文章编号:0258-7106(2012)05-1067-08

新疆西天山查岗诺尔铁矿床成矿时代

——来自石榴子石 Sm-Nd 等时线年龄的信息*

洪 为¹ 张作衡¹ 李华芹² 李凤鸣³ 刘兴忠⁴

(1 中国地质科学院矿产资源研究所 国土资源部成矿作用与资源评价重点实验室,北京 100037;
 2 武汉地质矿产研究所,湖北 武汉 430205;3 新疆维吾尔自治区地质矿产勘查开发局,新疆 乌鲁木齐 830000;
 4 新疆维吾尔自治区地质矿产勘查开发局第三地质大队,新疆 库尔勒 841000)

摘 要 查岗诺尔铁矿床赋存在大哈拉军山组中-上部的安山质火山碎屑岩和火山熔岩内,主矿体 Fe I周围发 育大量以石榴子石为代表的高温热液蚀变 精确厘定高温热液蚀变的时间是确定成矿作用是与火山作用有关还是 由岩体侵入作用所导致的关键。石榴子石与磁铁矿体的关系最为密切,其形成时间稍早或同时于磁铁矿。石榴子 石 Sm-Nd 同位素测试结果表明,¹⁴⁷Sm/¹⁴⁴Nd 值为 0.2792~0.5481,¹⁴³Nd/¹⁴⁴Nd 值为 0.512950~0.513501,7 个样品 拟合的线性关系良好,获得的 Sm-Nd 等时线年龄为(316.8±6.7) Ma 指示了高温热液蚀变的时间,表明主要磁铁矿 体的形成时代为早石炭世晚期,成矿作用及高温热液蚀变可能不是矿区内二叠纪岩体侵入携带的岩浆热液与大理 岩发生矽卡岩化所导致,而可能是大哈拉军山组火山岩喷发后的岩浆期后热液与下伏大理岩发生接触交代反应引 起的。

关键词 地球化学 成矿时代 活榴石 Sm-Nd 等时线年龄 查岗诺尔铁矿 洒天山 新疆 中图分类号: P618.31 文献标志码 A

Metallogenic epoch of Chagangnuoer iron deposit in western Tianshan Mountains, Xinjiang: Information from garnet Sm-Nd isochron age

HONG Wei¹, ZHANG ZuoHeng¹, LI HuaQin², LI FengMing³ and LIU XingZhong⁴ (1 MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing 100037, China; 2 Wuhan Institute of Geology and Mineral Resources, Wuhan 430205, Hubei, China; 3 Xinjiang Bureau of Geology and Mineral Resources Development, Urumqi 830000, Xinjiang, China; 4 No. 3 Geological Party of Xinjiang Bureau of Geology and Mineral Resources Development, Korla 841000, Xinjiang, China)

Abstract

The large-size Chagangnuoer iron deposit is hosted in andesite and andesitic volcaniclastic rocks in the middle-upper part of Carboniferous Dahalajunshan Formation, with widespread high hydrothermal alteration (represented by garnet) distributed extensively around the uppermost ore body FeI. The precise formation age of high hydrothermal alteration is the key to judging whether iron metallogeny was related to volcanism or intrusive activity. Garnet, which had a closely genetic relationship with magnetite, was formed simultaneously with or slightly earlier than magnetite. Garnet Sm-Nd isotope analyses reveal that 147 Sm/¹⁴⁴Nd values vary between 0.2792 and 0.5481 while 143 Nd/¹⁴⁴Nd ratios vary between 0.512950 and 0.513501. Data of seven isotope sam-

^{*} 本文得到国家重点基础研究发展计划(2012CB416803),国家科技支撑计划(2011BAB06B02-05)和地质矿产调查评价项目 (1212011085060)联合资助

第一作者简介 洪 为,男,1986年生,博士研究生,矿物学、岩石学、矿床学专业。Email:hongwei_86@hotmail.com 收稿日期 2012-04-15;改回日期 2012-08-23。许德焕编辑。

ples form a good linear fitting relationship, yielding the Sm-Nd isochron age of (316.8 ± 6.7) Ma, which represents the formation epoch of high-temperature hydrothermal alteration. The result indicates that magnetite intergrown with garnet was formed at the late stage of Early Carboniferous period. Therefore, the iron metallogeny and high hydrothermal alteration might have resulted from the metasomatism between the post-magmatic hydrothermal solution derived from eruption of Dahalajunshan Formation volcanic rocks and the underlying marble, rather than the skarnization caused by the reaction between magmatic hydrothermal solution from Permian intrusion and marble in the ore district.

Key words: geochemistry, metallogenic epoch, garnet Sm-Nd isochron age, Chagangnuoer iron ore deposit, Western Tianshan Mountains, Xinjiang

查岗诺尔铁矿床是西天山阿吾拉勒铁矿带东段 的一个大型铁矿床。近年来,对该矿床的赋矿围岩、 火山岩形成环境、矿床地质特征、矿床地球化学、典 型矿物的矿物学特征、铁成矿沉淀机制等开展了较 多的研究工作(徐祖芳,1984;冯金星等,2010;汪帮 耀等 2011a 2011b ;洪为等 ,2012a ;2012b)。关于该 矿区内大哈拉军山组火山岩的形成时代,有不同年 龄数据的报道,汪帮耀等(2011b)与蒋宗胜等(2012) 测得的该组流纹岩的 U-Pb 锆石年龄相差约 20 Ma, 表明该组火山岩的成分比较复杂,矿区内可能存在 多期火山活动。虽然大哈拉军山组安山质火山碎屑 岩或凝灰岩是查岗诺尔铁矿床的赋存围岩,但是,火 山岩的形成年龄能否代表铁矿床的成矿年龄则值得 商榷 况且 矿区内火山岩的年龄在不同的文献中还 存在较大的差异。另一方面 ,查岗诺尔铁矿内广泛 发育以石榴子石-方柱石-透辉石-阳起石为代表的高 温热液蚀变 ,蚀变矿物(如石榴子石)稍早于或与磁 铁矿几乎同时形成 ,这种跟成矿关系密切的高温热 液蚀变 ,是与火山作用派生的岩浆期后热液作用有 关 ,还是由矿区内出露或隐伏的花岗岩体的侵入所 提供的岩浆热液所引起的,目前尚不清楚。因此,准 确厘定高温热液蚀变的时代便是关键问题 ,但缺乏 可靠的定年方法和矿物 是目前定年的难点。

Sm、Nd 均为稀土元素,其地球化学性质相似, Sm-Nd 体系的保存性能良好,抗蚀变和变质作用的 能力较强,因此,Sm-Nd 法等时线年龄和模式年龄是 基性-超基性岩、古老变质岩年代学研究的较好方 法,能代表原岩生成的时间和反映出成岩物质源区 的特性(陈文等,2011)。也有将 Sm-Nd 等时线年龄 法用于确定矿床形成时代且取得良好效果的报道 (姬金生等,1999;Li et al.,2004;李华芹等,2006;涨 家菁等,2008;Barker et al.,2009;Oberthür et al., 2009)。因此,本文拟挑选出与磁铁矿密切共生、分 布广泛的脉石矿物(石榴子石),进行 Sm-Nd 等时线 年龄研究,尝试精确测定高温热液蚀变(砂卡岩化) 的时间,对比火山岩的形成年龄和矿区花岗岩的侵 位时代,以讨论铁矿床的成矿时代和形成机制。

1 矿区地质特征

西天山位于准噶尔板块与塔里木板块之间,以 依连哈比尔尕断裂带为北界 ,以长阿吾子-乌瓦门缝 合带为南界 向西延入哈萨克斯坦 向东止于库米什 一带 总体上呈向东收敛的楔形(图 1a)。区域上出 露的地层有元古界、寒武系、奥陶系、志留系、泥盆 系、石炭系、二叠系、三叠系、侏罗系和第四系 ,以石 炭系大哈拉军山组、伊什基里克组分布最为广泛。 大哈拉军山组为一套分布广泛、厚度大、岩性复杂的 中-酸性火山-沉积碎屑岩夹碳酸盐岩建造。此外,分 布有大量石炭纪、二叠纪花岗岩类侵入岩和少量的 志留纪和泥盆纪花岗岩类侵入岩。关于大哈拉军山 组的沉积构造环境还存在较大的争议 ,但愈来愈多 的研究表明 ,该组地层与海相钙碱性火山岛弧或大 陆边缘岛弧具有可比性(姜常义等 1995 ;朱永峰等 , 2006 Zhu et al., 2005, 2009; 钱青等, 2006; 龙灵利 等 2008 ;李永军等 ,2009 ;李继磊等 ,2010 ;汪帮耀 等 2011b 蒋宗胜等 2012)。

查岗诺尔铁矿区内出露的地层主要为石炭系大 哈拉军山组(C₁d)和伊什基里克组(C₂y)。矿床赋 存于大哈拉军山组中-上部的火山碎屑岩和火山熔 岩中,其岩性以安山质晶屑岩屑凝灰岩为主,局部夹 透镜状大理岩,偶见玄武岩、粗面安山岩和流纹岩 等。大哈拉军山组主要分布在该矿区的西南部,有 少量出露于矿区的东北翼;伊什基里克组主要分布 在该矿区的东南部(图 1b)。NW向、NWW向、NE 向断裂带横贯整个矿区,因而,矿体亦受到这些断裂

图 1 西天山地质简图(a),查岗诺尔矿区地质图(b),查岗诺尔 Fe 1 矿体特征(c)和 0-0'勘探线剖面(d) 图 1a引自李凤鸣等,2011;图 1b、c和d引自冯金星等,2010

Fig. 1 Simplified regional geological map of western Tianshan Mountains (a), geological map of the Chagangnuoer

ore district (b), features of Fe 1 ore body (c), and geological section along

0-0' exploration line in the Chagangnuoer iron deposit (d)

Fig. 1a after Li et al., 2011: Fig. 1b, c and d modified after Feng et al., 2010

及环形断裂构造的控制(图 1c)。矿区内侵入岩较为 发育,主要呈岩株、岩枝、岩墙状,少见呈岩基状,矿 区南部和东侧出露少量安山玢岩,中部产出大量的 闪长岩类岩体,东北部则发育较多的花岗岩类岩体 (图 1b)。另外,矿体周围分布有少量的煌斑岩、英安 斑岩等岩脉。

该矿区以查汗乌苏河为界,分为东部的 Fe I 矿 体和西部的 Fe II 矿体(图 1b),亦是规模最大的两个 矿体,此外还圈出了 4 个小矿体,总矿石资源量超过 2.1 亿吨。Fe I 矿体为主矿体,其资源量占总资源 量的 95%以上,平面上呈 NE 向展布,总体上向东倾 斜,中段显著膨大,向北被第四系覆盖,向南逐渐尖 灭,长约3km,平均厚度64.21m,w(TFe)平均为 35.61%,自东向西可划分出石榴子石砂卡岩蚀变 带、铁矿体、阳起石-绿帘石砂卡岩蚀变带和大理岩 蚀变带(图1c)。矿体形态比较规则,呈层状、似层 状、透镜状,具分枝复合、膨大狭缩的特征。其顶板 为安山质凝灰岩、底板产出透镜状大理岩,自上而下 依次为安山质凝灰岩、石榴子石砂卡岩、磁铁矿-石 榴子石砂卡岩、磁铁矿体、石榴子石-阳起石砂卡岩、 透闪石砂卡岩、绿泥石-绿帘石化安山岩及大理岩 (图1d)。

矿石构造以角砾状、斑点状、斑杂状、豹纹状、浸 染状构造为主,其次是块状或致密块状构造;矿石结 构常见有交代结构、填隙结构、共生边结构和他形-半自形粒状结构等。矿石矿物主要为磁铁矿,伴生 少量的黄铁矿、黄铜矿、赤铁矿、镜铁矿等;脉石矿物 发育有石榴子石、阳起石、绿帘石、绿泥石、透辉石、 透闪石、方解石和石英等。

以石榴子石为代表的高温热液蚀变在矿体周围 广泛发育,与磁铁矿化的关系最为密切,至少可区分 出2期石榴子石化,早期的石榴子石为土黄色、褐黄 色,粒径较细小(<0.2 mm),呈不规则的粒状或纤 维状,多分布在下部矿体的周围,与细粒的磁铁矿共 存,如在斑杂状的磁铁矿石中(图 2a),细粒状的石榴 子石呈褐黄色(带黄绿色调),较为自形,在其间隙内 充填有他形的磁铁矿或黄铁矿(图 2b),形成时间稍 早于磁铁矿或与磁铁矿同时;晚期的石榴子石呈褐 色、红褐色,晶形完好,粒径粗大(图 2c),可达 2 mm ~2 cm,显微镜下常见其具有环带结构(图 2d),多分 布在矿体的上部,可能是因为矿体上部发育各种断 裂或裂隙、处于较为开放的空间,有利于石榴子石的 缓慢生长、结晶和析出。

石榴子石的端员组分主要为钙铁榴石 (61.6%)、钙铝榴石(35.5%)以及铁铝榴石和锰铝 榴石(两者之和小于3.0%)。关于石榴子石等砂卡 岩矿物与铁成矿的关系详见洪为等(2012a)。贫矿 和含矿砂卡岩中石榴子石的稀土元素配分模式均呈 现出弱正 Eu 异常、轻稀土元素相对亏损、重稀土元 素相对富集的左倾型特征。洪为等(2012b)讨论了 石榴子石等矿物的微量元素对成矿作用的制约。

根据矿石组构、矿物共生特征,可划分出2个成 矿期,即岩浆成矿期和热液成矿期,后者可分为砂卡 岩亚期和石英-硫化物亚期。进一步又可细分为6 个成矿阶段:岩浆成矿期可分为磁铁矿-透辉石阶段 和绿泥石-黄铁矿阶段;热液成矿期可分为磁铁矿-石 榴子石-阳起石阶段、绿帘石-绿泥石阶段(砂卡岩亚 期)及硫化物阶段、石英-碳酸盐阶段(石英-硫化物亚 期)。成矿期次及阶段的详细划分见洪为等 (2012b)。

图 2 查岗诺尔铁矿床石榴子石特征

a. 斑杂状矿石,石榴子石(Grt)呈细粒状,磁铁矿(Mag)和黄铁矿(Py)充填于石榴子石的间隙; b. 单偏光下,斑杂状矿石的充填结构,石榴 子石呈较自形粒状,磁铁矿分布在石榴子石的间隙内; c. 红褐色的石榴子石,晶形完好、粒径粗大; d. 反射光下,晶形完好的石榴子石呈现 环带结构

Fig. 2 Characteristics of garnets from the Chagangnuoer iron deposit

a. Taxitic ore, garnet (Grt) in spotted and mottled forms: magnetite (Mag) and pyrite (Py) filled in crevices of gangue minerals: b. Comparatively euhedral garnet and anhedral magnetite occurring as intersertal texture in taxitic ore, under transmitted light: c. Reddish brown garnet with fine crystal form and coarse size: d. Under reflected light, the garnet with fine crystal form assuming zonal texture

2 石榴子石 Sm-Nd 等时线定年

2.1 采样位置及样品描述

7件样品均采自 Fe I 矿体。CG-001样品采自 ZK3001钻孔 395 m 处,为角砾状磁铁矿矿石,在斑 点状砖红色石榴子石中分布有呈角砾状的磁铁矿。 CG-002样品采自 ZK3001钻孔 396 m 处,为石榴子 石矽卡岩,含辉石、阳起石等矿物。CG-009样品采 自 ZK3002钻孔 146 m 处,为粗晶石榴子石(80%以 上粒径为 0.2~1 cm)矽卡岩。CG-015 样品采自 ZK2201钻孔 220 m 处,为角砾状磁铁矿矿石,磁铁 矿呈角砾状、椭圆状被砖红色石榴子石胶结。CG-184 样品采自 ZK4001钻孔 427 m 处,为块状磁铁矿 矿石。CG-187样品采自 ZK4001钻孔 266 m 处,为 角砾状磁铁矿矿石。CG-252 样品采自 PD3170 平 硐,为粗晶石榴子石矽卡岩。

将样品破碎至 20~40 目,在双目镜下挑选出纯 度达 99%的石榴子石单矿物,然后,将其在玛瑙研钵 中研磨成 200 目以下的粉末,用超纯水和稀盐酸以 超声波清洗,除去矿物表面的杂质,以备进行同位素 测试。

2.2 Sm-Nd 等时线定年方法

Sm-Nd 同位素测定方法流程详见李华芹等 (1998) 波道。w(Sm)和w(Nd)及 Nd 同位素比值 采用同位素稀释法和质谱仪直接测定。同位素测试 在中国地质调查局宜昌地质矿产研究所同位素实验 室完成,测试仪器为 N-Triton 可调多接受固体质谱 仪。在测试过程中,使用标准物质 J.M.C Nd₂O₃ 监 控仪器工作状态,用 Sm-Nd 国家一级标准物质 GBW04419 监控分析流程。质量分馏用(¹⁴⁶ Nd/ ¹⁴⁴Nd)=0.7291 校正。标准测定结果:GBW04419 的¹⁴³Nd/¹⁴⁴Nd=0.512725±0.000008(2 σ)。¹⁴⁷Sm/ ¹⁴⁴Nd 和¹⁴³Nd/¹⁴⁴Nd 比值的精度分别优于 0.0007% 和 0.5%。全部操作均在净化柜里进行,使用的全部 器皿均由铂金氟塑料和高纯石英制成,所用试剂经 亚沸蒸馏器纯化。Sm、Nd 的全流程空白分别为 2× 10^{-10} g和 5×10⁻¹¹ g,同位素分析结果采用 Ludwing(2003)的 Isoplot 程序计算。衰变常数 $(1^{147}$ Sm) = 6.54×10⁻¹²a⁻¹。

2.3 Sm-Nd 同位素测试结果

7件石榴子石样品的 Sm-Nd 同位素测试结果见 表 1。其 w(Sm) w(Nd)分别为 $1.923 \times 10^{-6} \sim$ $3.895 \times 10^{-6} \cdot 2.123 \times 10^{-6} \sim 7.907 \times 10^{-6}$;¹⁴⁷ Sm/ ¹⁴⁴ Nd 值为 $0.2317 \sim 0.5481$,¹⁴³ Nd/¹⁴⁴ Nd 值为 $0.512950 \sim 0.513501$, 1σ 值均小于 0.00001。石榴 子石 Sm-Nd 同位素测试结果经过线性拟合,获得了 图 3 所示的石榴子石 Sm-Nd 等时线年龄。由该图 可知,由 7 个石榴子石样品所拟合的直线,线性关系 良好,直线斜率所对应的等时线年龄为(316.8 ± 6.7) Ma(MSWD = 1.9),代表了石榴子石的结晶时 间,初始¹⁴³ Nd/¹⁴⁴ Nd 值为 0.512368 ± 0.000017 (2σ)。

3 讨 论

如前所述,对区域上大哈拉军山组火山-沉积岩 系的沉积构造环境有不同的认识,但查岗诺尔矿区 内的火山岩属于钙碱性-高钾钙碱性-碱玄岩系列,暗 示其形成环境可能为岛弧环境或大陆边缘弧环境 (汪帮耀等,2011b;蒋宗胜等,2012)。另一方面,大 哈拉军山组火山岩的形成时代在不同地区跨度较 大,从西天山西段巩留-特克斯地区和吐拉苏盆地的 晚泥盆世(~360 Ma,朱永峰等,2006;Zhu et al., 2009;翟伟等,2006),到中部新源城南沿那拉提北坡 的早石炭世(~354 Ma,Zhu et al.,2005,2009),一直

表 1 查岗诺尔铁矿床石榴子石 Sm-Nd 同位素分析结果

Table 1	Sm-Nd isotope	values of garn	et from the (Chagangnuoer	iron deposit
		, and the game	ee an onne enne	Chingmator	n on acposit

序号	原样品号	样品名称	u (Sm) /10 ⁻⁶	u(Nd Y 10 ⁻⁶	¹⁴⁷ Sm / ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	1σ
1	CG-001	石榴子石(角砾状矿石)	1.923	2.123	0.5481	0.513501	0.000008
2	CG-002	石榴子石(矽卡岩)	3.028	7.907	0.2317	0.512847	0.000007
3	CG-009	石榴子石(矽卡岩)	3.736	5.308	0.4258	0.513248	0.000005
4	CG-015	石榴子石(角砾状矿石)	3.890	5.12	0.4596	0.513327	0.000005
5	CG-184	石榴子石(块状矿石)	2.773	6.008	0.2792	0.512950	0.000003
6	CG-187	石榴子石(角砾状矿石)	3.355	5.848	0.3471	0.513082	0.000004
7	CG-252	石榴子石(矽卡岩)	3.895	5.513	0.4275	0.513257	0.000007

变化到东段拉尔敦达坂一带(~312 Ma, Zhu et al., 2005 2009)以及备战铁矿区(~301 Ma, Zhang et al. 2012)的晚石炭世,沿着西天山南、北缘,该组火 山岩的年龄总体呈现出自西向东逐渐变年轻的趋 势。即使在较小范围内的不同层位,火山岩的时代 也不尽相同(如查岗诺尔矿区相差~20 Ma, 汪帮耀 等 2011b 蒋宗胜等 2012),其形成可能是多旋回火 山活动的结果。正因如此,朱永峰等(2006),李永军 等(2009)建议解体并重新划分"大哈拉军山组"火山 -沉积岩系。大哈拉军山组赋矿火山岩的地质、地球 化学特征和形成时代的复杂性,使得利用火山岩的 喷发年龄来代表成矿时代的做法值得商榷,因而,需 要应用与铁成矿关系更为紧密的其他定年方法来限 定成矿时代的阈值。

虽然 Sm-Nd 体系被视为研究基性-超基性岩、年 轻火成岩和变质地质事件的良好工具,但已有的成 矿年代学研究(姬金生等,1999;Li et al. 2004;李华 芹等,2006;张家菁等,2008;Barker et al. 2009; Oberthür et al. 2009)表明,倘若采样位置准确、挑选 矿物的方法得当、实验过程控制良好,那么,可以获 得较好的 Sm-Nd 等时线年龄来厘定矿床的形成时 代。本研究的样品均采自查岗诺尔铁矿区 Fe I 矿 体,是与磁铁矿密切共生的石榴子石矽卡岩或铁矿 石 均为矽卡岩成矿期的产物,石榴子石的形成时间 稍早于磁铁矿或与磁铁矿同时。碎样、挑样、分离、 研磨等工作均系笔者亲自完成,能够保证样品的纯 度。对矿区样品开展的流体包裹体观测发现,石榴 子石比较纯净,几乎找不到包裹体。7 件样品的 Sm/Nd 比值为 0.3830 ~ 0.9058,变化较大,满足 Sm-Nd 等时线定年的基本前提条件。获得的石榴子 石 Sm-Nd 等时线为(316.8±6.7) Ma,稍晚于汪帮 耀等(2011b)报道的矿区火山岩的形成年代(~321 Ma),而与蒋宗胜等(2012)所测得的矿区火山岩的 形成时代(~302 Ma)相差较大,但是,这7件样品经 拟合后,线性关系良好,误差范围为±6.7 Ma, MSWD=1.9,¹⁴³ Nd/¹⁴⁴ Nd 初始值为 0.512368 ± 0.000017(2σ),具有较高的可信度。

该矿床平面上的围岩蚀变分带 具有典型矽卡 岩型成矿蚀变的特点(图 1c)。该矿床发育由钙铁榴 石-钙铝榴石系列、透辉石-钙铁辉石系列组成的钙质 矽卡岩 ,与国内外典型矽卡岩型铁矿中产出的矽卡 岩特征矿物具有可比性 而且 磁铁矿的主要组分与 矽卡岩型成因的磁铁矿成分近似 指示出矽卡岩化 对铁成矿有着重要贡献(洪为等 2012a)。岩浆期磁 铁矿的稀土元素配分模式大致呈轻、重稀土元素较 富集而中稀土元素亏损的 U 型 富 Ti、V、Cr 这可能 与安山质岩浆的结晶分异作用有关 ;矽卡岩期磁铁 矿的 $\Sigma_{
m REE}$ 极低,仅有少数轻稀土元素高于检测限, 略富集 Ni、Co和 Cu,而矽卡岩期含矿和贫矿矽卡岩 中石榴子石的稀土元素呈重稀土元素富集、轻稀土 元素亏损、弱正 Eu 异常的分布型式 ,显示出交代成 因石榴子石的特征 指示了受岩体的影响较小 ,暗示 出与其共生的磁铁矿也是通过流体与围岩地层的交 代作用生成的、铁质来自围岩(洪为等 2012b)。

该矿床内石榴子石的 Sm-Nd 等时线年龄为 (316.8±6.7) Ma,反映了石榴子石结晶的时代,同 时指示出以石榴子石化为代表的高温热液蚀变(即 矽卡岩化)的形成时间。从矿物组合、矿石组构、围 岩蚀变、典型矿物的地球化学的特征来看,查岗诺尔 铁矿床虽然赋存于大哈拉军山组地层、铁成矿与该 套火山岩的形成有关联,但是,从笔者已有的研究结 果来看,铁成矿作用实际上应该是矽卡岩化(及其退 化蚀变)的过程。因此,与矿区火山岩的形成年龄相 比较,由石榴子石 Sm-Nd 等时线年龄所厘定的高温 热液蚀变的时间与铁矿的成矿时代更为接近,即查 岗诺尔铁矿床的主体成矿时代约为 317 Ma,属早石 炭世晚期,稍晚或几乎同期于火山活动的时间。而 距矿体较近的北部的正长花岗岩为二叠纪侵入岩体 (小于 295 Ma,目前尚未获得准确的年龄),与石榴

1072

子石的 Sm-Nd 等时线年龄可能相差较大,并且,岩体周围未见矿化,仅发育绿泥石-绿帘石蚀变,故笔者认为,该岩体对砂卡岩化和矿化的影响较小,这与石榴子石和磁铁矿的稀土及微量元素研究成果可相互验证。因此,铁成矿作用及其高温热液蚀变可能并非由岩体侵入携带的岩浆热液与大理岩发生砂卡岩化(典型砂卡岩化)所导致,而可能与矿区内大哈拉军山组火山岩喷发后的岩浆期后热液与下伏透镜状大理岩发生接触交代反应紧密相关(国内学者通常称之为"类砂卡岩化"),后期的多旋回火山活动亦可能提供了少量的成矿热液。铁成矿的整个持续过程都处于西天山造山带的构造体制由俯冲、碰撞造山挤压转向后碰撞的伸展、拉张的区域构造格局之中(Zhao et al. ,2008 ;Tang et al. ,2010 ;Long et al. ,2011)。

4 结 论

查岗诺尔铁矿床发育以石榴子石为代表的高温 热液蚀变,围岩蚀变具有典型矽卡岩型矿床蚀变分 带的特征。

石榴子石在矿体周围广泛发育,与磁铁矿体的 关系最为密切,其形成时间稍早或同时于磁铁矿。

石榴子石的 Sm-Nd 等时线年龄为(316.8 ± 6.7) Ma,代表了高温热液蚀变的时间,表明与石榴 子石共生的磁铁矿体的形成时代为早石炭世晚期。 成矿作用及其高温热液蚀变可能不是矿区二叠纪岩 体侵入携带的岩浆热液与大理岩发生矽卡岩化所导 致,而可能是大哈拉军山组火山岩喷发后的岩浆期 后热液与下伏透镜状大理岩发生接触交代反应(或 "类矽卡岩化")引起的。

志 谢 野外工作期间得到了新疆地矿局第三 地质大队和新疆和静县和合矿业有限公司的领导和 职工的支持和帮助;同位素测试得到了中国地质调 查局宜昌地质矿产研究所同位素实验室的协助;评 审老师提出了宝贵的修改意见。在此一并表示衷心 的感谢。

参考文献/References

陈 文 万渝生 李华芹 涨宗清,戴樟,施泽恩,孙敬博. 2011. 同位 素地质年龄测定技术及应用[J]. 地质学报 85(11):1917-1947.

- 冯金星,石福品,汪帮耀,胡建明,汪江涛,田敬全. 2010. 西天山阿吾 拉勒成矿带火山岩型铁矿 M]. 北京:地质出版社. 92页.
- 洪 为,张作衡,蒋宗胜,李凤鸣,刘兴忠. 2012b. 新疆西天山查岗诺 尔铁矿床磁铁矿和石榴石微量元素特征对矿床成因的制约[J]. 岩石学报 28(7):2089-2102.
- 姬金生,李华芹,张连昌,杨兴科,丰成友. 1999. 东天山晚古生代火 山岩区磁铁矿绿泥石建造金矿床 Sm-Nd 和 Rb-Sr 同位素年龄 [J].科学通报,44(4):439-442.
- 姜常义,吴文奎,涨学仁,崔尚森. 1995. 从岛弧向裂谷的变迁——来 自阿吾拉勒地区火山岩的证据[J]. 岩石矿物学杂志,14(4): 289-300.
- 蒋宗胜,张作衡,侯可军,洪 为,王志华,李凤鸣,田敬全. 2012.西 天山查岗诺尔和智博铁矿区火山岩地球化学特征、锆石 U-Pb 年 龄及地质意义[J].岩石学报 28(7):2074-2088.
- 李凤鸣 彭湘萍 石福品 周昌平 陈建中. 2011. 西天山石炭纪火山-沉积盆地铁锰矿成矿规律浅析 J]. 新疆地质 29(1):55-60.
- 李华芹,谢才富,常海亮,蔡 红,朱家平,周 肃. 1998. 新疆北部有 色金属矿床成矿年代学[M]. 北京 地质出版社. 10-25.
- 李华芹 路远发,王登红,陈毓川 杨红梅,郭 敬,谢才富,梅玉萍,马 艳丽. 2006. 湖南骑田岭芙蓉矿田成矿时代的厘定及其地质意 义[J]. 地质论评,52(1):113-121.
- 李继磊, 浅 青, 高 俊, 苏 文, 张 喜, 刘 新,江 拓. 2010.西 天山昭苏东南部阿登套地区大哈拉军山组火山岩及花岗岩侵入 体的地球化学特征、时代和构造环境[J], 岩石学报, 26(10): 2913-2924.
- 李永军,李注仓周继兵,高占华,高永利,佟黎明,刘 静. 2009. 西 天山阿吾拉勒一带石炭系岩石地层单位厘定[J]. 岩石学报,25 (6):1332-1340.
- 龙灵利,高 俊,钱 青,熊贤明,王京彬,王玉往,高立明. 2008. 西 天山伊犁地区石炭纪火山岩地球化学特征及构造环境 J]. 岩石 学报 24(4):699-710.
- 钱 青 高 俊 熊贤明,龙灵利,黄德志. 2006. 西天山昭苏北部石 炭纪火山岩的岩石地球化学特征、成因及形成环境 J] 岩石学 报 22(5):1307-1323.
- 汪帮耀,胡秀军,王江涛,邵青红,凌锦兰,郭娜欣,赵彦锋,夏昭德,姜 常义. 2011a. 西天山查岗诺尔铁矿矿床地质特征及矿床成因研 究[]]. 矿床地质,30(3):385-402.
- 汪帮耀,姜常义. 2011b. 西天山查岗诺尔铁矿区石炭纪火山岩地球 化学特征及岩石成因[J]. 地质科技情报, 30(6):18-27.
- 徐祖芳. 1984. 新疆查铁矿主体矿赋矿岩石的成因探讨[J]. 新疆地 质 ∠(2):30-47.
- 翟 伟,孙晓明,高 俊,贺小平,梁金龙,苗来成,吴有良. 2006.新
 疆阿希金矿床赋矿围岩——大哈拉军山组火山岩 SHRIMP 锆石
 年龄及其地质意义[J].岩石学报 22(5):1399-1404.
- 张家菁 梅玉萍 ,王登红 ,李华芹. 2008. 赣北香炉山白钨矿床的同位 素年代学研究及其地质意义[J]. 地质学报 82(7):928-931.
- 朱永峰,周 晶,宋 彪,张立飞,郭 璇. 2006. 新疆"大哈拉军山 组"火山岩的形成时代问题及其解体方案[J]. 中国地质,33(3):

487-497.

- Barker S L L , Bennett V C , Cox S F , Norman M D and Gagan M K. 2009. Sm-Nd , Sr , C and O isotope systematics in hydrothermal calcite-fluorite veins: Implications for fluid-rock reaction and geochronology[J]. Chem. Geol. , 268(1-2):58-66.
- Li X H, Liu D Y, Sun M, Li W X, Liang X R and Liu Y. 2004. Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite , SE China[J]. Geological Magazine , 141(2):225-231.
- Long L, Gao J, Klend R, et al. 2011. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt J]. Lithos , 126 : 321-340.
- Ludwig K R. 2003. User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel [M]. Berkeley : Geochronology Center. Special Publication, No. 4. 77p.
- Oberthür T, Melcher F, Henjes-Kunst F, Gerdes A, Stein H, Zimmerman A and Ghorfi M E. 2009. Hercynian age of the colbalt-nickelarsenide(gold) ores , Bou Azzer , Anti-Atlas , Morocco : Re-Os , .g, N J):1085-1 Sm-Nd , and U-Pb age determinations[J]. Econ. Geol. , 104 : 1065-1079.

Tang G , Wang Q , Wyman D A , Sun M , Li Z , Zhao Z , Sun W , Jia X

and Jiang Z. 2010. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu-Dabate area, northwestern Tianshan (west China): Evidence for a tectonic transition from arc to post-collisional setting J]. Lithos, 119(3-4): 393-411.

- Zhang Z H, Hong W, Jiang Z S, Duan S G, Xu L G, Li FM, Guo X C and Zhao Z G. 2012. Geological characteristics and zircon U-Pb dating of volcanic rocks from the Beizhan iron deposit in western Tianshan Mountains , Xinjiang , NW China J]. Acta Geologica Sinica (English Edition), 86(3):737-747.
- Zhao Z H, Xiong X L, Wang Q, Wyman D A, Bao Z W, Bai Z H and Qiao Y L. 2008. Underplating-related adakites in Xinjiang Tianshan, China[J]. Lithos, 102(1-2):374-391.
- Zhu Y F, Zhang L F, Gu L B, Guo X and Zhou J. 2005. The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rock s in western Tianshan Mountains J]. Chinese Science Bulletin, 50(19): 2201-2212.
- Zhu Y F, Guo X, Song B, Zhang L F and Gu L B. 2009. Petrology, Sr-Nd-Hf isotopic geochemistry and zircon chronology of the Late Palaeozoic volcanic rocks in the southwestern Tianshan Mountains, Xinjiang, NW China[J]. Journal of the Geological Society, 166