编号:0258-7106(2014)06-0087-17

牛鼻子梁镁铁质-超镁铁质杂岩体岩石特征

刘会文¹,王雪萍¹,邵 继¹,逯克思¹,田芳莲¹,熊淑雅²

(1青海省核工业地质局,青海 西宁 810016;2青海省基础地理信息中心,青海 西宁 810001)

摘 要 牛鼻子梁岩体位于柴达木地块的北缘,出露面积约8km²,平面形态呈长条状,主要由斜长二辉橄榄 岩、斜长单辉橄榄岩、角闪二辉橄榄岩、角闪橄榄岩、角闪橄榄二辉岩、黑云母化二辉岩、角闪辉石岩、橄榄辉石角闪 石岩、角闪橄榄辉长岩、细粒辉长岩、似斑状辉长岩、暗色辉长岩、辉长岩、淡色辉长岩、石英闪长岩和英云闪长岩组 成。文章通过岩石学、矿物学、地球化学研究,得到锆石 U-Pb 年龄为(361.5±1.2) Ma Sm-Nd 等时线年龄为(347± 26) Ma。研究认为,牛鼻子梁基性-超基性岩体含矿岩石产于大陆边缘环境。岩体形成于泥盆纪晚期。岩浆分异充 分 岩石类型丰富,岩浆演化过程中主要发生了橄榄石和斜长石的分离结晶/堆晶作用。岩体的母岩浆应属于拉斑 玄武岩质岩浆。从目前发现的矿化情况来看,牛鼻子梁基性-超基性杂岩体为含矿岩体,有很好的找矿前景。

关键词 地质学,镁铁质-超镁铁质岩;Cu-Ni硫化物矿床;岩石特征;牛鼻子梁

中图分类号 :P588; P618.41; P618 文献标志码:A

Rock characteristics of Niubiziliang mafic-ultramafic complex

LIU HuiWen¹, WANG XuePing¹, SHAO Ji¹, LU KeSi¹, TIAN FangLian¹ and XIONG ShuYa²

(1 Nuclear Industry Geological Bureau of Qinghai Province, Xining 810016, Qinghai, China;

2 Basic Geographic Information Center of Qinghai Province, Xining 810001, Qinghai, China)

Abstract

The ore-prospecting work in Niubiziliang mafic-ultramafic complex has achieved good results; nevertheless, the exploration methods have been rather blind and lack of systematic and professional means. In this paper, based on studying the genesis, formation environment, morphology, and differentiation of the rock body, the authors evaluated the vista of the prospecting work in this area. Microscopic identification shows that the rocks are composed mainly of plagioclase lherzolite, plagioclase wehrlite, lherzolite amphibole, hornblende peridotite, olivine amphibole, biotitized websterite, hornblende pyroxenite, olivine pyroxene amphibolite, hornblende olivine gabbro, fine-grained gabbro, porphyritoid gabbro, dark gabbro, gabbro, light gabbro, quartz diorite and tonalite. Electron microprobe analyses of olivines from different rock types show that their modes of occurrence are not identical. In peridotites, they mostly occur in subhedral granular or rounded crystal accumulation forms; in pyroxene, they mostly occur as reaction pyroxenite remnant; Fo values range between 78.54 and 85.23, suggesting chrysolite. Pyroxene occurs in various kinds of rocks and assumes anhedral form with wrapped olivine. Graphic analysis shows that almost all the alkaline rocks are located in subalkaline region, suggesting that it belongs to native sub-alkaline magma series. All samples are located in the tholeiitic basalt region, indicating that parental magmas should belong to the tholeiitic magma. As for hornblende, peridotite phases contain brown

^{*} 本文得到青海省地勘基金项目(编号:青国土资矿[2010]104号),中国地质调查局基金项目(编号:资2010),矿评02-01-16)和青海省科学技术厅项目(编号:2011-G-205),共同资助

第一作者简介 刘会文,男,1978年生,工程师,从事矿产勘查工作。Email:liuhuiwen2008@21cn.com 收稿日期 2013-01-23;改回日期 2013-10-11。张绮玲编辑。

hornblende, with the amount up to 15%. There is a considerable amount of olivine hornblende rocks, whose amphibole content is up to $60\% \sim 75\%$. These phenomena fully show that the magma was rich in volatiles. Diagram analysis shows that all amphiboles fall into the mantle zone, indicating that they belong to native amphiboles. As to plagioclase, An grade plagioclase varies widely from 13 to 65, and appears from bytownite to andesine. Silicate sample analyses show that SiO_2 content of all samples ranges from 39.91% to 41.35%, suggesting mafic-ultramafic rocks. m/f values of all ultrabasic rock samples vary between 3.84 and 4.90, being lower than 6.5 and higher than 2.5, implying iron ultrabasic rocks, which are favorable for the formation of copper-nickel sulfide deposits. REE analyses show that total REE values of various rocks are $17.3 \times 10^{-6} \sim 83.77 \times 10^{-6}$. There exists strong internal fractionation between heavy rare earth elements and between light and heavy rare earth elements, and the distribution patterns belong to LREE enrichment. All samples fail to show obvious Eu anomalies or Eu anomalies. The U-Pb isotopic ages are exclusively (361.5 ± 1.2) Ma or so, and the Sm-Nd isochron age is (347 ± 26) Ma, implying Late Devonian. Studies suggest that ore-bearing rocks of Niubiziliang mafic-ultramafic complex were produced in the continental margin, and the rock body was formed in the late Devonian. Magma experienced full differentiation, with rich rock types. During magmatic evolution, there mainly occurred olivine and plagioclase fractional crystallization/cumulate action. Magmatic intrusions should belong to tholeiitic basaltic type. Judged from the known mineralization situation, Niubiziliang mafic-ultramafic complex is an ore-bearing rock body with promising ore-prospecting potential.

Key word: geology, mafic-ultramafic rocks, Cu-Ni sulfide deposit, rock characteristics, Niubiziliang

在阿尔金成矿带南缘牛鼻子梁地区首次发现硫 化物型铜镍矿体,矿体赋存于泥盆纪侵入的镁铁质-超镁铁质层状杂岩体下盘接触带附近。该矿床为青 海省核工业地质局 2009 年发现 2010~2012 年在此 开展了普查工作,在地表及钻孔中均发现了较好的 铜镍矿体,前人对该矿床的地质特征及发现意义进 行了多次报道(申大利等,2011;张师祥等,2011;赵 双喜等,2012),但对岩体的成因、产出环境、形态、分 异性等均未开展过探讨。笔者通过研究,认为本区 含矿岩体分异充分,岩石类型丰富,从超基性岩到基 性岩均有出露,岩石具层状和纹层状构造、堆晶结构 明显,经测试分析和研究,该岩体产于古陆块边缘, 侵入时代为晚泥盆世,具有幔源岩浆的特征,该区具 备寻找大型硫化物型铜镍矿的前景。

1 区域地质概况

研究区地处柴达木盆地西北缘,阿尔金山南坡, 大地构造位置属柴达木陆块西北边缘俄博梁元古宙 古陆块体。阿尔金山南缘断裂带在该区北侧 30 km 处通过,该断裂带规模宏伟,活动期长,连续性好,沿 断裂带有大量岩浆活动遗迹,岩石类型繁多,岩性从 超基性岩至酸性岩均有,分属于吕梁期、晋宁期、加 里东期、华力西期及印支期,其中尤以华力西期酸性 侵入岩最为发育,分布较广,镁铁质-超镁铁质杂岩 体呈带状出现图1)。

牛鼻子梁岩体的直接围岩为古元古界金水口岩 群,主要岩石类型包括条带状和眼球状混合岩、黑 云母变粒岩、各种片麻岩、斜长角闪岩、镁质大理 岩、二辉麻粒岩等。由于岩群处于柴达木地块边缘, 历经了多次构造-岩浆活动,岩石遭受了多次强烈改 造,加之在区域变质过程中面理的彻底置换,已成 为叠加的无序构造岩片,无法恢复其初始的地层层 序。

2 含矿岩体的特征

2.1 基本特征

牛鼻子梁岩体的出露面积约8 km² 岩体平面呈 长条状,长轴方向近东西向,长约6 km,最大宽度约 1.5 km 根据已有钻孔资料,越靠近岩体近东西向的 中轴部位,岩体深度越大,从中轴部位向南北两侧, 岩体厚度逐渐减薄。由于钻孔资料有限,目前还无 法确定岩体的最大深度。据现有资料,初步判断牛 鼻子梁岩体的三维形态为岩床状。根据目前牛鼻子 梁岩体的空间关系、岩石组合特征及含矿性进一步 将牛鼻子梁岩体划分为1号、Ⅱ号、Ⅲ号三个成矿区 块:1号区块为F4断层北侧的镁铁质岩成矿区块;

图 1 牛鼻子梁岩体地质构造背景简图

Fig. 1 Geological-structural background of Niubiziliang mafic-ultramafic complex

Ⅱ号区块为岩体西段 F2 断层以南、F3 断层以北被两断 层切割限制的超镁铁质岩成矿区块 Ⅲ号区块为 F3 及 F4 断层以南的超镁铁质岩成矿区块(图 2)。

牛鼻子梁岩体西段的南、北两侧尚保留有金水 口岩群的残留顶盖,而东段未见,原因可能是东段较 西段抬升大,剥蚀深度大,也可能是岩体顶端的不平 整性所致,也可能是两种因素的叠加。

2.2 岩相学特征

斜长二辉橄榄岩 堆晶结构、包橄结构、含长嵌 晶结构,块状构造。岩石主要由橄榄石(77%~ 85%), 单斜辉石 + 斜方辉石(5%~15%), 斜长石 (5%~10%)及少量褐色普通角闪石、尖晶石、磁铁 矿等组成。橄榄石:自形浑圆状,粒径0.25~2.5 mm, 龟裂发育, 沿裂隙蛇纹石化较强, 并有铁质析 出 辉石:半自形-他形 粒径大于 1 mm,包裹橄榄石 和斜长石(图 3_a) 斜长石 :半自形 粒径 $0.1 \sim 1 \text{ mm}$, 大部分充填于橄榄石粒间 少数包裹于辉石和角闪 石中;褐色普通角闪石:他形,充填于橄榄石粒间或 包裹橄榄石和斜长石 局部被黑云母交代 尖晶石和 自形磁铁矿充填于橄榄石粒间,少数包裹于橄榄石 中。堆晶相主要为橄榄石 此外还有少量的斜长石; 辉石、褐色普通角闪石和大部分斜长石为填隙相。 矿物结晶顺序为:橄榄石—斜长石—辉石—褐色普 通角闪石。

斜长单辉橄榄岩 堆晶结构、包橄结构、含长嵌

晶结构,块状构造。岩石主要由橄榄石(65%~ 75%)单斜辉石(15%~22%)斜长石(5%~ 10%)褐色普通角闪石(<5%)及少量的尖晶石、磁 铁矿等组成。橄榄石:自形-半自形浑圆状,粒径 0.25~2.8 mm,龟裂发育,边部和裂隙被蛇纹石交 代,并析出尘状铁质;单斜辉石:半自形-他形,粒径 0.2~3 mm,包裹橄榄石和斜长石(图3b),或填隙于 橄榄石和斜长石粒间;斜长石:自形-半自形,粒径 0.1~1.5 mm,包裹橄榄石或填隙于橄榄石粒间,偶 见包裹于辉石和角闪石中,钠黝帘石化较强;褐色普 通角闪石.他形,包裹橄榄石和斜长石或充填于橄榄 石和斜长石粒间,黑云母化、透闪石化较强。堆晶相 为橄榄石和部分斜长石,填隙相为单斜辉石、褐色普 通角闪石和大部分斜长石。矿物结晶顺序为:橄榄 石—斜长石—单斜辉石—褐色普通角闪石。

角闪二辉橄榄岩 堆晶结构、包含结构,块状构 造。岩石主要由橄榄石(50%~70%)辉石(20%~ 44%)褐色普通角闪石(5%~15%)及少量的斜长 石(0~3%)尖晶石等不透明矿物组成。橄榄石:自 形-半自形浑圆状 粒径0.2~2.5 mm,龟裂发育,少 数沿同一方向裂理非常发育,沿裂隙蛇纹石化强,部 分甚至完全被蛇纹石交代,有大量铁质析出;辉石: 半自形-他形,粒径0.5~4 mm,包裹橄榄石或填隙 于橄榄石粒间,偶见斜方辉石包裹斜长石,部分透闪 石化、绿泥石化强,已完全蚀变;褐色普通角闪石:他

图 2 牛鼻子梁硫化铜镍矿矿区地质图

1—第四纪洪积物;2—古元古界金水口群片麻岩;3—古元古界金水口群大理岩;4—花岗岩;5—辉长岩、淡色辉长岩、斜长岩韵律;6—加 里东期石英闪长岩;7—二辉岩、暗色辉长岩;8—橄榄二辉岩、暗色辉长岩、辉长岩、淡色辉长岩、斜长岩韵律;9—二辉橄榄岩、橄榄二辉 岩、暗色辉长岩韵律;10—暗色辉长岩;11—岩体编号;12—逆断层;13—岩层产状;14—钻孔位置及编号;15—铜镍矿体;16—岩相、地 质界线

Fig. 2 Geological map of the Niubiziliang copper-nickel ore district

1—Quaternary diluviums: 2—Gneiss of Paleoproterozoic Jinshuukou Group: 3—Marble of Paleoproterozoic Jinshuikou Group: 4—Granite; 5—Gabbro, light gabbro and anorthosite rhythm: 6—Caledonian quartz diorite: 7—Websterite, dark gabbro; 8—Olive websterite, dark gabbro, gabbro, linght gabbro, anorthosite rhythm: 9—Lherzolite, olivine websterite, dark gabbro rhythm: 10—Dark gabbro; 11—Serial number of rock: 12—Reverse fault: 13—Attitude of strata: 14—Location and serial number of drill hole: 15—Copper-nickel ore body: 16—Facies, geological boundary

形,包裹橄榄石(图 3c)或填隙于橄榄石和辉石粒间, 偶见包裹斜长石和辉石;斜长石:自形-半自形板状, 包裹橄榄石或填隙于橄榄石粒间。堆晶相主要为橄 榄石,其他矿物为填隙相。矿物结晶顺序为:橄榄石 一斜长石一辉石一褐色普通角闪石。

角闪橄榄岩 堆晶结构、包橄结构,块状构造。 岩石主要由橄榄石(60%~75%)、褐色普通角闪石 (11%~40%)及辉石(0%~15%)等组成。岩石整 体蚀变强,主要为蛇纹石化、黑云母化、纤闪石化和 绿泥石化。橄榄石:半自形-他形,粒径 0.3~1.5 mm,沿边缘和裂隙被蛇纹石交代,有大量铁质析出; 褐色普通角闪石:他形,包裹橄榄石,黑云母化、纤闪 石化和绿泥石化强;辉石已完全被绿泥石交代。堆 晶相为橄榄石,填隙相为褐色普通角闪石。

角闪橄榄二辉岩 堆晶结构、包橄结构、含长结构,块状构造。岩石主要由橄榄石(30%~35%)、辉石(50%~60%)、褐色普通角闪石(3%~12%)及少量的斜长石(0~3%)等组成。橄榄石:自形-半自形 浑圆状,粒径 0.3~2.5 mm,龟裂发育,蛇纹石化较强;辉石:半自形-他形,粒径 0.5~4 mm,斜方辉石和单斜辉石大约各占一半,包裹橄榄石,绿泥石化较强;褐色普通角闪石:他形,包裹橄榄石和辉石(图3d)或填隙于其粒间,偶见包裹斜长石,局部被透闪石和黑云母交代;斜长石:半自形-他形,粒径 0.2~ 0.8 mm,充填于橄榄石和辉石粒间。堆晶相为橄榄石,其他矿物为填隙相。矿物结晶顺序:橄榄石一辉

a. 斜长二辉橄榄岩中斜方辉石(Opx)
包裹橄榄石(Ol)和斜长石(Pl)
(正交偏光)

c. 角闪二辉橄榄岩中褐色普通角闪 石(Hb)包裹橄榄石(单偏光)

e. 角闪橄榄辉长岩中单斜辉石包裹橄 榄石,有角闪石反应边(单偏光)

g.角闪橄榄辉长岩中角闪石包裹橄 榄石、辉石和斜长石(单偏光)

i.暗色辉长岩中堆晶结构:辉石堆晶, 斜长石呈他形填隙(单偏光)

b. 斜长单辉橄榄岩中单斜辉石(Cpx) 包裹橄榄石(正交偏光)

d.角闪橄榄二辉岩中褐色普通角闪石 包裹橄榄石和斜方辉石(正交偏光)

f.角闪橄榄辉长岩中斜长石双晶发育, 包裹橄榄石(正交偏光)

h. 似斑状辉长岩中似斑状结构,斑晶 中辉石堆晶(正交偏光)

j. 辉长岩中辉长结构(正交偏光)

石—斜长石—褐色普通角闪石。

角闪辉石岩 包含结构,块状构造。岩石主要 由辉石(90%~65%)和褐色普通角闪石(10%~ 35%)组成。辉石:半自形短柱状-他形,粒径0.5~3 mm,大部分已完全被次闪石交代,后又被滑石和绿 泥石交代,褐色普通角闪石:他形,粒径大于2 mm, 大部分边缘被次闪石交代,局部被黑云母交代,可见 包裹辉石,但包裹的辉石已完全被滑石交代;有少量 斜方辉石。岩石整体绿泥石化较强。

黑云母化二辉岩 粒状结构,块状构造。岩石 主要由辉石(约75%)和黑云母(约25%)及少量的 石英组成。辉石:自形-半自形短柱状,粒径0.3~2 mm,大部分已被次闪石交代,岩浆晚期被黑云母交 代,辉石滑石化较强,有少量的斜方辉石;黑云母:半 自形-他形,有绿泥石化。石英(<1%)呈他形填隙 于辉石粒间。岩石整体绿泥石化较强。

橄榄辉石角闪石岩 堆晶结构、包橄结构 粗粒 结构,块状构造。岩石主要由橄榄石(10%~15%), 辉石(10%~30%)和褐色普通角闪石(60%~75%) 组成。橄榄石:浑圆状,粒径0.1~1.2 mm,大部分 已完全被蛇纹石和滑石交代,偶见橄榄石残晶,包裹 于褐色普通角闪石中;褐色普通角闪石:半自形,粒 径大于4 mm,局部被次闪石、绿泥石和黑云母交代; 辉石:半自形,粒径0.3~2.5 mm,大部分发生了次 闪石化和绿泥石化,部分辉石为斜方辉石,偶见斜方 辉石包裹于褐色普通角闪石中。橄榄石为堆晶相, 其他矿物为填隙相。矿物结晶顺序为:橄榄石—斜 方辉石—单斜辉石、褐色普通角闪石。

角闪橄榄辉长岩 堆晶结构、包含结构、反应边 结构,块状构造。岩石主要由橄榄石(约30%)辉石 (28%~30%),斜长石(33%~35%),褐色普通角闪 石(4%~12%)及少量的尖晶石、磁铁矿等组成。橄 榄石:自形-半自形浑圆状,粒径0.2~2.5 mm,龟裂 发育,裂隙被蛇纹石交代或整个颗粒完全被蛇纹石 交代,包裹于其他矿物颗粒中;辉石:半自形-他形, 粒径0.25~4 mm,斜方辉石含量变化较大,包裹橄 榄石,具有角闪石反应边,偶见包裹斜长石(图3e); 斜长石:半自形,粒径0.25~5 mm,双晶发育,钠黝 帘石化强,包裹橄榄石(图3f)或填充于橄榄石粒间; 褐色普通角闪石:他形,包裹橄榄石、辉石和斜长石 (图3g),局部被黑云母交代,尖晶石:自形,分散于橄 榄石粒间。堆晶相为橄榄石,其他矿物为填隙相。 矿物结晶顺序为:橄榄石—斜长石—辉石—褐色普

通角闪石。

细粒辉长岩 辉长结构,块状构造。岩石主要 由辉石(45%~46%),斜长石(约50%~55%)及少 量的褐色普通角闪石(0~4%)和石英组成。辉石和 斜长石均呈自形-半自形 粒经小于1mm,辉石已完 全被次闪石交代,斜长石钠黝帘石化强,聚片双晶发 育,偶见环带;褐色普通角闪石呈他形,大部分已被 黑云母交代;石英:呈他形充填于其他矿物颗粒之 间。辉石与斜长石构成共结结构。

似斑状辉长岩 似斑状结构、堆晶结构、辉长结构 决状构造。岩石主要由辉石(55%~75%)斜长石(20%~41%)及少量的石英(<5%)组成。斑晶主要为自形短柱状辉石(图3h)粒径0.3~3 mm,具有溶蚀结构,已完全被次闪石交代,后又被绿泥石交代,还有少量的滑石化,斑晶还有少量为半自形斜长石 粒径0.5~1 mm,聚片双晶发育,黝帘石化和绢云母化强。基质为细粒辉石和斜长石组成,粒径约0.1 mm。基质具有辉长结构。石英呈他形填隙状产出。

暗色辉长岩 堆晶结构,块状构造。岩石主要 由辉石(70%~80%),斜长石(20%~30%),褐色普 通角闪石(0~20%)及少量的石英组成。辉石:自形 -半自形 粒径0.15~6 mm,大部分已被绿色角闪石 交代,部分被滑石、绿泥石和黑云母交代,辉长结构 犹存;斜长石:半自形-他形,粒径0.1~3 mm,填隙 于辉石粒间,钠黝帘石化和绢云母化较强;褐色普通 角闪石:半自形-他形,粒径大于2 mm,边部被次闪 石交代,局部发生黑云母化,偶见包裹斜长石;石英: 呈他形填隙于其他矿物之间。岩石为堆晶结构,辉 石为堆晶相,斜长石、褐色普通角闪石为填隙相(图 3i)。

辉长岩 辉长结构、堆晶结构、含长结构,块状构造。岩石主要由辉石(35%~44%)、斜长石(50%~65%)及少量的褐色普通角闪石(0~2%)和石英组成。辉石:粒径0.3~1.25 mm,已完全被次闪石交代,偶见包裹斜长石;斜长石:粒径0.25~2.5 mm,双晶发育,钠黝帘石化较强;褐色普通角闪石和石英呈他形包裹斜长石或充填于斜长石粒间,偶见包裹辉石,褐色普通角闪石已大部分已被次闪石交代,局部被黑云母交代。该类岩石有2种结构,一种为辉石与斜长石均呈自形-半自形,构成辉长结构(图3j);另一种为斜长石呈自形,为堆晶相,辉石呈半自形-他形,为填隙相,构成堆晶结构。

淡色辉长岩 堆晶结构、包含结构,块状构造。 岩石主要由辉石(20%~30%)和斜长石(61%~ 77%)组成,此外还有少量的褐色普通角闪石(0~ 7%)黑云母和石英(0~4%)。该类岩石有2种堆 晶结构,一种为辉石(0.5~2 mm)自形,斜长石(0.5 ~4 mm)包裹辉石或填隙于辉石粒间,即以辉石为 堆晶相;另一种为辉石(0.5~1 mm)半自形,斜长石 (0.2~5 mm)自形,以斜长石为堆晶相,辉石为填隙 相。辉石已完全被次闪石和滑石交代;斜长石钠黝 帘石化较强;褐色普通角闪石他形,部分发生次闪石 化和黑云母化,包裹斜长石,偶见包裹辉石;黑云母 呈他形包裹斜长石;石英呈他形填隙于其他矿物之 间。岩石局部碳酸盐化很强。

2.3 矿物学特征

橄榄石 主要赋存于斜长二辉橄榄岩、斜长单 辉橄榄岩、角闪二辉橄榄岩、角闪橄榄岩和橄榄二辉 岩以及角闪橄榄辉长岩中。在不同的岩石类型中, 其产出状态不完全相同。在橄榄岩中多呈半自形粒 状或浑圆粒状堆晶产出;在辉石岩中多呈反应残余 包含于辉石中;晶体大小 0.5~3 mm,多数在 1~2 mm 之间 裂理较为发育,多已遭受蛇纹石化。蛇纹 石及析出的铁质常沿其边缘及裂隙分布而构成网脉 状,甚至完全被蛇纹石交代而仅保留其假象。根据 电子探针分析及计算橄榄石的端员组分(表1),所有 样品的 Fo值(Fo=100×Mg/(Mg+Fe))介于 78.54 ~85.23 之间,均为贵橄榄石(徐刚等,2012)。所有 橄榄岩类样品的 Fo值为 82.04~84.10,平均为 83.04 橄榄二辉岩的 Fo值为 81.33~81.91,平均为 81.62 橄榄辉长岩的 Fo值为 79.38~83.52,平均为 81.25 橄榄辉石角闪石岩的 Fo值为 78.54~80.62, 平均值为 79.58。从橄榄岩类、橄榄二辉岩、橄榄辉 长岩到橄榄辉石角闪石岩,Fo值依次呈降低趋势。

辉石 出现在各类岩石中,主要呈他形或包裹 橄榄石。根据电子探针分析及辉石的端员组分计算 结果(表2),斜方辉石 $En=80.61 \sim 83.59$,均为古铜 辉石,在不同的岩石类型之间 En端员组分没有明显 的变化规律。它们的 α (Al_2O_3)变化较大,为0.98% $\sim 2.01\%$ 。单斜辉石的En为46.06~50.35,Fs为

组分	斜长二制	晖橄榄岩	角闪二制	浑橄榄岩	橄榄二	二辉岩	角闪橄榄	览辉长岩	角闪单郑	军橄榄岩	橄榄辉石	角闪石岩
组方	401-1-G1	401-1-G1	401-1-G4	401-1-G4	∏ 4-7-4	∏ 4-7-6	∏ 5-16-8	∏ 5-18-3	∐ 5-4-1	∏ 5-4-2	∏ 6-7-7	∏ 6-7-8
					τ ι(Β) /%							
FeO	16.96	15.96	16.32	16.37	17.39	17.18	16.4	17.41	16.59	15.77	19.87	18.24
CaO	0.01	0	0	0.01	0.02	_	-	0.02	_	0.01	-	0.02
SiO_2	39.03	39.05	38.93	38.96	38.96	38.68	38.93	38.61	39.05	39.27	38.76	39.48
MnO	0.3	0.26	0.17	0.25	0.21	0.23	0.27	0.28	0.32	0.2	0.33	0.19
TiO_2	0.02	_	0.05	0.04	0.01	0.01	0.01	0.02	_	0.01	-	0.02
Al_2O_3	0.03	_	0.02	_	0.06	_	-	_	0	0.06	_	_
Cr_2O_3	0.02	0.03	0.1	0.02	0.1	0.12	-	0.01	0.04	0.1	0.03	0.01
MgO	43.45	44.53	44.17	44.05	42.49	43.64	44.06	43.44	43.75	44.27	40.81	41.56
NiO	0.14	0.14	0.09	0.12	0.11	0.09	0.17	0.19	0.2	0.17	0.15	0.16
总和	99.96	99.97	99.85	99.82	99.35	99.95	99.84	99.98	99.95	99.86	99.95	99.68
					以41	计算的阳离	寄子数					
Fe	0.36	0.34	0.34	0.35	0.37	0.36	0.35	0.37	0.34	0.33	0.43	0.39
Ca	0	0	0	0	0	0	0	0	0	0	0	0
Si	0.99	0.99	0.99	0.99	1	0.99	1	0.99	0.99	0.99	1	1
Mn	0.01	0.01	0	0.01	0	0.01	0.01	0.01	0.01	0	0.01	0
Ti	0	0	0	0	0	0	0	0	0	0	0	0
Al	0	0	0	0	0	0	0	0	0	0	0	0
Cr	0	0	0	0	0	0	0	0	0	0	0	0
Mg	1.64	1.67	1.66	1.66	1.62	1.64	1.65	1.63	1.66	1.67	1.57	1.61
Ni	0	0	0	0	0	0	0	0	0	0	0	0
总和	3	3.01	3.01	3.01	3	3.01	3	3.01	3.01	3	3	3
						端员组	3分/%					
Fo	82	83	83	83	81	82	83	82	83	83	79	81
Fa	18	17	17	17	19	18	17	18	17	17	21	19

表 1 牛鼻子梁岩体中橄榄石的电子探针分析数据 Table 1 Electron microprobe analyses of olivine in Niubiziliang rock body

注:长安大学西部矿产资源与地质工程教育部重点实验室测定。种属均为贵橄榄石。

表 2 牛鼻子梁岩体中辉石的电子探针分析数据

Table 2	Electron	microprobe	analyses	of	pyroxene	in	Niubiziliang	rock	bod

		Ta	ble 2 El	lectron mi	croprobe a	analyses o	f pyroxer	ie in Niu	biziliang i	ock body			
<u>/ت</u>	斜长单制	浑橄榄岩	斜长二制	浑橄榄岩	单辉	敢榄岩	橄榄 二	二辉岩	角闪橄榄	览辉长岩	橄榄二粒	角闪岩	辉长岩
组方	401-1-G6	401-1-G6	401-1-G1	401-1-G1	401-1-G2	401-1-G2	∏ 4-7-1	∏ 4-7-2	∏ 4-1-10	∏ 4-1-4	∏ 6-7-4	∏ 6-9-3	∏ 5-10-3
						re	(B) %						
FeO	5.28	5.12	4.89	4.87	5.19	4.67	4.99	5.45	5.28	11.96	10.79	10.69	11.85
CaO	20.74	20.33	20.96	20.93	21.05	21.35	20.95	21.01	20.51	1.1	0.99	1.13	11.86
SiO_2	51.14	52.43	50.6	50.62	49.9	51.52	51.07	50.36	51.74	54.24	54.47	55.57	51.8
MnO	0.16	0.07	0.11	0.13	0.18	0.12	0.1	0.15	0.08	0.28	0.23	0.25	0.22
TiO_2	0.67	0.49	0.8	0.78	1.19	0.74	0.78	0.9	0.68	0.26	0.22	0.21	0.4
$\mathrm{Al}_2\mathrm{O}_3$	3.32	2.91	4.73	4.67	4.61	3.85	3.9	4.63	3.42	1.82	2.01	1.55	4.16
$\mathrm{Cr}_2\mathrm{O}_3$	0.95	0.81	1.08	1.06	0.73	0.93	0.9	1.01	0.93	0.16	0.33	0.22	0.56
MgO	16.67	17.42	15.71	16	15.28	16.58	15.76	15.85	16.73	29.98	30.3	30.28	15.38
NiO	-	0.02	0.03	0.08	0.04	-	0.05	-	0.03	0.03	0.08	0.03	-
总和	98.93	99.6	98.91	99.14	98.17	99.76	98.5	99.36	99.4	99.83	99.42	99.93	96.23
	以 6 个氧为基准计算的阳离子数												
Fe	0.16	0.16	0.15	0.15	0.16	0.14	0.15	0.17	0.16	0.35	0.32	0.32	0.37
Ca	0.82	0.8	0.83	0.83	0.84	0.84	0.83	0.83	0.81	0.04	0.04	0.04	0.48
Si	1.89	1.92	1.87	1.86	1.86	1.88	1.89	1.86	1.9	1.94	1.95	1.96	1.96
Al4	0	0	0.13	0.14	0.01	0	0.11	0.14	0	0.01	0.05	0.01	0.04
Mn	0.02	0.01	0	0	0.03	0.02	0	0	0.02	0.01	0.01	0.01	0.01
Ti	0.14	0.13	0.02	0.02	0.2	0.17	0.02	0.02	0.15	0.08	0.01	0.06	0.01
Al	0.03	0.02	0.21	0.2	0.02	0.03	0.17	0.2	0.03	0	0.08	0.01	0.19
Cr	-	-	0.03	0.03	-	_	0.03	0.03	0	-	0.01	_	0.02
Mg	-	0	0.86	0.88	0	_	0.87	0.87	0	0	1.59	0	0.87
Ni	_	0	0	0	_	-	0	0	0	0	0	_	0
总和	4.02	4.01	4.01	4.01	4.01	4.01	4	4.02	4.01	4.01	4	4	3.95
						端员	₹组分/%						
En	48	50	47	47	46	48	47	47	49	80	82	82	50
Wo	43	42	45	45	45	44	45	44	43	2	2	2	28
Fs	9	8	8	8	9	8	8	9	9	18	16	16	22
种属	透辉石	透辉石	顽透辉石	顽透辉石	透辉石	透辉石	顽透辉石	顽透辉石	透辉石	古铜辉石	古铜辉石	古铜辉石	普通辉石

注:长安大学西部矿产资源与地质工程教育部重点实验室测定。

8~22, Wo为2~45, 在Wo-En-Fs图中, 主要位于透 辉石、顽透辉石和普通辉石区。在超镁铁质岩石中 单斜辉石主要为透辉石和顽透辉石,在镁铁质岩石 中主要为顽透辉石和普通辉石。在单斜辉石的 SiO₂-Al₂O₃ 图解中,几乎所有的单斜辉石都位于亚 碱性岩区 表明其原生岩浆属于亚碱性系列。在 Al (Ⅳ)-Si图上,所有样品均位于拉斑玄武岩区,表明 母岩浆应属于拉斑玄武质岩浆。

角闪石 主要赋存于角闪二辉橄榄岩、角闪橄 榄岩、橄榄辉石角闪石岩和部分辉长岩中 ,含量相差 较大 多呈他形。橄榄岩相主要形成于岩浆结晶早 期阶段,均含有褐色普通角闪石,且数量最多可达 15%。此外 还有相当数量的橄榄二辉角闪石岩 其 中的角闪石含量为 60%~75%,这些现象充分反映 了岩浆富含挥发分。

根据电子探针分析及计算角闪石的端员组分

(表 3),各类岩石中角闪石的u(CaO)较高,均大于 10% 在不同类型的岩石中其成分变化不大。因无 H₂O含量,采用O=23计算阳离子数。经计算,角闪 石属于钙质角闪石类的钛角闪石、韭闪普通角闪石 和钙镁闪石普通角闪石。橄榄岩、角闪岩及角闪橄 榄辉长岩的 Si/(Si + Al + Ti)均小于 0.765, u(Al₂O₃)均大于 10%。根据角闪石的 Si-Al-Ti、Si-Al 及 TiO2-Al2O3 等图解进行投图(图 4),大部分角 闪石均落在幔源角闪石区(M 区),说明角闪石均属 于原生角闪石(姜常义等,1984)。

斜长石 An 牌号变化范围较大,为13~65,从 倍长石到中长石均有出现。斜长二辉橄榄岩中主要 为倍长石和拉长石, An 牌号 55~65, 平均为 60; 橄 榄二辉岩中为拉长石,An为64;角闪橄榄辉长岩中 主要为拉长石(An 牌号 51~66,除一件为中长石 (An牌号31),平均为59);辉长岩中主要为拉长石,

O	5
7	J

表 3 牛鼻子梁岩体中角闪石的电子探针分析数据

Table 3 Electron microprobe analyses of amphibole in Niubiziliang rock body

组分	角闪桐	敢榄岩	角闪辉石橄榄岩	斜长单辉橄榄岩	斜长二洲	浑橄榄岩	橄榄辉石	角闪石岩	角闪橄榄辉长岩		辉长岩	
组力	∐ 5-17-1	[5-17-6	[5-4-3	401-1-G6	401-1-G4	401-1-G2	∏ 6-7-2	∏ 6-7-3	∐ 4-1-3	∏ 5-16-1	∐ 6-10-2	
					u(B)	y %						
Na ₂ O	3.06	2.75	3.03	3.38	3.27	2.44	2.41	2.42	3.27	3.55	1.67	
FeO	6.79	7.55	7.28	8.04	7.61	7	7.26	7.28	7.25	7.24	8.86	
CaO	9.96	10.99	11.18	11.29	11.15	11.55	11.76	11.86	11.46	11.1	12.15	
SiO_2	43.41	43.46	42.69	41.8	41.84	42.84	43.63	43.67	42.38	41.81	44.35	
MnO	0.13	0.12	0.05	0.16	0.15	0.11	0.08	0.05	0.09	0.09	0.08	
TiO_2	0.86	1.16	4.59	5.2	5.15	4.73	1.39	2.52	5.07	4.99	2.57	
Al_2O_3	12.86	13.27	11.87	12.04	12.12	11.67	11.96	11.71	11.91	11.98	11.46	
Cr_2O_3	0.51	0.43	0.39	0.29	0.08	0.26	0.94	1.02	0.21	0.43	0.36	
K_2O	0.34	0.5	0.54	0.52	0.49	0.55	0.49	0.44	0.5	0.45	0.47	
MgO	17.57	16.55	15.5	14.91	15.5	16.12	16.71	16.31	15.64	15.44	15.05	
NiO	0.03	0.09	0.01	_	0.04	0.07	0.09	0.08	0.01	0.07	0.06	
P_2O_5	_	0.04	0.08	0.02	0.09	0.02	0.04	0.02	0.04	0.02	0.02	
总和	95.52	96.91	97.21	97.65	97.49	97.36	96.76	97.38	97.83	97.17	97.10	
				采用	O=23 计1	算的阳离子	数					
TSi	6.35	6.3	6.2	6.09	6.08	6.2	6.35	6.32	6.13	6.1	6.45	
TAl	1.65	1.7	1.8	1.91	1.92	1.8	1.65	1.68	1.87	1.9	1.55	
CAl	0.56	0.57	0.23	0.16	0.16	0.19	0.4	0.32	0.16	0.16	0.41	
CCr	0.06	0.05	0.04	0.03	0.01	0.03	0.11	0.12	0.02	0.05	0.04	
CTi	0.09	0.13	0.5	0.57	0.56	0.52	0.15	0.27	0.55	0.55	0.28	
CFe^{3^+}	0.01	0.04	0.05	0.01	0.06	0.03	0.05	0.03	0.03	0.03	0.03	
CMg	3.83	3.58	3.36	3.24	3.36	3.48	3.62	3.52	3.37	3.36	3.26	
CMn	0	0	0	0.02	0	0	0	0	0.02	0.01	0	
CFe^{2+}	0.45	0.64	0.82	0.96	0.84	0.76	0.66	0.74	0.86	0.86	0.98	
BFe^{2+}	0.37	0.24	0.01	0	0.02	0.06	0.17	0.11	0	0	0.07	
BMn	0.02	0.02	0.01	0	0.02	0.01	0.01	0.01	0	0	0.01	
BNa	0.05	0.04	0.24	0.24	0.23	0.13	0	0.05	0.22	0.26	0.02	
BCa	1.56	1.71	1.74	1.76	1.74	1.79	1.82	1.84	1.78	1.74	1.89	
ACa	0	0	0	0	0	0	0.01	0	0	0	0	
ANa	_	_	0.61	_	0.69	3.09	0.68	0.63	3.61	0.74	0.45	
AK	0.06	0.09	0.1	0.1	0.09	0.1	0.09	0.08	0.09	0.08	0.09	
Si∕(Si + Al + Ti)	0.73	0.72	0.71	0.7	0.7	0.71	0.74	0.74	0.7	0.7	0.74	
属性	钙镁 普通角	闪石 角闪石	钛角 闪石	钛角 闪石	钛角 闪石	钛角 闪石	韭闪普通 角闪石	韭闪普通 角闪石	钛角 闪石	钛角 闪石	韭闪普通 角闪石	

注:长安大学西部矿产资源与地质工程教育部重点实验室测定。

此外有少量的中长石(An 牌号 33~59,平均为50); 淡色辉长岩中主要为拉长石和中长石(An 牌号 32~ 58,平均为49)(表4)。

3 岩石化学及同位素年龄

3.1 分析方法

样品均采自牛鼻子梁超基性杂岩体中。锆石 LA-ICP-MS U-Pb 年龄分析在北京大学造山带与地 壳深化教育部重点实验室应用 Agilent 7500a 型四级 杆等离子体质谱仪测定。主要造岩矿物化学成分在 长安大学西部矿产资源与地质工程教育部重点实验 室采用 JXI-8100 型电子探针进行分析,加速电压 15 kV,束电流 1.0×10⁻⁸ A,束斑直径 1 μm。各类岩石 的主量元素分析在西北大学大陆动力学实验室采用 3080E 型 X-射线荧光光谱仪完成,XRF 熔片法按国 家标准 GB/T14506.28-1993;微量和稀土元素在长 安大学西部矿产资源与地质工程教育部重点实验室 采用美国 X7 型 ICP-MS 测定。

3.2 主量元素

牛鼻子梁岩体主量元素化学分析数据见表 5。 除英云闪长岩外,样品的 (a)(SiO₂)介于39.91%~

图 4	角闪石判别图(C区	:売源 ;№	1区:幔源)
-----	-----------	--------	--------

Fig. 4 Discriminant diagram for hornblende (C area : crustal-derived ; M area : mantle-derived)

				12 4	• 十异	」本白体							
			Table 4	Electro	n micro	probe ana	lyses of plag	gioclase in N	iubiziliang r	ock body	1		
组分	角闪橄榄	览辉长岩	斜长二制	军橄榄岩	斜长二	辉橄榄岩	橄榄二辉岩	暗色辉长岩	单辉橄榄岩	细粒光	军长岩	辉七	<u> そ</u> 岩
-11	∏ 4-1-2	∏ 4-1-5	401-1-G1	401-1-G1	401-1-G	6401-1-G6	∏ 4-7-5	∏ 6-11-1	401-1-G2	∏ 5-8-2	∐ 5-8-3	∏ 5-10-1	∐ 5-10-2
							τ ι(Β)	%					
Na ₂ O	4.16	8.15	4.1	3.98	4.72	5.33	4.28	8.05	10.2	7.85	4.75	5.38	5.25
FeO	0.05	0.03	0.05	0.09	0.23	0.08	-	0.07	0.11	0.03	0	0.05	0.04
CaO	13.6	6.75	13.1	13.25	12.1	11.76	13.5	6.58	2.93	7.01	12.26	11.37	11.68
SiO ₂	51.24	59.76	51.33	51.11	52.71	53.26	50.85	59.29	64.05	59.13	52.96	54.54	53.57
TiO ₂	0.06	0.01	0.05	0.05	0.06	0.05	_	_	0.07	-	0.05	-	-
Al_2O_3	30.72	25.08	30.55	30.11	29.76	29.01	30.43	24.71	21.86	24.92	29.82	28.84	29.13
K ₂ O	0.01	0.04	0.02	0.02	0.01	0.04	0.01	0.1	0.01	0.02	0.01	0.05	0.03
MgO	0.02	—	0.01	0.03	_	-	_	_	—	0.04	0.05	_	—
NiO	0.02	—	—	0.06	0	-	_	_	—	0.02	0.03	_	—
总和	99.88	99.82	99.21	98.70	99.59	99.53	99.07	98.80	99.23	99.02	99.93	100.23	99.70
						以8个	·氧为基准计	算的阳离子数	ξ				
Na	0.05	0.09	0.36	0.36	0.05	0.06	0.38	0.7	0.11	0.09	0.05	0.47	0.46
Fe	0	0	0	0	0	0	0	0	0	0	-	0	0
Ca	0.08	0.04	0.64	0.65	0.07	0.07	0.66	0.32	0.02	0.04	0.07	0.55	0.57
Si	0.29	0.33	2.35	2.35	0.3	0.3	2.33	2.67	0.36	0.33	0.3	2.46	2.43
Ti	0	_	0	0	0	0	0	0	0	-	0	0	0
Al	0.21	0.17	1.65	1.63	0.2	0.19	1.65	1.31	0.14	0.17	0.2	1.53	1.56
Κ	0	0	0	0	0	0	0	0.01	0	0	0	0	0
Mg	0	-	0	0	-	-	0	0	—	0	0	0	0
Ni	0	-	0	0	-	-	0	0	_	0	0	0	0
总和	0.63	0.63	5.01	5.01	0.63	0.63	5.03	5.02	0.63	0.63	0.63	5.01	5.02
							u (B)	%					
An	64.34	31.29	63.83	64.69	58.59	54.82	63.5	30.97	13.66	33.02	58.77	53.68	55.04
Ab	35.58	68.48	36.09	35.15	41.34	44.95	36.42	68.48	86.26	66.9	41.23	46	44.81
Or	0.08	0.23	0.08	0.16	0.08	0.23	0.08	0.54	0.08	0.08	0	0.31	0.16
种属	拉长石	中长石	拉长石	拉长石	拉长石	拉长石	拉长石	中长石	中长石	中长石	拉长石	拉长石	拉长石

表 4	牛鼻子梁岩体中斜长石的电子探针分析数据
Electron	microprobe analyses of plagioclase in Niubiziliang ro

测试者:长安大学西部矿产资源与地质工程教育部重点实验室。

图 5 Harker 图解 Fig. 5 Harker diagram

41.35% 属于镁铁质-超镁铁质岩类。与岩相学特 征相对应,氧化物含量都有较大的变化范围。橄榄 岩相、橄榄二辉岩、橄榄辉长岩和橄榄二辉角闪石岩 的 u(MgO)高, u(Al₂O₃)、u(CaO)和 u(Na₂O)较 低。辉长岩的与它们相反,这主要取决于岩石中斜 长石含量。u(TiO₂)几乎均小于1.0%。

在 Harker 图 解(如图 5)上, u(MgO)与 u(SiO₂)为明显的负相关,u(Fe₂O₃)与u(SiO₂)成 明显的负相关,而u(CaO)u(Na₂O)u(Al₂O₃)与 u(SiO₂)成正相关关系。

所有超基性岩类样品的 *m/f* 值(*m/f*=(Mg²⁺ +Ni²⁺)/(Fe²⁺+Fe³⁺+Mn²⁺))为 3.84~4.90,都 小于 6.5 而大于 2.5,属于铁质超基性岩类,有利于 形成铜镍硫化物矿床。

所有样品的 Mg[#]值(Mg[#] =(MgO/40)(MgO/

 $40 + 0.8998 \times TFe_2O_3/72$)为 0.56~0.83,变化范 围较大。橄榄岩相、辉石岩相、角闪石岩和橄榄辉长 岩的 Mg[#]值为 0.79~0.83,主要是由岩浆早期结晶 的矿物相聚集而成;有 2 件辉长岩的 Mg[#]值分别为 0.76(似斑状辉长岩)和 0.78,其余辉长岩样品 Mg[#] 值为 0.55~0.66,说明辉长岩主要是由演化的岩浆 形成。有一件具辉长结构的细粒辉长岩的 Mg[#]值 为 0.68 表明该岩石的化学成分偏离原生岩浆不远。 3.3 微量元素和稀土元素

牛鼻子梁岩体微量元素和稀土元素化学分析数 据见表 5。各类岩石的稀土元素总量 \sum REE = 17.3 ×10⁻⁶~ 83.77×10⁻⁶。各种岩石的(La/Yb)_N = 2.8~9.85 (La/Sm)_N = 1.65~3.92 (Gd/Yb)_N = 1.61~2.57。轻、重稀土元素之间及轻、重稀土元素 分馏均较强,配分曲线属轻稀土元素富集型(图

表 5 牛鼻子梁岩体各类岩石化学分析结果 Table 5 Element content of rocks in Niubiziliang rock body

4075	斜长二辉橄榄岩	角闪橄榄岩	角闪二辉橄榄岩	橄榄二辉岩	辉长岩	角闪橄榄辉长岩	石英闪长岩	英云闪长岩
组方	401-1-G1-4	401-1-G1-7	401-1-G4-4	<u>∏</u> 4-7	∏ 5-1	<u>[]</u> 5-6	[] 6-2	∏ 6-4
				u(B) /%				
SiO_2	40.04	41.35	40.2	40.69	49.97	39.91	62.48	70.95
${\rm TiO}_2$	0.55	0.77	0.47	0.42	0.81	0.44	0.66	0.18
Al_2O_3	6.19	8.01	5.44	6.52	17.31	5.83	16.34	14.55
$\mathrm{Fe_2O_3}$	13.64	11.91	11.62	13.18	8.4	12.64	4.91	1.78
MnO	0.16	0.13	0.17	0.16	0.13	0.14	0.09	0.05
MgO	28.93	24.15	31	27.85	8.21	29.88	3.18	1.44
CaO	3.38	4.97	3.02	3.92	9.49	3.12	4.24	2.57
Na ₂ O	0.75	0.69	0.81	0.89	2.95	0.43	4.59	5.34
K_2O	0.26	0.33	0.26	0.26	0.4	0.27	0.92	1.16
P_2O_5	0.11	0.16	0.09	0.06	0.11	0.07	0.16	0.05
LOI	5.59	7.06	6.46	5.82	2.21	6.88	2.39	1.47
总和	99.60	99.53	99.54	99.77	99.99	99.61	99.96	99.54
Mg [♯] *	0.81	0.8	0.82	0.81	0.66	0.83	0.56	0.62
m/f^*	4.24	4.06	4.55	4.23	1.95	4.73	1.3	1.62
				u (B) /10 ⁻⁶)			
Р	480.28	698.59	392.96	261.97	480.28	305.63	698.59	218.31
Ti	3300	4620	2820	2520	48600	2640	3960	1080
Li	4.59	2.99	5.03	8	9.42	3.53	4.08	0.2
Be	0.28	0.4	0.32	0.27	0.66	0.28	1.07	1.8
Sc	17.46	20.37	16.02	16.07	25.95	18.35	14.89	11.37
V	71.46	86.23	67.22	71.51	127.7	60.95	75.42	14.95
Cr	1894	1365	2187	1826	370.6	1399	79.53	42.86
Co	130.7	105.7	137	126.8	43.71	130.9	19.51	8.8
Ni	395.4	304.2	361	354.2	43.78	513.6	26.59	15.15
Cu	229.8	70.08	160.5	127.1	48.63	95.54	31.83	13.45
Zn	83.89	75.78	80.84	79.95	61.2	79.33	63.18	20.41
Ga	6.67	8.35	6.19	6.54	14.36	5.95	15.88	11.5
Rb	10.13	14.24	9.3	8.08	13.02	8.3	19.98	33.89
Sr	141.8	206.6	113.3	115.9	337	107.1	411.5	346.5
Υ	5.1	9.34	6.14	5.76	13.68	5.85	11.68	11.16
Zr	38.95	50.29	42.44	33.73	81.23	37.95	177.8	147.9
Nb	5.48	5.26	1.99	1.45	3.21	1.36	3.93	5.72
Cd	0.14	0.15	0.15	0.14	0.2	0.19	0.28	0.21
In	0.03	0.03	0.02	0.02	0.04	0.02	0.03	0.02
Ba	49.66	35.56	32.42	29.83	78.02	27.77	205.3	348.5
La	5.7	6.92	.03	2.36	5.95	2.3	8.56	15.87
Ce	11.77	15.24	7.04	5.57	13.93	5.41	23.51	38, 19
Pr	1 41	1.96	0.95	0.77	1.87	0.76	2 61	3 75
Nd	5.99	8 69	4 33	3.6	8 49	3 54	11 46	14 63
Sm	1.22	1.97	1.03	0.92	2 11	0.92	2 52	2 61
Fu	0.46	0.74	0.37	0.37	0.87	0.35	0.81	0.52
Cd	1 30	2.24	1.25	1 14	2.65	1.15	0.01	0.52
Сu Th	0.10	0.22	0.18	0.17	2.05	1.15	0.29	0.35
1 D	1.07	1 99	0.10	0.1/	0.42	0.10	0.00	1.01
Dy ц	1.07	1.08	1.24	1.1	2.00	0.22	2.21	1.91
П0 Г	0.21	1.04	0.25	0.22	0.55	0.22	0.45	1.00
Er	0.56	1.04	0.69	0.64	1.54	0.62	1.28	1.22
1m	0.07	0.14	0.1	0.09	0.22	0.1	0.18	0.18
Yb	0.45	0.86	0.55	0.56	1.36	0.59	1.03	1.16

续表 5

							ŭ	Julit. Table 3
细公	斜长二辉橄榄岩	角闪橄榄岩	角闪二辉橄榄岩	橄榄二辉岩	辉长岩	角闪橄榄辉长岩	石英闪长岩	英云闪长岩
组刀	401-1-G1-4	401-1-G1-7	401-1-G4-4	∏ 4-7	∏ 5-1	II 5-6	<u>∏</u> 6-2	∏ 6-4
Lu	0.07	0.13	0.1	0.09	0.22	0.1	0.17	0.22
Hf	0.87	1.13	0.87	0.73	1.88	0.76	3.75	3.97
Та	0.32	0.3	0.14	0.1	0.23	0.09	0.34	0.81
Pb	2.68	2.54	1.52	2.93	3.65	1.55	9.7	15.35
Bi	0.1	0.06	0.06	0.1	0.12	0.27	0.07	0.05
Th	0.81	1	0.5	0.34	1.46	0.42	2.96	12.85
U	0.21	0.29	0.14	0.13	0.34	0.13	0.95	1.3
ΣREE	30.56	42.5	21.09	17.61	42.81	17.3	57.93	83.77
δEu*	1.07	1.08	1	1.1	1.13	1.05	0.94	0.59
(La/Sm) _N *	3.01	2.27	1.89	1.65	1.82	1.61	2.19	3.92
(La/Yb) _N *	9.17	5.8	3.95	3	3.14	2.8	5.98	9.85
$(Gd/Yh)^*$	2 57	2 16	1 88	1 67	1 61	1 61	2 23	1 98

注:主量元素由西北大学大陆动力学国家重点实验室测定/微量和稀土元素由长安大学西部矿产资源与地质工程教育部重点实验室测定。 * 单位为 1。

6)。所有样品的 δEu = 0.59~1.13 ,未显示铕异常 或铕异常不明显(赵子然等 ,2011)。

在原始地幔标准化的微量元素蛛网图(图7)中, 橄榄岩相、角闪橄榄二辉岩和橄榄辉长岩具有明显 的 Nb、Ta 负异常,而无 Ti 异常,角闪石岩、辉长岩相 具有明显的 Nb、Ta 负异常和弱 P、Ti 负异常。石英 闪长岩和英云闪长岩具有明显的 Nb、Ta、P、Ti 负异 常。此外,大部分样品都显示了 Ba 的负异常。

3.4 同位素年龄

本次工作所选锆石取自岩体中的辉长岩,锆石 阴极发光图像清晰(图8),振荡环带清晰,均属岩浆 成因锆石。测试结果显示,加权平均年龄和谐和年 龄值均在(361.5±1.2)Ma左右(图9表6)。二辉橄 榄岩的 Sm-Nd等时线样品经国土资源部天津地质矿 产研究所测试,等时线年龄为(347±26)Ma,两者年龄 较接近,因此将其时代归属为晚泥盆世比较合适。

4 讨 论

4.1 分离结晶作用

牛鼻子梁岩体岩石类型,分异较好,相带清楚, 表明分离结晶作用在岩浆演化过程中起了十分重要 的作用。在 Harker 图解(见图 5)中,u(MgO), $u(FeO),u(MnO)与u(SiO_2)呈负相关性,说明有$ $橄榄石的分离结晶作用;<math>u(Na_2O),u(K_2O)$ 与 $u(SiO_2)呈正相关性,从超基性岩到基性岩,$ α(Al₂O₃) α(CaO)随α(SiO₂)的升高而升高,说明 了岩浆中发生了斜长石分离结晶/堆晶作用;从基性 岩到中酸性岩,α(Al₂O₃) α(CaO)随α(SiO₂)升高 而降低,说明岩浆中的长石逐渐由基性斜长石演化 到酸性斜长石,与英云闪长岩中主要为中长石和更 长石这一事实是相吻合的。另外,样品 [[6-8 除了中 长石和更长石外还有少量的拉长石,这应该是造成 该样品正铕异常的原因。综上所述,岩浆主要发生 了橄榄石和斜长石的分离结晶/堆晶作用。

4.2 岩浆来源及岩浆性质

研究表明,岩浆岩中的钙质角闪石的化学成分 与岩浆来源之间有密切的关系。姜常义等(1984) 指出,随着温度和压力的增高,钙质角闪石的 Si 含 量有规律地降低,角闪石的 Si/(Si+Ti+A1)值,在 壳源区和幔源区之间出现间断,壳源角闪石的 Si/ (Si+Ti+A1)值不低于0.775,而幔源角闪石则不大 于0.765。牛鼻子梁岩体中大多数角闪石样品的 亚(Al₂O₃)均大于10% Si/(Si+Ti+Al)<0.775,应 属幔源角闪石。在角闪石的判别图(见图 4)中均位 于幔源区,表明岩浆应来源于上地幔。

在 SiO₂-Na₂O+K₂O 图中,所有样品均位于亚碱 性区域及边缘(图 10a);在 AFM 图解中,部分样品 位于拉斑玄武岩系列,部分位于钙碱性系列区(图 10b)。根据 FeO/MgO 与 SiO₂ 及 Fe₂O₃/MgO 与 Fe₂O₃ 图解(图 11),大部分超镁铁质岩石样品位于 拉斑玄武岩系列及拉斑玄武岩与钙碱性系列的过渡

图 6 球粒陨石标准化的稀土元素配分曲线图(标准化值据 Sun et al., 1989) Fig. 6 Chondrite-normalized REE patterns(after Sun et al., 1989)

带,而镁铁质岩石样品均投影于钙碱性系列区,属跨 越型趋势。综上所述,牛鼻子梁岩体的母岩浆应属 于拉斑玄武岩浆(龙晓平等,2004)。

5 结论及建议

综合以上研究牛鼻子梁基性-超基性岩体具有 以下特征:

(1)从岩体产出的背景来看,牛鼻子梁岩体产出的地质背景为柴达木古陆块边缘,即大陆边缘环境。

(2) 锆石 U-Pb 和 Sm-Nd 等时线年龄分别为 (361.5±1.2) Ma 和(347±26),岩体形成于泥盆纪 晚期。

(3)岩浆分异充分,岩石类型丰富,岩浆演化过程中主要发生了橄榄石和斜长石的分离结晶/堆晶 作用。

(4) 岩体的母岩浆应属于拉斑玄武岩质岩浆。

牛鼻子梁基性-超基性杂岩体为含矿岩体,有很 好的找矿前景。针对勘查工作存在的薄弱环节提出 以下建议:

图 7 原始地幔标准化的多元素蛛网图(据 Sun et al., 1989) Fig. 7 Primitive mantle normalized multi-element spider diagram (after Sun et al., 1989)

图 8 辉长岩中锆石图像特征 Fig. 8 Graphical features of zircon from gabbro

图 9 牛鼻梁子岩体锆石 U-Pb 年龄谐和图 Fig. 9 Zircon U-Pb concordia diagram of Niubiziliang rock body

表 6 牛鼻子梁岩体锆石 U-Pb 年龄同位素参数特征表 Table 6 Parameter characteristics of U-Pb isotopes of zircon from Niubiziliang rock body

样号	re	u(B)10 ⁻⁶		²⁰⁷ Pb/ ²⁰⁶ Pb		²⁰⁷ Pb	²⁰⁷ Pb/ ²³⁵ U		²⁰⁶ Pb/ ²³⁸ U		²⁰⁶ Pb ⁄Ma	²⁰⁷ Pb / ²³⁵ U 年龄/ Ma		²⁰⁶ Pb / ²³⁸ U 年龄/Ma	
	Pb	²³² Th	²³⁸ U	比值	1σ	比值	1σ	比值	1σ	比值	1σ	比值	1σ	比值	1σ
08PJD8-1	26.2	36.2	48.1	0.0566	0.0005	0.4503	0.0051	0.0580	0.0005	472.3	20.4	377.5	3.5	363.5	3.3
08PJD8-3	25.9	44.5	52.1	0.0551	0.0006	0.4355	0.0051	0.0573	0.0003	416.7	25.9	367.1	3.6	359.4	1.9
08PJD8-4	195.0	316.7	177.3	0.0549	0.0003	0.4375	0.0031	0.0578	0.0003	409.3	13.0	368.5	2.2	362.3	1.7
08PJD8-6	42.5	44.1	60.5	0.0550	0.0005	0.4368	0.0044	0.0577	0.0003	409.3	20.4	368.0	3.1	361.5	1.9
08PJD8-7	84.8	137.6	145.9	0.0537	0.0003	0.4292	0.0036	0.0579	0.0004	361.2	13.0	362.6	2.5	363.0	2.2
08PJD8-8	135.9	206.4	180.3	0.0545	0.0003	0.4312	0.0039	0.0574	0.0004	390.8	8.3	364.1	2.8	359.7	2.6
08PJD8-9	25.7	20.2	42.2	0.0544	0.0006	0.4331	0.0049	0.0578	0.0004	387.1	22.2	365.4	3.5	362.5	2.4
08PJD8-10	5.5	20.0	28.0	0.0531	0.0010	0.4189	0.0080	0.0573	0.0005	331.5	44.4	355.3	5.7	359.4	2.9
08PJD8-11	125.4	220.3	169.9	0.0559	0.0004	0.4418	0.0043	0.0573	0.0004	450.0	16.7	371.5	3.0	359.2	2.3
08PJD8-12	27.3	34.3	52.9	0.0549	0.0005	0.4369	0.0051	0.0578	0.0005	405.6	23.1	368.0	3.6	362.0	2.9
08PJD8-13	51.6	50.2	75.7	0.0543	0.0005	0.4321	0.0044	0.0577	0.0003	383.4	50.9	364.7	3.1	361.7	2.0
08PJD8-14	47.0	72.0	85.6	0.0590	0.0004	0.4707	0.0050	0.0579	0.0004	568.6	16.7	391.6	3.4	362.7	2.6
08PJD8-15	46.2	89.9	94.0	0.0552	0.0011	0.4338	0.0079	0.0571	0.0005	420.4	44.4	365.9	5.6	357.8	3.1
08PJD8-17	22.0	33.4	65.7	0.0548	0.0005	0.4378	0.0049	0.0580	0.0004	405.6	25.0	368.7	3.4	363.3	2.6
08PJD8-18	13.9	15.7	27.5	0.0531	0.0008	0.4221	0.0069	0.0577	0.0005	344.5	35.2	357.5	4.9	361.6	2.9
08PJD8-19	43.0	59.4	77.2	0.0545	0.0004	0.4349	0.0050	0.0578	0.0005	394.5	18.5	366.7	3.5	362.5	3.0
08PJD8-20	300.9	505.5	339.0	0.0562	0.0002	0.4503	0.0038	0.0581	0.0005	461.2	12.0	377.5	2.7	364.2	2.8

图 11 $u(\text{FeO}^*)u(\text{MgO}) = u(\text{SiO}_2) a$ $\mathcal{W} u(\text{Fe}_2O_3)u(\text{MgO}) = u(\text{Fe}_2O_3) b$ 图解 Fig. 11 $u(\text{FeO}^*)u(\text{MgO})vs. u(\text{SiO}_2)(a) and u(\text{Fe}_2O_3)u(\text{MgO})vs. u(\text{Fe}_2O_3)(b) diagrams$

(1)熟悉本区从橄榄岩至辉长岩的多种岩石类型,根据堆晶层理,划分岩体地表及钻孔中纵向的韵 律层,填制出本区基性-超基性杂岩体岩相分带图;

(2)在研究该区岩相分带的基础上,判断岩体的产状、侧伏方向、含矿岩性;

(3)在了解岩体产状的基础上,布置钻探工程 对岩体底部进行圈边,在岩体底部相应的含矿岩性 带内寻找硫化物型铜镍矿体。

参考文献/References

- 龙晓平,王立社,余 能. 2004. 东昆仑山清水泉镁铁质-超镁铁质岩 的地球化学特征[J]. 地质通报,7 :664-669.
- 姜常义,安三元.1984.论火成岩中钙质角闪石的化学成分及其岩石 学意义[J].矿物岩石 A(3):1-9.
- 青海省地矿局区测队. 1986. 1:20 万俄博梁幅区域地质调查报告 [R]. 西宁:青海省地矿局.
- 申大利 赵双喜 ,等. 2011. 阿尔金地区牛鼻子梁铜镍矿特征及其发

现意义[J]. 价值工程 9:41-43.

- 王永刚 赵双喜 等. 2011. 柴达木盆地牛鼻子梁地区镁铁质-超镁铁质岩 型镍铜矿成矿条件研究报告 R] 西宁 清海省核工业地质局.
- 王永刚,申大利,等.2010.青海省茫崖行委牛鼻子梁铜镍矿普查、青 海省茫崖牛鼻子梁铜镍矿调查评价2009-2010年工作总结[R]. 西宁:青海省核工业地质局.
- 徐 刚 汤中立,王亚磊,闫海卿,焦建刚. 2012. 甘肃北山黑山岩浆 铜镍硫化物矿床橄榄石特征及成因意义[J]. 矿床地质,31(5): 1075-1086.
- 张师祥,王永刚,等. 2011. 青海省牛鼻子梁地区铜镍矿床的地质特 征及找矿前景分析 J] 价值工程,12 54-56.
- 赵双喜,王永刚,等.2012. 柴达木盆地西北缘牛鼻子梁铜镍矿矿床 特征及其发现意义[J]. 西北地质,181 202-210.
- 赵子然 宋会侠 沈其韩 宋 彪. 2011. 沂水杂岩中超镁铁质岩的岩 石地球化学特征 J]. 岩石矿物学杂志 5 853-864.
- Sun S S and Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts : Implications for mantle complosition and processes [A]. In : Saundern A D , Norry M J , ed. Magmatism in the ocean basing C]. Geo. Soc. Spec.