 0.3
DFY-09	1.93	605.9	663.36	0.04774 ± 0.006	0.01501 ± 0.00185	0.00228 ± 0.00006	1.09 ± 0.01	86 ± 220	15 ± 2	14.7 ± 0.4
DFY-10	2.82	72.12	77.77	0.04851 ± 0.00438	0.15479 ± 0.01371	0.02314 ± 0.00047	1.36 ± 0.01	124 ± 159	146 ± 12	147 ± 3
DFY-11	3.77	1064.1	1271.89	0.04941 ± 0.00291	0.01566 ± 0.0009	0.0023 ± 0.0004	1.2 ± 0.01	167 ± 99	15.8 ± 0.9	14.8 ± 0.3
DFY-12	3.77	742.89	1369.98	0.04823 ± 0.00285	0.01554 ± 0.0009	0.00234 ± 0.00004	1.84 ± 0.02	111 ± 98	15.7 ± 0.9	15.1 ± 0.3
DFY-13	4.39	1370.09	1513.61	0.046 ± 0.00282	0.01426 ± 0.00086	$0.\ 00225\pm 0.\ 00003$	1.1 ± 0.01	-2 ± 105	14.4 ± 0.9	14.5 ± 0.2
DFY-14	3.33	609.43	1184.98	0.05237 ± 0.00365	0.0168 ± 0.00115	0.00233 ± 0.0004	1.94 ± 0.02	302 ± 125	17 ± 1	15 ± 0.3
DFY-15	1.95	340.83	717.97	0.04151 ± 0.00432	0.01347 ± 0.00138	0.00235 ± 0.00004	2.11 ± 0.02	-204 ± 161	14 ± 1	15.1 ± 0.3
DFY-16	4.25	936.31	1560.49	0.04634 ± 0.00264	0.01445 ± 0.00081	0.00226 ± 0.0003	1.67 ± 0.02	15 ± 95	14.6 ± 0.8	14.6 ± 0.2
DFY-17	4.15	1032.91	1417.13	0.0465 ± 0.00267	0.0152 ± 0.00086	0.00237 ± 0.0004	1.37 ± 0.01	24 ± 90	15.3 ± 0.9	15.3 ± 0.3
DFY-18	2.96	663.42	1075.99	0.04561 ± 0.00346	0.01435 ± 0.00107	0.00228 ± 0.00004	1.62 ± 0.02	-23 ± 129	14 ± 1	14.7 ± 0.3
DFY-19	3.05	761.13	1076.62	0.0448 ± 0.00338	0.01439 ± 0.00107	0.00233 ± 0.0004	1.41 ± 0.01	-30 ± 129	15 ± 1	15 ± 0.3
DFY-20	2.97	626.01	1052.83	0.05003 ± 0.00325	0.01596 ± 0.00102	0.00231 ± 0.00004	1.68 ± 0.02	196 ± 114	16 ± 1	14.9 ± 0.3
DFY-21	3.45	680.09	1330.4	0.04472 ± 0.00307	0.01358 ± 0.00092	0.0022 ± 0.0003	1.96 ± 0.02	-34 ± 121	13.7 ± 0.9	14.2 ± 0.2
DFY-22	2.36	777.96	781.22	0.04649 ± 0.00382	0.01476 ± 0.00119	0.0023 ± 0.0004	1 ± 0.01	23 ± 144	15 ± 1	14.8 ± 0.3
DFY-23	3.97	2483.83	1023.6	0.04962 ± 0.00601	0.01502 ± 0.00178	0.00219 ± 0.00006	0.41 ± 0.01	177 ± 215	15 ± 2	14.1 ± 0.4
DFY-24	3.75	884.58	1319.67	0.04615 ± 0.00298	0.0148 ± 0.00094	0.00233 ± 0.00004	1.49 ± 0.01	5 ± 105	14.9 ± 0.9	15 ± 0.3
DFY-25	3.31	660.72	1185.57	0.04859 ± 0.0032	0.01571 ± 0.00101	0.00234 ± 0.00004	1.79 ± 0.02	128 ± 112	16 ± 1	15.1 ± 0.3
DLF-01	2.81	547.76	1060.86	0.04686 ± 0.00444	0.01427 ± 0.00133	0.00221 ± 0.00005	1.94 ± 0.02	42 ± 163	14 ± 1	14.2 ± 0.3
DLF-02	4.16	779.17	1494.4	0.04219 ± 0.00277	0.01362 ± 0.00088	0.00234 ± 0.00004	1.92 ± 0.02	-167 ± 112	13.7 ± 0.9	15.1 ± 0.3

第30卷 第2期

 15.2 ± 0.3

 $\begin{array}{c} 16\pm 2\\ 14\pm 0.8\end{array}$

 127 ± 180 -75 ± 98

 14 ± 1

 1.72 ± 0.02

 0.74 ± 0.01

 $\begin{array}{c} 0\,.\,00236\pm0\,.\,00005\\ 0\,.\,00229\pm0\,.\,00004 \end{array}$

 0.01579 ± 0.00155

 $\begin{array}{c} 0\,.\,04857\pm0\,.\,00483\\ 0\,.\,04391\pm0\,.\,00272 \end{array}$

663.12 724.58

> 1.803.99

DLF-06

DLF-07

DLF-05

798.38

 0.0446 ± 0.0032

1143.5 536.94 1466.67

241.65

 0.01422 ± 0.001

 0.01387 ± 0.00084

 $\begin{array}{c} 0\,.\,0025\pm0\,.\,00008\\ 0\,.\,00231\pm0\,.\,00004 \end{array}$

 1.84 ± 0.02

 -166 ± 319 -40 ± 120 14.7 ± 0.3

 $14.7 \pm 0.5 \\ 16.1 \pm 0.5 \\ 14.9 \pm 0.3 \\ 14.9 \pm 0.3 \\$

 $\begin{array}{c} 17\pm3\\ 15\pm4\end{array}$

 309 ± 295

 $1.07 \pm 0.01 \\ 1.03 \pm 0.01$

 0.00229 ± 0.00007

 0.01659 ± 0.00263

 $\begin{array}{c} 0.\ 05254\pm0.\ 00846\\ 0.\ 04221\pm0.\ 01029 \end{array}$

265.16 248.2

248

0.80 0.82 3.21

DLF-03

DLF-04

 0.01454 ± 0.00352

测点编号		$w(B)/10^{-6}$			放射性同位素比值	苴(误差 1o)		年	≌龄(误差 1₀)/M	cd.
	\mathbf{Pb}	Th	n	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	$^{207}{ m Pb}/^{235}{ m U}$	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	²³⁸ U/ ²³² Th	$^{207}{\rm Pb}/^{206}{\rm Pb}$	$^{207}{ m Pb}/^{235}{ m U}$	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$
DLF-08	5.29	860.23	2039.39	0.04419 ± 0.00241	0.01369 ± 0.00073	0.00225 ± 0.00003	2.37 ± 0.02	-61 ± 89	13.8 ± 0.7	14.5 ± 0.2
DLF-09	1.61	607.6	506.92	0.04511 ± 0.00583	0.01411 ± 0.0018	0.00227 ± 0.00005	0.83 ± 0.01	-14 ± 211	14 ± 2	14.6 ± 0.3
DLF-10	1.30	358.5	424.84	0.04833 ± 0.00695	0.01584 ± 0.00225	0.00238 ± 0.00006	1.19 ± 0.01	115 ± 251	16 ± 2	15.3 ± 0.4
DLF-11	0.99	326.34	303.7	0.04452 ± 0.00781	0.01504 ± 0.00261	0.00245 ± 0.00007	0.93 ± 0.01	-44 ± 251	15 ± 3	15.8 ± 0.5
DLF-12	2.33	637.96	777.97	0.04789 ± 0.00502	0.01532 ± 0.00158	0.00232 ± 0.00005	1.22 ± 0.01	94 ± 189	15 ± 2	14.9 ± 0.3
DLF-13	2.37	542.02	791.41	0.05076 ± 0.00491	0.01701 ± 0.00162	0.00243 ± 0.00005	1.46 ± 0.01	230 ± 177	17 ± 2	15.6 ± 0.3
DLF-14	3.53	755.1	1176.11	0.05071 ± 0.00346	0.01704 ± 0.00114	0.00244 ± 0.00004	1.56 ± 0.02	228 ± 123	17 ± 1	15.7 ± 0.3
DLF-15	2.88	572.67	936.97	0.04366 ± 0.00354	0.0155 ± 0.00124	0.00257 ± 0.00004	1.64 ± 0.02	-88 ± 145	16 ± 1	16.5 ± 0.3
DLF-16	1.08	425.95	320.53	0.04379 ± 0.00936	0.01451 ± 0.00308	0.0024 ± 0.0007	0.75 ± 0.01	-81 ± 288	15 ± 3	15.5 ± 0.5
DLF-17	1.77	307.65	652.8	0.04377 ± 0.00553	0.01412 ± 0.00176	$0.\ 00234\pm 0.\ 00006$	2.12 ± 0.02	-82 ± 186	14 ± 2	15.1 ± 0.4
DLF-18	2.60	784.15	638.83	0.04923 ± 0.00667	0.01632 ± 0.00219	0.0024 ± 0.0005	0.81 ± 0.01	159 ± 276	16 ± 2	15.5 ± 0.3
DLF-19	1.73	622.13	522.77	0.04631 ± 0.00553	0.01533 ± 0.00181	0.0024 ± 0.00005	0.84 ± 0.01	14 ± 209	15 ± 2	15.5 ± 0.3
DLF-20	1.25	436.25	370.84	0.04769 ± 0.00776	0.01592 ± 0.00256	0.00242 ± 0.00006	0.85 ± 0.01	84 ± 274	16 ± 3	15.6 ± 0.4
DLF-21	1.39	525.33	401.79	0.04445 ± 0.00602	0.01513 ± 0.00203	0.00247 ± 0.00006	0.76 ± 0.01	-47 ± 205	15 ± 2	15.9 ± 0.4
DLF-22	1.60	345.37	527.07	0.04757 ± 0.0052	0.01664 ± 0.00179	0.00254 ± 0.00005	1.53 ± 0.02	78 ± 200	17 ± 2	16.4 ± 0.3
DLF-23	2.31	483.78	813.87	0.04926 ± 0.00501	0.01612 ± 0.00161	0.00237 ± 0.00005	1.68 ± 0.02	160 ± 185	16 ± 2	15.3 ± 0.3
DLF-24	4.26	880.71	1579.97	0.04702 ± 0.00274	0.01485 ± 0.00085	0.00229 ± 0.00004	1.79 ± 0.02	50 ± 92	15 ± 0.9	14.7 ± 0.3
DLF-25	2.63	378.57	950.41	0.0505 ± 0.00416	0.01679 ± 0.00136	-0.00241 ± 0.00005	2.51 ± 0.03	218 ± 145	17 ± 1	15.5 ± 0.3
TLW-01	0.83	203.28	252.98	0.04384 ± 0.01023	0.01586 ± 0.00367	0.00262 ± 0.00008	1.24 ± 0.01	-79 ± 317	16 ± 4	16.9 ± 0.5
TLW-02	0.98	223.45	325.62	0.04846 ± 0.00781	0.01674 ± 0.00267	0.0025 ± 0.00007	1.46 ± 0.01	122 ± 270	17 ± 3	16.1 ± 0.5
TLW-03	1.43	433.54	422.68	0.04836 ± 0.00634	0.01673 ± 0.00217	0.00251 ± 0.00006	0.97 ± 0.01	117 ± 237	17 ± 2	16.2 ± 0.4
TLW-04	1.42	538.86	413.99	0.04075 ± 0.00645	0.0142 ± 0.00222	0.00253 ± 0.00007	0.77 ± 0.01	-247 ± 213	14 ± 2	16.3 ± 0.5
TLW-05	2.18	595.12	676.21	0.04626 ± 0.0046	0.01625 ± 0.0016	0.00255 ± 0.00005	1.14 ± 0.01	11 ± 179	16 ± 2	16.4 ± 0.3
7LW-06	0.30	128.56	92.41	0.02891 ± 0.03129	0.00893 ± 0.00964	0.00224 ± 0.00015	0.72 ± 0.01	-332 ± 965	9 ± 10	14.4 ± 1
TLW-07	1.27	487.2	353.31	0.04351 ± 0.00754	0.01534 ± 0.00263	0.00256 ± 0.00007	\bigcirc 0.73 \pm 0.01	-96 ± 241	15 ± 3	16.5 ± 0.5
TLW-08	1.89	762.58	578.71	0.05016 ± 0.00874	0.01543 ± 0.00264	0.00223 ± 0.00008	0.76 ± 0.01	202 ± 289	16 ± 3	14.4 ± 0.5
TLW-09	1.31	293.21	390.39	0.04741 ± 0.00682	0.01708 ± 0.00243	0.00261 ± 0.00006	1.33 ± 0.01	70 ± 247	17 ± 2	16.8 ± 0.4
TLW-10	1.66	261.46	523.67	0.04837 ± 0.00715	0.0177 ± 0.00257	$0.\ 00265\pm0.\ 00008$	2 ± 0.02	117 ± 251	18 ± 3	17.1 ± 0.5
TLW-11	1.13	330.35	318.54	0.04726 ± 0.00785	0.01718 ± 0.00283	0.00264 ± 0.00007	0.96 ± 0.01	62 ± 267	17 ± 3	17 ± 0.5
TLW-12	1.30	574.91	371.4	0.03484 ± 0.00885	0.011 ± 0.00278	0.00229 ± 0.00007	0.65 ± 0.01	-80 ± 298	11 ± 3	14.7 ± 0.5
TLW-13	0.72	156.62	265.14	0.03945 ± 0.01242	0.01262 ± 0.00394	0.00232 ± 0.0001	1.69 ± 0.02	-322 ± 406	13 ± 4	14.9 ± 0.6
TLW-14	1.71	958.13	429.65	0.05 ± 0.01048	0.01561 ± 0.00321	0.00226 ± 0.0001	0.45 ± 0.01	195 ± 325	16 ± 3	14.6 ± 0.6
TLW-15	1.05	298.61	339.96	0.04833 ± 0.01139	0.01574 ± 0.00365	0.00236 ± 0.00011	1.14 ± 0.01	15 ± 341	16 ± 4	15.2 ± 0.7

2011 年

									0	ont. Table 1-2
日代		$w(B)/10^{-6}$			放射性同位素比值	f(误差 1σ)		年	龄(误差 1g)/M	B
参び当つ	Pb	Th	D	²⁰⁷ Pb/ ²⁰⁶ Pb	$^{207}{ m Pb}/^{235}{ m U}$	$^{206}{ m Pb}/^{238}{ m U}$	²³⁸ U/ ²³² Th	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U
TLW-16	3.42	564.46	1224.51	0.0508 ± 0.00434	0.01676 ± 0.0014	0.00239 ± 0.00005	2.17 ± 0.02	232 ± 151	17 ± 1	15.4 ± 0.3
TLW-17	1.77	380.58	571.93	0.04872 ± 0.00617	0.01626 ± 0.00202	0.00242 ± 0.00006	1.5 ± 0.02	134 ± 229	16 ± 2	15.6 ± 0.4
TLW-18	2.15	868.94	581.52	0.04598 ± 0.00483	0.01589 ± 0.00165	0.00251 ± 0.00005	0.67 ± 0.01	-3 ± 190	16 ± 2	16.2 ± 0.3
TLW-19	0.56	217.56	173.05	0.04767 ± 0.01495	0.01533 ± 0.00474	0.00233 ± 0.00012	0.8 ± 0.01	83 ± 441	15 ± 5	15 ± 0.8
TLW-20	1.08	326.48	315.96	0.04362 ± 0.00754	0.01584 ± 0.00271	0.00263 ± 0.00007	0.97 ± 0.01	-90 ± 241	16 ± 3	16.9 ± 0.5
TLW-21	0.75	221.24	219.12	0.04447 ± 0.01115	0.01627 ± 0.00403	0.00265 ± 0.00011	0.99 ± 0.01	-46 ± 331	16 ± 4	17.1 ± 0.7
TLW-22	0.91	265.8	286.54	0.05026 ± 0.01089	0.01754 ± 0.00376	0.00253 ± 0.0008	1.08 ± 0.01	207 ± 349	18 ± 4	16.3 ± 0.5
TLW-23	1.07	361.54	315.9	0.04607 ± 0.01436	0.01398 ± 0.00431	0.0022 ± 0.0001	0.87 ± 0.01	1 ± 502	14 ± 4	14.2 ± 0.6
TLW-24	0.53	143.97	180.36	0.06511 ± 0.01961	0.02014 ± 0.00596	0.00224 ± 0.00013	1.25 ± 0.01	778 ± 512	20 ± 6	14.4 ± 0.8
TLW-25	1.37	385.68	427.29	0.04405 ± 0.00704	0.01476 ± 0.00233	0.00243 ± 0.00007	1.11 ± 0.01	-68 ± 225	15 ± 2	15.6 ± 0.5
XBS-01	0.85	285.93	255.44	0.04745 ± 0.0101	0.016 ± 0.00338	0.00244 ± 0.00007	0.89 ± 0.01	72 ± 329	16 ± 3	15.7 ± 0.5
XBS-02	1.45	582.83	410.41	0.04343 ± 0.00758	0.01462 ± 0.00253	0.00244 ± 0.00006	0.7 ± 0.01	-100 ± 247	15 ± 3	15.7 ± 0.4
XBS-03	1.47	449.3	446.85	0.04379 ± 0.00668	0.01489 ± 0.00225	0.00247 ± 0.00006	0.99 ± 0.01	-81 ± 221	15 ± 2	15.9 ± 0.4
XBS-04	0.70	84.18	234.52	0.04765 ± 0.01722	0.0135 ± 0.00483	0.00205 ± 0.00011	0.83 ± 0.01	82 ± 515	14 ± 5	13.2 ± 0.7
XBS-05	1.01	276.94	260.19	0.04605 ± 0.00389	0.01645 ± 0.00134	0.00259 ± 0.00006	0.94 ± 0.01	± 186	17 ± 1	16.7 ± 0.4
XBS-06	1.53	746.32	356.98	0.05064 ± 0.00773	0.01802 ± 0.00272	0.00258 ± 0.00006	0.48 ± 0.01	224 ± 278	18 ± 3	16.6 ± 0.4
XBS-07	0.56	106.33	164.23	0.04652 ± 0.02025	0.01842 ± 0.00793	0.00287 ± 0.00019	1.54 ± 0.02	25 ± 609	19 ± 8	18 ± 1
XBS-08	0.92	331.86	265.48	0.04364 ± 0.01052	0.01504 ± 0.0036	0.0025 ± 0.0007	0.8 ± 0.01	-89 ± 330	15 ± 4	16.1 ± 0.5
XBS-09	0.99	290	301.67	0.051 ± 0.01038	0.01759 ± 0.00352	0.0025 ± 0.0001	1.04 ± 0.01	241 ± 334	18 ± 4	16.1 ± 0.6
XBS-10	1.20	480.43	348.16	0.04294 ± 0.00799	0.0141 ± 0.00259	0.00238 ± 0.00007	0.72 ± 0.01	-126 ± 247	14 ± 3	15.3 ± 0.5
XBS-11	0.95	436.51	253.82	0.04284 ± 0.00936	0.01394 ± 0.00302	0.00236 ± 0.00007	0.58 ± 0.01	-132 ± 291	14 ± 3	15.2 ± 0.5
XBS-12	1.29	489.44	377.76	0.04497 ± 0.008	0.01509 ± 0.00266	0.00243 ± 0.00006	0.77 ± 0.01	-21 ± 262	15 ± 3	15.6 ± 0.4
XBS-13	1.26	470.53	341.78	0.08366 ± 0.00906	0.02873 ± 0.00301	0.00249 ± 0.00007	0.73 ± 0.01	1285 ± 162	29 ± 3	16 ± 0.5
XBS-14	1.90	468.77	589.94	0.04802 ± 0.00499	0.01723 ± 0.00177	0.0026 ± 0.0005	1.26 ± 0.01	100 ± 193	17 ± 2	16.7 ± 0.3
XBS-15	1.36	382.77	426.85	0.04339 ± 0.00624	0.01504 ± 0.00214	0.00251 ± 0.00006	1.12 ± 0.01	-102 ± 206	15 ± 2	16.2 ± 0.4
XBS-16	0.69	206.67	191	0.04849 ± 0.012	0.01794 ± 0.00438	0.00268 ± 0.00012	0.92 ± 0.01	123 ± 366	18 ± 4	17.3 ± 0.8
XBS-17	1.47	668.8	343.27	0.04908 ± 0.00982	0.01796 ± 0.00355	0.00265 ± 0.00009	$= 0.51 \pm 0.01$	152 ± 316	18 ± 4	17.1 ± 0.6
XBS-18	0.59	162.28	174.29	0.04438 ± 0.01304	0.01633 ± 0.00476	0.00267 ± 0.0001	1.07 ± 0.01	-51 ± 398	16 ± 5	17.2 ± 0.6
XBS-19	0.57	216.51	167.62	0.04661 ± 0.01382	0.01503 ± 0.00442	$0.\ 00234\pm 0.\ 00009$	0.77 ± 0.01	29 ± 427	15 ± 4	15.1 ± 0.6
XBS-20	1.41	303.93	465.21	0.04548 ± 0.00866	0.01528 ± 0.00286	0.00244 ± 0.00009	1.53 ± 0.02	-30 ± 273	15 ± 3	15.7 ± 0.6
XBS-21	0.79	284.41	240.38	0.04271 ± 0.01057	0.01429 ± 0.00351	0.00243 ± 0.0008	0.85 ± 0.01	-139 ± 325	14 ± 4	15.6 ± 0.5
XBS-22	0.88	295.6	261.92	0.04546 ± 0.00897	0.01582 ± 0.00309	0.00252 ± 0.00007	0.89 ± 0.01	-31 ± 294	16 ± 3	16.2 ± 0.5
XBS-23	1.39	605.62	380.23	0.04435 ± 0.00812	0.01509 ± 0.00274	0.00247 ± 0.00006	0.63 ± 0.01	-53 ± 264	15 ± 3	15.9 ± 0.4
XBS-24	0.55	214.01	155.37	0.06556 ± 0.01312	0.02269 ± 0.00447	0.00251 ± 0.0001	0.73 ± 0.01	792 ± 363	23 ± 4	16.2 ± 0.6
XBS-25	0.93	311.16	279.17	0.04614 ± 0.00947	0.01562 ± 0.00318	0.00246 ± 0.00007	0.9 ± 0.01	5 ± 31	16 ± 3	15.8 ± 0.5
》试单位,中国	1批馬大学(5	下京)地质实验	谷室测试中,	1.1.2.						

续表 1-2 Trable 1 2

图 4 甲玛矿床内中酸性侵入岩中锆石的阴极发光图像 Fig. 4 Cathodoluminescence images of zircons in intermediate-acidic intrusive rocks from the Jiama deposit

因未在所示的 CL 图像中 故而未予标出。

根据 CL 形态特征可见,所分选出来的锆石均为 无色透明,呈长柱状自形晶体,有少量发生了碎裂, 其长轴长度为 100~250 µm,长短轴之比为 2:1~ 3:1,具有明显的震荡环带,均为同源岩浆锆石(Hanchar et al.,1993)。4 件样品的 Th/U 比值多数大于 0.4(仅 DFY-01 测点为 04 以及 DLF-25 测点小于 0.4)具有一般岩浆成因锆石的特征,并受到热液混 染和改造。锆石受外来熔体/流体的混染和改造有 2 种表现形式:① 岛湾状构造(Liati et al.,1999;Rubatto et al.,1999,2003;Zheng et al.,2007);② 不规 则白色环边或团斑,显示出原生锆石已发生重结晶 作用(Corfu et al.,2003)。

4.2 锆石 U-Pb 年龄

对4件岩体样品内锆石所测得的²⁰⁶Pb/²³⁸U表 面年龄值的变化范围较大(表1),显示出原生锆石在 岩浆混合及后期蚀变过程中,Pb有部分丢失。排除 丢失铅对加权平均年龄值的影响后,塔龙尾花岗斑 岩体(TLW)16 个测点的加权平均年龄值为(16.27 ±0.31) Ma(1 σ ,MSWD=1.9);象背山花岗斑岩体 (XBS)20 个测点的加权平均年龄值为(15.99 ± 0.34) Ma(1 σ ,MSWD=2.5);独立峰花岗斑岩体 (DLF)24 个测点的加权平均年龄值为(15.31 ± 0.24) Ma(1 σ ,MSWD=3.8);东风垭二长花岗斑岩 \hat{M} (DFY)19 个测点的加权平均年龄值为(14.81 ± 0.16) Ma(1 σ ,MSWD=1.5)(图5)。测点年龄的计 算均用 Isoplot 软件(Ludwig et al.,1999)处理,较为 客观、真实地反映了这4 个岩体的侵位时限。

由测试结果可见,花岗斑岩的侵位时间早于二 长花岗斑岩。此外,在东风垭(DFY)二长花岗斑岩 脉中发现了一颗捕虏锆石(长短比4:1,具震荡环 带),其年龄值为147 Ma(DFY-10,Th/U比值为 0.74),接近于冈底斯带内晚侏罗世橄榄玄粗岩的岩 浆活动期(Aitchison et al., 2007),推测甲玛二长花岗 斑岩体的形成可能源自晚侏罗世侵位的深部玄武质 岩石的重熔。

图 5 甲玛矿区塔龙尾(TLW)象背山(XBS)独立峰(DLF)花岗斑岩及东风垭(DFY) 二长花岗斑岩内锆石 U-Pb 年龄谐和图

Fig. 5 Concordia diagrams for U-Pb ages of zircon grains in Talongwei (TLW), Xiangbeishang (XBS), Dulifeng (DLF) granite porphyry and Dongfengya (DFY) monzogranite porphyry from the Jiama ore deposit

5 讨 论

3

5.1 岩体(脉) 侵位时序的厘定

测年结果(表1及图5)总体显示出,花岗斑岩早 于二长花岗斑岩,并且花岗斑岩的侵位以塔龙尾为 中心,沿东西向向两侧演化,侵位于褶皱的转折端。 可以推测,在该矿区红-塔背斜至牛马塘背斜之间, 应该存在隐伏的花岗斑岩体,甲玛隐伏斑岩体(花岗 斑岩)的发现,已证实了这一推断。

此外,花岗闪长斑岩(图 2A)和石英闪长玢岩 (图 2B)存在不同程度的切穿,以及捕虏花岗斑岩, 暗示了两者的侵位晚于花岗斑岩。在该矿区范围 内,二长花岗斑岩、花岗闪长斑岩和石英闪长玢岩的 相互关系较为明显,其中,石英闪长玢岩的侵位早于 花岗闪长斑岩、二长花岗斑岩,后两者内常包含有石 英闪长玢岩的不规则包体(图 2C)。花岗闪长斑岩 则侵位最晚,在接触面上可见花岗闪长斑岩的冷凝 边构造及二长花岗斑岩的港湾状构造(图 2D)。

综上所述,甲玛矿区内中酸性斑岩的侵位时序为:花岗斑岩(15.31~16.27 Ma)—石英闪长玢岩 —二长花岗斑岩(14.81 Ma)—花岗闪长斑岩。同位 素测年结果证实了地质证据的正确性。

5.2 岩浆-成矿作用

甲玛矿床的形成与岩浆作用密不可分 岩浆活动 的多期多阶段性导致了成矿作用的多期多阶段性 宏 观上表现为石英-硫化物脉的多期产出。以石英-辉钼 矿为例 随着岩浆作用的不断进行 成矿过程显示出 3 期不同程度的成矿作用(图 3B)具体表现为:

Ⅱ期成矿作用 目前发现,仅在花岗斑岩及石 英闪长玢岩中发育(图 3B),呈近直立的粗脉浸染状 构造,矿物组合为石英+辉钼矿+(阳起石或黑云 母),矿石内辉钼矿的 Re-Os 同位素年龄为 15.3 Ma 左右(应立娟等 2009),为花岗斑岩或石英闪长玢岩 岩浆活动之后的一次成矿作用。

II 期成矿作用 发育在花岗斑岩、石英闪长玢岩和二长花岗斑岩中,呈大角度(轴交角在 30°左右)切层产出,细脉浸染状构造,矿物组合为石英+辉钼矿+(石膏)。在图 2D 中明确指示了该期成矿作用与岩浆活动的关系:II 期石英+辉钼矿脉切穿二长花岗斑岩但被花岗闪长斑岩所截,是二长花岗斑岩之后花岗闪长斑岩之前的成矿作用,与二长花岗斑岩岩的岩浆活动相对应。

Ⅲ期成矿作用 在所有岩浆岩中均有不同程度 的发育,呈小角度(轴交角在 60°左右)切层产出,细 脉浸染状构造,矿物组合为石英+辉钼矿+(石膏)。 表现为花岗闪长斑岩之后的成矿作用过程,与花岗 闪长斑岩的岩浆活动相对应。

此外,对所有岩浆岩的基本分析结果显示:矿 化最好的为花岗斑岩(Mo加权平均值为0.04%), 其次为二长花岗斑岩(Mo加权平均值为0.02%), 最差的为花岗闪长斑岩(Mo加权平均值<0.01%)。 这从侧面反映了多期成矿作用对矿质富集的制约, 表明甲玛矿床的形成是3期岩浆-成矿作用相互叠 加的直接结果。

6 结 论

(1)西藏甲玛矿区内中酸性斑岩发育,呈岩株 或岩脉产出。受区域构造活动的影响,花岗斑岩侵 位于褶皱转折端,石英闪长玢岩、二长花岗斑岩和花 岗闪长斑岩近直立产出,呈近NS向雁列式展布。岩 体侵位及矽卡岩形成的时序为:花岗斑岩(15.31~ 16.27 Ma)—石英闪长玢岩—二长花岗斑岩(14.81 Ma)—花岗闪长斑岩。

(2)甲玛矿床可分出3期成矿作用,每期成矿作 用分别对应于花岗斑岩或石英闪长玢岩、二长花岗 斑岩及花岗闪长斑岩3期不同强度的岩浆作用。甲 玛矿床的形成是3期岩浆-成矿作用叠加的结果。

志 谢 在本文完成过程中,中国地质大学(北 京)实验测试中心的苏黎老师给予了无私的帮助和 指导,在此表示衷心感谢!

References

Aitchison J C , McDermid I R C , Ali J R , Davis A M and Zyabrerv S V.

2007. Shoshonites in Southern Tibet record Late Jurassic rifting of a Tethyan intraoceanic island ard J.]. Journal of Geology, 115:197-213.

- Coleman M and Hodges K. 1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension [J]. Nature , 374:49-52.
- Corfu F , Hanchar J M , Hoskin P W O and Kinny P. 2003. Altas of zircon textures J J. Mineralogy and Geochemistry , 53 : 469-500.
- Hanchar J M , Miller C F. 1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images : Implications for interpretation of complex crustal histories [J]. Chemical Geology , 110 : 1-13.
- Harrsion T M , Copeland P and Kidd W S F. 1995. Activation of the Nyainqentanghla shear zone : Implication for uplift of the southern Tibetan Plateau[J]. Tectonics , 14:658-676.
- Liati A and Gebauer D. 1999. Constraining the prograde and retrograde P-T-t path of Eocene HP rocks by SHRIMP dating difference zircon domain : Inferred rated of heating-burial, cooling and exhumation for central Rhodope, northern Greeced J J. Contributions to Mineralogy and Petrology, 135: 340-354.
- Ludwig A K R. 1999. Using Isoplot/EX, version 3.23, A geolocronolgical toolkit for Microsoft Excel [CP]. Berkeley: Berkeley Geochronological Center Special Publication, 47.
- Rubatto D , Gebauer G and Compagnoni R. 1999. Dating of eclogite-facies zircons : The age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps J J]. Earth and Planetary Science Letters , 167 : 141-158.
- Rubatto D and Hermann J. 2003. Zircon formation during fluid circulation in eclogites (Monviso , Western Alps): Implications for Zr and Hf budget in subduction zones[J]. Geochimica et Cosmochimica Acta , 67 : 2173-2187.
- Tang J X , Wang D H , Wang X W , Zhong K H , Ying L J , Zheng W B , Li F J , Guo N , Qin Z P , Yao X F , Li L , Wang Y and Tang X Q. 2010. Geological features and metallogenic model of the Jiama copper-polymetallic deposit in Tibet[J]. Acta Geoscientica Sinica , 31 (4):1-12 (in Chinese with English abstract).
- Yin A and Harrison T M. 2000. Geological evolution of the Himalayan-Tibetan oroger[J]. Annu. Rev. Earth Planet. Sci. Lett. , 28:21-280.
- Ying L J , Tang J X , Wang D H , Chang Z S , Qu W J and Zheng W B. 2009. Re-Os isotopic dating of molybdenite in skarn from the Jiama copper-polymetallic deposit of Tibet and its metallogenic significance J] Rock and Mineral Analysis , 3:265-268 (in Chinese with English abstract).
- Zheng Y F , Gao T S , Wu Y B , Gong B and Liu X M. 2007. Fluid flow during exhumation of deeply subducted continental crust : Zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite J J. Journal of Metamorphic Geology , 25 : 267-283.

附中文参考文献

- 唐菊兴,王登红,汪雄武,钟康惠,应立娟,郑文宝,黎枫佶,郭 娜,秦 志鹏,姚晓峰,李 磊,王 友,唐晓倩.2010. 西藏甲玛铜多金 属矿矿床地质特征和及其矿床模型]]. 地球学报,31(4):1-12.
- 应立娟,唐菊兴,王登红,畅哲生,屈文俊,郑文宝.2009.西藏甲玛铜 多金属矿床矽卡岩中辉钼矿铼-锇同位素定年及其成矿意义[J]. 岩矿测试 28(3)265-268.