文章编号: 0258-7106 (2023) 01-0066-11

Doi: 10. 16111/j. 0258-7106. 2023. 01. 005

赣南雷公嶂钼矿床辉钼矿 Re-Os 年龄及其地质意义*

赵云彪1,黄 凡1**,迟 雷2,3,王 岩1,童日发4

(1中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室,北京 100037;2内蒙古大学 物理科学与技术学院,内蒙古 呼和浩特 010021;3中国地质大学(北京),北京 100083;
4 江西省核工业地质局二六四大队,江西 赣州 341000)

摘 要 雷公嶂钼矿床是赣南地区新发现的一座具中型钼矿找矿前景的独立钼矿床,成矿特征明显区别于赣 南已发现的与钨多金属共(伴)生的钼矿床。为确定矿床成矿时代,文章利用高精度 ICP-MS 辉钼矿 Re-Os 同位素 测年技术,首次获得了雷公嶂钼矿床的辉钼矿 Re-Os 同位素加权平均模式年龄,为(156.3±1.0)Ma,等时线年龄为 (156.9±3.6)Ma,证实了矿床成岩与成矿作用同时发生,形成于南岭地区燕山早期中晚侏罗世(165~150 Ma)。矿床 中辉钼矿的 w(Re)为 6.104×10⁻⁶~13.974×10⁻⁶,平均为 8.507×10⁻⁶,结合矿床地质特征和成矿岩体主量元素及 Hf 同 位素等证据,文章认为成矿物质来自地壳,没有地幔物质加入。结合赣南地区成岩与成矿年代学资料,文章认为区 内钨钼多金属矿床形成于华南中生代岩石圈大规模伸展-减薄的地球动力学背景。

关键词 地球化学;钼矿床;Re-Os 同位素;成矿年龄;雷公嶂;赣南
中图分类号:P618.65
文献标志码:A

Re-Os dating of molybdenites from Leigongzhang molybdenum deposit of southern Jiangxi Province and its geological significance

ZHAO YunBiao¹, HUANG Fan¹, CHI Lei^{2,3}, WANG Yan¹ and TONG RiFa⁴

(1 MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing 100037, China;
2 School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China;
3 China University of Geosciences, Beijing 100083, China;
4 Geologic Party No. 264, Jiangxi Nuclear Industrial Geological Bureau, Ganzhou 341000, Jiangxi, China)

Abstract

The Leigongzhang molybdenum deposit is a newly discovered independent molybdenum deposit in the southern part of Jiangxi Province, with a medium-sized molybdenum resources. Its metallogenic characteristics are clearly distinct from those of molybdenum deposits associated with tungsten that have been found in the region. In order to determine the metallogenic age of the deposit, the Re-Os isotope analysis of molybdenite in the ore-body was performed by inductively coupled plasma mass spectrometry (ICP-MS), and the Re-Os isotope weighted average model age was (156.3 ± 1.0) Ma, and the isochron age was (156.9 ± 3.6) Ma, confirming that the diagenesis and mineralization of the deposit occurred simultaneously during middle-late Jurassic of the early Yanshan period (165~150 Ma). The Re content of molybdenite in the deposit is $6.104 \times 10^{-6} \sim 13.974 \times 10^{-6}$, with an average of 8.507×10^{-6} . Combining the geological characteristics of the deposit and the evidence of the major ele-

^{*} 本文得到国家自然科学基金(编号:42172097、41402069)、中国地质调查局中国矿产地质志项目(编号:DD20221695)和中央级公益 性科研院所基本科研业务费项目(编号:JYYWF20183701、JYYWF20183704、K1305)共同资助

第一作者简介 赵云彪, 男, 1998年生, 硕士研究生, 矿物学、岩石学、矿床学专业。 Email:zybglut@163.com

^{**} 通讯作者 黄凡,男,1983年生,研究员,硕士生导师,主要从事区域成矿规律与成矿预测研究。Email: hfhymn@163.com 收稿日期 2021-04-29;改回日期 2022-11-17。赵海杰编辑。

ments and Hf isotope of the ore-forming granite, this paper concludes that the ore-forming material was come from the crust without the mantle material. Combining with the regional diagenetic and diagenetic data, this paper suggests that the regional tungsten-molybdenum deposits were formed in the geodynamic setting of lithospheric thinning and crustal extension in South China during the Mesozoic.

Key words: geochemistry, molybdenum deposit, Re-Os isotope, metallogenic age, Leigongzhang, southern Jiangxi Province

赣南地区素有"世界钨都"之称(王登红等, 2007),钨多金属矿床主要分布于崇义-大余-上犹、兴 国-宁都、赣县-于都等矿集区内(图 1a)。随着找矿 勘查的深入,在赣南兴国-宁都矿集区内陆续发现了 画眉坳钨矿床、岩前钨矿床、张家地钼钨矿床和见龙 铜钨矿床等一批矿床,但独立钼矿床鲜有报道。雷 公嶂钼矿床位于江西省兴国县境内,是近年来在赣 南地区发现的一座具有中型钼矿找矿潜力的独立钼 矿床,矿化特征明显区别于赣南地区与钨多金属共 (伴)生的钼矿床(童日发等,2012)。前人对该矿床 的研究主要集中于矿床地质特征,并未对其成矿年 龄做出厘定。因此,本文采用高精度 ICP-MS 辉钼矿 Re-Os 同位素测年技术对雷公嶂钼矿床进行同位素 年代学研究,并对其成矿物质来源和动力学背景进 行探讨,以期为矿床及区域成矿规律研究提供可靠 的年代学资料。

1 区域和矿床地质概况

1.1 区域地质概况

大地构造位置上, 雷公嶂矿区位于华夏板块中 部, 南岭 EW 向构造岩浆带与 NNE 向武夷构造带的 交汇部位(杨瑞栋等, 2013)。区内出露地层有震旦 系、寒武系、泥盆系、石炭系、白垩系和第四系(图 1b)。其中震旦系、寒武系分布面积广泛, 岩性为一 套以变质砂岩、板岩和千枚岩为主的浅变质岩, 为 该区基底地层; 泥盆系、石炭系岩性为一套以碎屑 岩、碳酸盐岩为主的海相碎屑沉积岩, 为该区盖层; 白垩系分布在兴国断陷盆地内, 为一套砖红色湖盆 相沉积; 泥盆系、石炭系和白垩系与下伏寒武系呈 角度不整合接触(童日发等, 2012; 杨瑞栋等, 2013)。

区内构造以断裂和褶皱为主。受多期构造作用 影响,NNE向遂川-乐安断裂、大余-南城断裂,EW向 遂川-石城深大断裂在矿区交汇,构成了以NNE向断 裂为主,NW、EW、NE向断裂相继发育的构造格局 (舒良树等,2008)。自早古生代以来,特别是在中 生代,江口-社富-兴国断裂与万安断裂长期活动, 与EW向遂川-石城大断裂相互作用,加上NW向应 力,形成了长岗NW向断裂与茶园向斜,其南翼断 层附近岩层强烈扭曲,断裂面呈麻花状(杨瑞栋等, 2013)。

区内加里东期、印支期和燕山期均有岩浆活动, 以燕山期最为强烈,与区内钨多金属成矿关系也最 为密切。区内岩浆岩分布广泛,出露岩体有加里东 期鹅婆岩体(郭娜欣等,2014);印支期蔡江岩体(田 泽瑾等,2014)、清溪岩体(于扬等,2012);燕山早期 永丰岩体(杨世文等,2019)、东固岩体(舒徐洁等, 2018)、良村岩体(王歲平等,2014)、黄陂岩体(刘汉 彬等,2014),岩体多呈岩基状;燕山晚期岩浆岩出露 较少,多呈岩株状。

1.2 矿床地质概况

矿区内出露地层仅见寒武系中统高滩群(€2gt) 及少量第四系(图2a)。高滩群岩性为含云母石英砂 岩,局部为千枚岩、变余砂岩等浅变质岩。地层倾向 多在40°左右,倾角为35°~75°,局部因层间揉皱而 出现地层倒转现象(童日发等,2012)。第四系主要 分布于低洼处,由砾石、砂、黏土等组成。

矿区位于均村复式背斜北东翼,矿区内断裂和 裂隙发育,控制着矿体的展布。断裂构造有NW和 NNW向2组,均具有多期活动的特点。其中,NW向 断裂为导矿构造,分布于雷公嶂南东至均村一带,分 别为 F₁、F₂;NNW向断裂位于雷公嶂东部,分别为 F₃、F₄(图 2a)。矿区裂隙有 NWW、EW、SN、NE向4 组,其中NWW向裂隙为主要的容矿构造,由若干平 行滑动面密集延布的裂隙束组成,裂隙密集程度一 般为1~8条/m,含辉钼矿的钾长石-石英细脉充填其 中,单条裂隙中钾长石-石英脉宽多在0.01~0.1 m之 间,个别可达0.6 m(童日发等,2012)。

矿区内未见岩浆岩出露,已有工程也未揭露深 部岩体。距矿区仅7km处为永丰复式岩体,已有 资料显示其与矿床存在密切的时空和成因联系(童

图1 赣南钨多金属矿集区及矿床分布图(a,据丰成友等,2015修改)和雷公嶂钼矿床区域地质简图(b,据童日发等,2012 修改)

Fig.1 Tungsten polymetallic deposit concentration area (a, modified after Feng et al., 2015) and deposit distribution map in South Jiangxi (b, modified after Tong et al., 2012)

日发等,2012)。永丰复式岩体由永丰岩体和隆市岩体组成,其中隆市岩体侵入到永丰岩体中,两者岩性均为黑云母二长花岗岩,仅矿物粒径和斑晶含量有所差异(杨世文等,2019)。矿区围岩蚀变发育,与钼矿化有关的蚀变主要有钾长石化、黄铁矿化、云英岩化、硅化、绢云母化和绿泥石化(童日发等,2012)。

雷公嶂钼矿床以热液充填成矿为主,矿化类型 为钾长石-石英细脉型,矿体赋存在震旦系-寒武系浅 变质岩裂隙中,已查明4条近平行排列的钼矿体(图 2a),矿体特征见表1。矿体整体走向为NWW向,倾 向为NNE(图 2b),倾角 65°~80°,矿体出露标高在 350~450 m之间(童日发等,2012)。已探明钼金属量 4574 t,钼平均品位 0.12%,伴生硫平均品位 1.46%, 钼资源远景规模达中型以上(童日发等,2012)。矿 石矿物主要为辉钼矿、黄铁矿,次为黄铜矿、辉铋矿、 磁黄铁矿、闪锌矿;脉石矿物主要为钾长石、石英、黑 云母。辉钼矿产出形式有 3种:一是呈片状、团块状、 浸染状产于石英脉或钾长石-石细脉中(图 3a、b);二 是呈集合体状充填于裂隙中而成脉状,但厚度小(仅 1~3 mm)且延伸短(2~3 m),单条细脉不能构成工业 矿体,但常成群成带出现;三是呈浸染状赋存于钾长 石-石英细脉旁侧的围岩中(杨瑞栋等,2013)。

2 实验方法及测试结果

2.1 样品采集和测试方法

用于辉钼矿 Re-Os 同位素测试的样品采自雷公 嶂钼矿床钻孔 ZK705 和5号坑口矿石堆,共5件样 品,均为含辉钼矿矿石。

将所选样品进行破碎,在双目镜下分选辉钼矿 单矿物,确保所选辉钼矿单矿物纯度在98%以上,将 挑选出的辉钼矿单矿物水洗干净,晾干并用玛瑙研 钵反复研磨至200目,以避免大颗粒辉钼矿中Re和 Os失耦而引起测年误差(Selby et al., 2004)。Re-Os 同位素测试在国家地质实验测试中心Re-Os同位素 实验室完成,采用美国TJA公司生产的电感耦合等

图2 雷公嶂钼矿床地质简图(a)和雷公嶂钼矿床A-A'勘探线剖面图(b,据童日发等,2012修改)

Fig.2 Geological map of the Leigongzhang molybdenum deposit (a) and section of A-A' exploration line of Leigongzhang molybdenum deposit (b, modified after Tong et al., 2012)

Table 1 Characteristics of Leigongzhang molybdenum ore body (after Tong et al., 2012)								
矿体编号	矿体长度/m	矿体厚度/m	矿体产状	矿体形态				
Ι	320	30~60	走向288°~295°,NE∠68°~78°	透镜状				
Ш	600~700	40~70	走向287°~295°,NE∠70°~80	透镜状				
Ш	400~450	30~50	走向287°~295°,NE∠70°~80°	透镜状				
IV	250	20~60	走向280°~285°,NE∠70°~75°	透镜状				

表1 雷公嶂钼矿体特征(据童日发等,2012)

离子体质谱仪 TJA X-series ICP-MS 测定同位素比值,化学处理过程及测试过程详见参考文献(杜安道等,1994;2001;Du et al., 2004)。

2.2 测试结果

雷公嶂钼矿床5件矿石样品中辉钼矿Re-Os同 位素测试结果见表2。除样品LGZ-12外,4件样品 的辉钼矿中普通Os含量低,且¹⁸⁷Re和¹⁸⁷Os含量变 化范围小。5件辉钼矿的Re-Os同位素模式年龄趋 于一致,介于(155.2±2.2)~(157.0±2.4)Ma,加权平均 年龄为(156.3±1.0)Ma(MSWD=0.38)(图4a),5个数 据点构成一条很好的¹⁸⁷Re-¹⁸⁷Os等时线,其等时线年 龄为(156.9±3.6)Ma(MSWD=0.93)(图4b),二者在 误差范围内一致,且普通Os含量接近于0,表明分析 结果可靠,可以代表雷公嶂钼矿床的成矿年龄。

3 讨 论

3.1 成岩成矿时代

兴国-宁都矿集区是赣南一大型钨多金属矿集区,前人对区内矿床开展了详细的年代学研究,获得了大量的年代学数据(表3)。如见龙铜钨矿床辉钼矿 Re-Os等时线年龄为(155.9±1.2)Ma,成矿岩体锆

图 3 雷公嶂钼矿典型矿石照片 a. 石英-辉钼矿脉;b. 石英-钾长石-辉钼矿脉 Qtz—石英;Kp—钾长石;Mot—辉钼矿;Py—黄铁矿 Fig.3 Typical photos of the Leigongzhang molybdenum deposit a. Quartz-molybdenite vein; b. Quartz-K-feldspar-molybdenite vein Qtz—Quartz; Kp—Potassium feldspar; Mo—Molybdenite; Py—Pyrite

	表 2	雷公嶂钼矿床辉钼矿Re-Os同位素测试结果	
Table 2	Re-Os isotopic	lata of molybdenites from the Leigongzhang molybdenum depos	il

样号 -	w(Re)/(ng/g)		w(普Os)/(ng/g)		w(¹⁸⁷ Re) /(ng/g)		w(¹⁸⁷ Os) /(ng/g)		模式年龄/Ma	
	测量值	不确定度	测量值	不确定度	测量值	不确定度	测量值	不确定度	测量值	不确定度
LGZ-8	6104	52	0.0008	0.0184	3837	33	10.05	0.07	157.0	2.4
LGZ-9	6506	51	0.0400	0.0106	4089	32	10.59	0.07	155.2	2.2
LGZ-10	8585	81	0.0004	0.0154	5396	51	14.11	0.09	156.7	2.4
LGZ-12	13974	163	0.7592	0.0262	8783	103	22.93	0.15	156.5	2.6
LGZ-14	7367	66	0.0633	0.0102	4630	41	12.07	0.09	156.3	2.4

石 U-Pb年龄为(154.2±1.7)Ma(杨斌等,2021);画眉 均钨矿床辉钼矿 Re-Os等时线年龄为(158.5±3.3)Ma, 成矿岩体锆石 U-Pb年龄为(159.9±1.2)Ma(Feng et al., 2015);岩前钨矿床辉钼矿 Re-Os等时线年龄为 (159.2±2.3)Ma,成矿岩体锆石 U-Pb年龄为(160.6± 0.7)Ma(赵正等,2013);张家地钨钼矿床辉钼矿 Re-Os 等时线年龄为(157.9±1.6)Ma,成矿岩体锆石 U-Pb年 龄为(158.4±3.1)Ma和(161.9±3.2)Ma(丰成友等, 2015)。综上所述,区内钨多金属矿床成岩时间为 161~154 Ma,成矿时间为160~155 Ma,两者在误差范 围基本一致。

本文获得雷公嶂钼矿床 Re-Os 等时线年龄为 (156.9±3.6)Ma,与前人报道的永丰复式岩体的年龄 (154~157 Ma)在误差范围内基本一致(杨世文等, 2019)。结合区域内多个矿床年代学数据,可以推断 雷公嶂钼矿床乃至兴国-宁都矿集区钨多金属成岩 成矿作用集中发生于燕山早期中晚侏罗世(165~ 150 Ma),成岩和成矿存在显著的时空和成因联系。

3.2 成岩成矿时差

前人在南岭地区中生代成岩与成矿时差问题上存在争议。华仁民(2005a)认为南岭地区燕山中期第一阶段(170~150 Ma)花岗岩大多在第二阶段(150~139 Ma)或更晚成矿,成岩与成矿作用存在明显的时间差。谭俊等(2007)则认为成岩与成矿时间相差不大。本文基于最新报道的年代学数据,补充更新华仁民(2005a)中使用的年代学数据。西华

山钨矿床成矿岩体锆石 U-Pb 年龄为(155.7±2.2) Ma, 辉钼矿 Re-Os 等时线年龄为(157.0±2.5) Ma (Wang et al., 2011);大吉山钨矿床成矿岩体的云母K-Ar年龄为(160.3±3.0)Ma(蒋国豪等,2004),辉钼矿 Re-Os等时线年龄为(161.0±1.3)Ma(张思明等, 2011);芙蓉锡矿白腊水矿区成矿岩体(骑田岭岩体) 年龄为(151~162 Ma)(毛景文等,2004),矿石中金云 母40Ar/39Ar年龄为(150~158 Ma)(彭建堂等,2007); 烂头山锡矿床成矿岩体(姑婆山岩体)锆石U-Pb年龄 为(161~167 Ma)(华仁民, 2005 a), 含钨石英脉中的白 云母40Ar/39Ar年龄为(162.0±1.9)Ma(康志强等, 2012)。综上所述,南岭地区中生代成岩与成矿作用 在误差范围内基本一致,两者相差一般不会超过10 Ma。本次获得的雷公嶂钼矿床成矿年龄为(156.9± 3.6)Ma,在误差范围内与成矿岩体(永丰复式岩体)年 龄(154~157 Ma)一致,也支持了后一种观点。

3.3 成矿物质来源

Re-Os同位素体系不仅可以确定成矿年龄,还 常被用来示踪成矿物质来源。Mao等(1999)提出 辉钼矿中w(Re)从壳源(n×10⁻⁶)、壳幔混源(n×10⁻⁵) 到幔源(n×10⁻⁴)依次递增。本文所测得的雷公嶂 钼矿床5件矿石样品中辉钼矿w(Re)为6.104×10⁻⁶~ 13.974×10⁻⁶,平均为8.507×10⁻⁶,指示成矿物质为地 壳来源。地幔物质部分熔融形成的岩石具有高 MgO含量和Mg[#]的特征(Defant et al., 1990),而成 矿岩体(永丰复式岩体)的w(MgO)和Mg[#]均较低 (杨世文等, 2019),矿区内也未发现有基性或超基 性岩脉侵入,进一步说明没有地幔物质加入。另 外,成矿岩体(永丰复式岩体)的ε_{Hf}(t)为-28.76~ -9.78,对应的两阶段模式年龄T_{DM2}为1832~2929 Ma(杨世文等,2019),指示其为古老地壳物质部分 熔融的产物。综上所述,矿床成矿物质为地壳来 源,没有地幔物质混入。此外,从统计的赣南部分

图 5 赣南钨多金属矿床中辉钼矿 w(Re)(数据引自黄凡等, 2012;赵正等,2013;丰成友等,2015;Feng et al.,2015; 杨斌等,2021)

Fig.5 w(Re) content of Molybdenite in tungsten polymetallic deposits in southern Jiangxi (data are quoted from Huang et al., 2012; Zhao et al., 2013; Feng et al., 2015; Feng et al., 2015; Yang et al., 2021)

钨多金属矿床辉钼矿中*w*(Re)(图5)可以看出,成 因类型不同的矿床,其辉钼矿中Re含量存在差异, 整体上按照石英脉型、云英岩型、斑岩型的顺序依 次增加,指示成矿物质由壳源逐渐过渡为幔源。即使是成因类型相同的矿床,其辉钼矿中的w(Re)也有所不同,如画眉坳钨矿床与岩前钨矿床,指示

	Table 5	Diagenesis	anu mineran	Lauon	time of man	i tungsten po	lymetanic deposite	s in souther in	Jiang	M
矿床名称	主矿种	测试方法	成矿年龄/Ma	误差	资料来源	相关岩体	测试方法	成岩年龄/Ma	误差	资料来源
重八峙	M	辉钼矿	156.9	3.6	本文	永丰岩体	SHRIMP	155.8	2	杨世文等,
亩公哻	Mo	Re-Os				隆市岩体	锆石 U-Pb	156.9	1.8	2019
园岭寨 Mo	M	辉钼矿	1(2.7	1.1	黄凡等,	园岭寨岩体	LA-MC-ICP-MS	1(5.40	0.50	黄凡等,
	Mo	Re-Os	102.7		2012		锆石 U-Pb	165.49	0.59	2012
光西拉 14	辉钼矿	156.00	0.77	赵磊等,						
洋四玑 Mo		Re-Os		130.09	2013					
·····································	辉钼矿	155.9	20	丰成友等,	改壬帝皇休	SHRIMP	156.0	17	丰成友等,	
1 曲 承	W \1010	Re-Os	155.8	2.8	2007a	瓜八至石座	锆石 U-Pb	156.9	1./	2007a
木梓园	W Mo	辉钼矿	151.1	8.5	张文兰等,	木梓园岩体	单颗粒	153.3	1.9	张文兰等,
小叶四	W \1010	Re-Os	151.1		2009		锆石 U-Pb	155.5		2009
海锡냡	W Mo	辉钼矿	154.4	3.8	陈郑辉等,	淘锡坑岩体	SHRIMP	157.6	35	郭春丽等,
1910096	W \1010	Re-Os			2006		锆石 U-Pb		5.5	2007
 	W. Mo	辉钼矿	154.4	1.6	刘善宝等,					
4-10012-V		Re-Os	10		2010					
梅树坪	W. Mo	辉钼矿	156.2	0.93	王浩洋等,	梅树坪岩体	LA-MC-ICP-MS	157.2	1.7	王浩洋等,
		Re-Os			2017	1313 1.611	锆石 U-Pb		1.7	2017
大吉山	W Mo	辉钼矿	161	1.3	张思明等,	大吉山岩体	云母Ar-Ar	160.3	3.0	蒋国豪等,
	•	Re-Os			2011					2004
画眉坳	W Mo	辉钼矿 W、Mo	158.5	3.3	Feng et al.,	画眉坳岩体	LA-MC-ICP-MS	159.9	1.2	Feng et al.,
	•	Re-Os			2015		锆石 U-Pb	Co		2015
西华山	W Mo	辉钼矿	157	2.5	Wang et al.,	西华山岩体	LA-MC-ICP-MS	155.7	2.2	Wang et al.,
		Re-Os			2011		锆石 U-Pb	N _O		2011
樟东坑	W Mo	辉钼矿	151.3	1.7	李光来等,	九龙脑岩体	LA-MC-ICP-MS	151	2.2	王少轶等,
	•	Re-Os			2014		锆石 U-Pb			2017
宝山	W \Mo	辉钼矿	161	1.9	丰成友等,	宝山岩体	LA-MC-ICP-MS	166.6	0.3	Wen et al.,
		Re-Os			2012		锴石 U-Pb			2018
茅坪	W Mo	辉钼矿 W、Mo	156.8	3.9	曾载淋等,	茅坪岩体	SHRIMP	151.8	2.9	Feng et al.,
		Re-Os			2009		锆石 U-Pb			2011
牛岭	W、Mo	辉钼矿 	154.6	9.7	丰成友等,	红桃岭岩体	SHRIMP	151.4	3.1	丰成友等,
		Re-Os			2007b		锆石 U-Pb			2007b
洪水寨	W、Mo	辉钼0 克	156.3	1.3	丰成反等,	九龙脑岩体	SHRIMP	155.8	1.2	丰成反等,
		Ke-Os			2011a		钻石 U-Pb			2011a
九龙脑	W、Mo	旌 钼切	151.5	1.1	丰成反等,	九龙脑岩体	SHRIMP	155.8	1.2	丰成反寺,
北京地工		Ke-Os			2011b		钻石 U-Pb			2011a
张豕地土		旌 钼切	158.4	3.1	丰成友等,			154.1	1.8	+++++
北部伊权	W、Mo	Ke-Os				张家地岩体	SHRIMP			丰成反寺, 2015
张 豕 地 刈 安 亡 矿 印		件 田 切	161.9 3.2		2015		тад О-го			2015
豕庄 切 权		Re-Os			→ 电 113 /大	南十山西仏				
盘古山	W_Bi) 昨 田 切 日 へ 〇 で	155.3	2.8	刀页聪寺, 2014	盘古山隐伏 岩体	LA-MU-IUP-MS 供工UDL	161.7	1.6	刀页聪寺, 2014
	W	ke-Us			2014		暗白 U-Pb			2014
漂塘 M	w \Sn \	W _{Sn} 、 自云母	152	1.9	张 乂三寺,	漂塘岩体	甲秋松 はていり	161.8	1	张 义三寺,
	IVIO	Ar-Ar			2009		暄石 U-Pb			2009

表 3 赣南主要钨多金属矿床成岩成矿年代学数据 Table 3 Diagenesis and mineralization time of main tungsten polymetallic denosits in southern Jiangxi

成矿物质来源存在一定的差异。

3.4 地球动力学背景

对华南燕山期大规模岩浆-成矿作用的动力学 机制,前人已进行广泛探索,目前普遍认为华南燕山 期成岩成矿作用形成于伸展环境(华仁民等,2005 b;毛景文等,2007;Mao et al., 2013)。Mao 等(2013) 认为Izanagi 板块在180 Ma左右向欧亚大陆俯冲,在 170~160 Ma 期间俯冲板片局部多处撕裂而形成 I 型、同熔型岩石及斑岩型铜矿和脉状铅锌银矿。随 后于160~150 Ma期间在南岭地区俯冲板片打开天 窗,软流圈物质直接涌入上地壳,形成了壳幔混源 型高分异S型花岗岩及石英脉型或矽卡岩型钨多 金属矿床。晚白垩世(135 Ma)古太平洋板块由向 大陆边缘斜向俯冲转变为水平运动,形成左行走滑 断层和拉分盆地,在华南地区陆内形成拉张环境, 导致岩石圈减薄,诱发大规模岩浆活动及与之有关 的锡钨多金属成矿。从统计的赣南地区主要钨多 金属矿床的成岩成矿年代学数据(表3)可以看出, 雷公嶂乃至赣南地区钨多金属成岩成矿作用主要 发生于燕山早期中晚侏罗世(165~150 Ma),形成于 华南中生代岩石圈大规模伸展-减薄的地球动力学 背景。

4 结 论

(1) 雷公嶂钼矿床辉钼矿 Re-Os 同位素加权平 均模式年龄为(156.3±1.0)Ma,等时线年龄为(156.9± 3.6)Ma,成岩成矿作用近乎同时发生。属于南岭地 区燕山早期中晚侏罗世(165~150 Ma)成矿大爆发的 一部分,形成于华南中生代岩石圈大规模伸展-减薄 的地球动力学背景。

(2) 雷公 嶂 钼 矿 床 辉 钼 矿 中 平 均 w(Re) 为 8.507×10⁻⁶,结合成矿 岩体主量元素及 Hf 同位素特 征,表明成矿物质来自地壳,没有地幔物质加入。

致 谢 匿名审稿专家和编辑部老师对本文提出了许多中肯、有益的修改意见,在此表示由衷的 感谢!

References

Chen Z H, Wang D H, Qu W J, Chen Y C, Wang P A, Xu J X, Zhang J J and Xu M L. 2006. Geological characteristics and mineraliza-

tion age of the Taoxikeng tungsten deposit in Chongyi County, southern Jiangxi Province, China[J]. Geological Bulletin of China, 25(4): 496-501(in Chinese with English abstract).

- Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662-665.
- Du A D, He H L, Yin N W, Zhao X Q, Sun Y L, Sun D Z, Chen S Z and Qu W J. 1994. A study on the Re-Os geochronometry of molybdenites[J]. Acta Geologica Sinica, 68(4): 339-347(in Chinese with English abstract).
- Du A D, Zhao D M, Wang S X, Sun D Z and Liu D Y. 2001. Precise Re-Os dating for molybdenite by ID-NTIMS with tube sample preparation[J]. Rock and Mineral Analysis, 20(4): 247-252(in Chinese with English abstract).
- Du A D, Wu S Q, Sun D Z, Wang S X, Qu W J, Markey R, Stain H, Morgan J and Malinovskiy D. 2004. Preparation and certification of Re-Os dating reference materials: Molybdenites HLP and JDC[J]. Geostandards and Geoanalytical Research, 28(1): 41-52.
- Fang G C, Chen Y C, Chen Z H, Zeng Z L, Zhang Y Z, Tong Q Q, Sun J, Huang H X and Guo N X. 2014. Zircon U-Pb and molybdenite Re-Os geochronology of the Pan' gushan tungsten deposit in southern Jiangxi Province and its significance[J]. Acta Geoscientica Sinica, 35(1): 76-84(in Chinese with English abstract).
- Feng C Y, Feng Y D, Xu J X, Zeng Z L, She H Q, Zhang D Q, Qu W J and Du A D. 2007a. Isotope chronological evidence for upper Jurassic petrogenesis and mineralization of altered granite-type tungsten deposits in the Zhangtiantang area, Southern Jiangxi[J]. Geology in China, 34(4): 642-650(in Chinese with English abstract).
- Feng C Y, Xu J X, Zeng Z L, Zhang D Q, Qu W S, She H Q, Li J W, Li D X, Du A D and Dong Y J. 2007b. Zircon SHRIMP U-Pb and molybdenite Re-Os dating in Tianmenshan-Hongtaoling tungstentin ore field, Southern Jiangxi Province, China and its geological implication[J]. Acta Geologica Sinica, 81(7): 952-963(in Chinese with English abstract).
- Feng C Y, Huang F, Zeng Z L, Qu W J and Ding M. 2011a. Isotopic chronology of Jiulongnao granite and Hongshuizhai greisens-type tungsten deposit in southern Jiangxi Province[J]. Journal of Jilin University (Earth Science Edition), 41(1): 111-121(in Chinese with English abstract).
- Feng C Y, Huang F, Qu W J, Zeng Z L and Ding M. 2011b. Molybdenite Re-Os isotopic dating on different types of tungsten deposits in Southeast of Jiulongnao ore field and its geological significance[J]. China Tungsten Industry, 26(4): 6-11(in Chinese with English abstract).
- Feng C Y, Zeng Z, Zhang D Q, Qu W J, Du A D, Li D X and She H Q. 2011. SHRIMP Zircon U-Pb and molybdenite Re-Os isotopic dating of the tungsten deposits in the Tianmenshan-Hongtaoling W-Sn ore field, southern Jiangxi Province, China, and geological implications[J]. Ore Geology Reviews, 43(1): 8-25.
- Feng C Y, Zeng Z L, Wang S, Liang J S and Ding M. 2012. SHRIMP zircon U-Pb and molybdenite Re-Os dating of the skarn type tung-

- Feng C Y, Zhao Z, Qu W J and Zeng Z L. 2015. Temporal consistency between granite evolution and tungsten mineralization in Huamei'ao, southern Jiangxi Province, China: Evidence from precise zircon U-Pb, molybdenite Re-Os, and muscovite ⁴⁰Ar-³⁹Ar isotope geochronology[J]. Ore Geology Reviews, 65: 1005-1020.
- Feng C Y, Zeng Z L, Qu W J, Liu J S and Li H P. 2015. A geochronological study of granite and related mineralization of the Zhangjiadi molybdenite-tungsten deposit in Xingguo county, southern Jiangxi Province, China, and its geological significance[J]. Acta Petrologica Sinica, 31(3): 709-724(in Chinese with English abstract).
- Guo C L, Wang D H, Chen Y C, Wang Y B, Chen Z H and Liu S B. 2007. Precise zircon SHRIMP U-Pb and quartz vein Rb-Sr dating of Mesozoic Taoxikeng tungsten polymetallic deposit in southern Jiangxi[J]. Mineral Deposits, 26(4): 432-442(in Chinese with English abstract).
- Guo N X, Zhao Z, Chen Z Y, Chen Y C, Hou K J and Wang S Y. 2014. Chronology, geochemistry and geological significance of E' po granite intrusion, southern Jiangxi[J]. Rock and Mineral Analysis, 33(4): 589-597(in Chinese with English abstract).
- Hua R M. 2005a. Differences between rock-forming and related oreforming times for the Mesozoic granitoids of crust remelting types in the Nanling range, South China, and its geological significance[J]. Geological Review, 51(6): 633-639. (in Chinese with English abstract).
- Hua R M, Chen P R, Zhang W L, Yao J M, Lin J F, Zhang Z S and Gu S Y. 2005b. Metallogeneses and their geodynamic settings related to Mesozoic granitoids in the Nanling range[J]. Geological Journal of China Universities, 11(3): 291-304. (in Chinese with English abstract).
- Huang F, Wang D H, Zeng Z L, Zhang Y Z, Zeng Y and Wen Z L. 2012. Petro-geochemical characteristics, isotope chronology study on Yuanlingzhai porphyry Mo deposit in southern Jiangxi Province and its geological significance[J]. Geotectonica et Metallogenia, 36(3): 363-376(in Chinese with English abstract).
- Jiang G H, Hu R Z, Xie G Q, Zhao J H and Tang Q L. 2004. K-Ar ages of pluton and mineralization at the Dajishan tungsten deposit, Jiangxi Province, China[J]. Acta Mineralogica Sinica, 24(3): 253-256(in Chinese with English abstract).
- Kang Z Q, Feng Z H, Li X F, Liao J F, Yu Y and Pan H B. 2010. ⁴⁰Ar /³⁹Ar age of muscovite in the Shuiyanba tungsten-tin ore field in Northeast Guangxi and its geological significance[J]. Bulletin of Mineralogy Petrology and Geochemistry, 21(6): 610-615(in Chinese with English abstract).
- Li G L, Hua R M, Wei X L, Qu W J, Huang X E, Hu D Q and Zhou L Q. 2014. Re-Os isotopic age of two types of molybdenite from Zhangdongkeng tungsten deposit in southern Jiangxi Province and their geological implications[J]. Earth Science, 39(2): 165-173

(in Chinese with English abstract).

- Liu H B, Jin G S, Li J J, Han J, Zhang J F, Zhang J and Ding Y J. 2014. The simple grained zircon U-Pb dating and its geological significance of Taoshan compound granite massif[J]. World Nuclear Geoscience, 31(2): 109-114(in Chinese with English abstract).
- Liu S B, Chen Y C, Fan S X, Xu J X, Qu W J and Ying L J. 2010. The second ore-prospecting space in the eastern and central parts of the Nanling metallogenic belt: Evidence from isotopic chronology[J]. Geology in China, 37(4): 1034-1049(in Chinese with English abstract).
- Mao J W, Zhang Z C, Zhang Z H and Du A D. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the northern Qinlian Mountains and its geological significance[J]. Geochimica et Cosmochimica Acta, 63(11/12): 1815-1818.
- Mao J W, Li X F, Lehmann B, Chen W, Lan X M and Wei S L. 2004. ⁴⁰Ar/³⁹Ar dating of tin ore and related granite in Furong tin ore field, Hunan Province, and its geodynamic significance[J]. Mineral Deposits, 23(2): 164-175(in Chinese with English abstract).
- Mao J W, Xie G Q, Guo C L and Chen Y C. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes[J]. Acta Petrologica Sinica, 23(10): 2329-2338(in Chinese with English abstract).
- Peng J T, Hu R Z, Bi X W, Dai T M, Li Z L, Li X M, Shuang Y, Yuan S D and Liu S R. 2007. ⁴⁰Ar/³⁹Ar isotopic dating of tin mineralization in Furong deposit of Hunan Province and its geological significance[J]. Mineral Deposits, 26(3): 237-248(in Chinese with English abstract).
- Mao J W, Cheng Y B, Chen M H and Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 48(3): 267-294.
- Selby D and Creaser R A. 2004. Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re-Os within molybdenite[J]. Geochimica et Cosmochimica Acta, 68(19): 3897-3908.
- Shu L S, Yu J H, Jia D, Wang B, Shen W Z and Zhang Y Q. 2008. Early Paleozoic orogenic belt in the eastern segment of South China[J]. Geological Bulletin of China, 27(10): 1581-1593(in Chinese with English abstract).
- Shu X J, Chen Z H, Zhu Y H, Liao S B, Zhou B W, Li G Z, Zhao X C, Liu S and Chen L C. 2018. Genesis of Donggu highly fractionated granites, Xingguo, southern Jiangxi, and its geological significance[J]. Geological Review, 64(1): 108-126(in Chinese with English abstract).
- Tan J, Wei J J, Li Y J, Li Y H and Yan Y F. 2007. Some reviews on diagenesis and metallogeny of the Mesozoic crustal remelting granitoids in the Nanling region[J]. Geological Review, 53(3): 349-362 (in Chinese with English abstract).

- Tian Z J, Chen Z Y, Wang D H, Chen Z H, Huang F, Zhao Z and Hou K J. 2014. Zircon U-Pb geochronology and uranium-production capacity of the Taoshan complex in southern Jiangxi[J]. Rock and Mineral Analysis, 33(1): 133-141(in Chinese with English abstract).
- Tong R F and Yang R D. 2012. Molybdenum mineralization characteristics of Leigongzhang molybdenum deposit and prospecting targets, Jiangxi[J]. Mineral Exploration, 3(6): 755-760(in Chinese with English abstract).
- Wang D H, Chen Y C, Chen Z H, Liu S B, Xu J X, Zhang J J, Zeng Z L, Chen F W, Li H Q and Guo K L. 2007. Assessment on mineral resource in Nanling region and suggestion for further prospecting[J]. Acta Geologica Sinica, 81(7): 882-890(in Chinese with English abstract).
- Wang F Y, Li C Y, Ling M X, Zhang H, Sun Y L and Sun W. 2011. Geochronology of the Xihuashan tungsten deposit in southeastern China: Constraints from Re-Os and U-Pb dating[J]. Resource Geology, 61(4): 414-423.
- Wang H Y, Zhao Z, Chen W, Zhou H, Chen Z Y, Hou K J and Li C. 2017. Geological characteristics, rock forming and ore-forming age and prospecting of Meishuping tungsten-molybdenum deposit in Jiangxi[J]. Earth Science Frontiers, 24(5): 109-119(in Chinese with English abstract).
- Wang S Y, Zhao Z, Fang G C, Ouyang X, Chen Z Y and Hou K J. 2017. Mineralogical and geochronological characteristics of the Zhang (Dongkeng) Jiu (Longnao) tungsten polymetallic deposit, southern Jiangxi Province, and its geological implications[J]. Earth Science Frontiers, 24(5): 120-130(in Chinese with English abstract).
- Wang W P, Chen Y C, Wang D H and Chen Z Y. 2014. Zircon LA-ICP-MS U-Pb dating and petro-geochemistry of the Liangcun granites and their petrogenesis, South Jiangxi[J]. Geotectonica et Metallogenia, 38(2): 347-358(in Chinese with English abstract).
- Wen W Z and Zhou M F. 2018. Mineralogical and metasomatic evolution of the Jurassic Baoshan scheelite skarn deposit, Nanling, South China[J]. Ore Geology Reviews, 95: 182-194.
- Yang B, Zhao L, Chen Z L, Mo H H, Lu J and Tan Y. 2021. U-Pb and Re-Os dating of the Jianlong Cu-W deposit in Xingguo county of Southern Jiangxi Province: Constraint on its petrogenic and metallogenetic age[J]. Geology in China, 48(2): 495-506(in Chinese with English abstract).
- Yang R D, Tong R F, Shao W J and Zeng Y. 2013. Potential for exploring large-sized and high grade deposits in Xingguo vortex structure area, southern Jiangxi[J]. Mineral Exploration, 4(2):121-130 (in Chinese with English abstract).
- Yang S W, Lou F S, Zhang F G, Wu Z C and Feng C Y. 2019. The Late Jurassic aluminum A-type granite belt in southern Jiangxi and its geological significance[J]. Geological Science and Technology Information, 38(3): 12-29(in Chinese with English abstract).
- Yu Y, Chen Z Y, Chen Z H, Hou K J, Zhao Z, Xu J X, Zhang J J and Zeng Z L. 2012. Zircon U-Pb dating and mineralization prospec-

tive of the Triassic Qingxi pluton in southern Jiangxi Province[J]. Geotectonica et Metallogenia, 36(3): 413-421. (in Chinese with English abstract).

- Zeng Z L, Zhang Y Z, Zhu X P, Chen Z H, Wang C H and Qu W J. 2009. Re-Os isotopic dating of molybdenite from the Maoping tungsten-tin deposit in Chongyi country of southern Jiangxi Province and its geological significance[J]. Rock and Mineral Analysis, 28(3): 209-214(in Chinese with English abstract).
- Zhang S M, Chen Z H, Shi G H, Li L X, Qu W J and Li C. 2011. Re-Os isotopic dating of molybdenite from Dajishan tungsten deposit in Jiangxi province[J]. Mineral Deposits, 30(6):1113-1121(in Chinese with English abstract).
- Zhang W L, Hua R M, Wang R C, Li H M, Qu W J and Ji J Q. 2009. New dating of the Piaotang granite and related tungsten mineralization in southern Jiangxi[J]. Acta Geologica Sinica, 83(5): 659-669(in Chinese with English abstract).
- Zhao L, Qi F Y and Li J D. 2013. Geological characteristics and Re-Os isotopic dating of Yangxikeng molybdenum deposit in Ganxian of Jiangxi[J]. Journal of Earth Sciences and Environment, 35(4): 77-82(in Chinese with English abstract).
- Zhao Z, Chen Y C, Zeng Z L, Chen Z H, Wang D H, Zhao B and Zhang J J. 2013. Geological characteristics and petrogenic and metallogenic age of the Yanqian tungsten deposit in eastern Nanling region[J]. Journal of Jilin University (Earth Science Edition), 43(6): 2828 -1839(in Chinese with English abstract).

附中文参考文献

- 陈郑辉,王登红,屈文俊,陈毓川,王平安,许建祥,张家菁,许敏林. 2006. 赣南崇义地区淘锡坑钨矿的地质特征与成矿时代[J]. 地 质通报,25(4): 496-501.
- 杜安道,何红蓼,殷宁万,邹晓秋,孙亚利,孙德忠,陈少珍,屈文俊. 1994. 辉钼矿的铼-银同位素地质年龄测定方法研究[J]. 地质学报,68(4): 339-347.
- 杜安道,赵敦敏,王淑贤,孙德忠,刘敦一.2001. Carius 管溶样-负离 子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄[J]. 岩矿测试,20(4): 247-252.
- 方贵聪,陈毓川,陈郑辉,曾载淋,张永忠,童启荃,孙杰,黄鸿新,郭 娜欣.2014. 赣南盘古山钨矿床锆石 U-Pb 和辉钼矿 Re-Os 年龄 及其意义[J]. 地球学报,35(1):76-84.
- 丰成友,丰耀东,许建祥,曾载淋,佘宏全,张德全,屈文俊,杜安道. 2007a. 赣南张天堂地区岩体型钨矿晚侏罗世成岩成矿的同位 素年代学证据[J]. 中国地质,34(4): 642-650.
- 丰成友,许建祥,曾载淋,张德全,屈文俊,佘宏全,李进文,李大新, 杜安道,董英君.2007b.赣南天门山-红桃岭钨锡矿田成岩成矿 时代精细测定及其地质意义[J].地质学报,81(7):952-963.
- 丰成友,黄凡,曾载淋,屈文俊,丁明.2011a. 赣南九龙脑岩体及洪水 寨云英岩型钨矿年代学[J]. 吉林大学学报(地球科学版),41(1): 111-121.
- 丰成友,黄凡,屈文俊,曾载淋,丁明.2011b.赣南九龙脑矿田东南部

- 丰成友,曾载淋,王松,梁景时,丁明.2012. 赣南砂卡岩型钨矿成岩 成矿年代学及地质意义-以焦里和宝山矿床为例[J]. 大地构造 与成矿学,36(3): 337-349.
- 丰成友,曾载淋,屈文俊,刘俊生,李海潘.2015.赣南兴国县张家地 钼钨矿床成岩成矿时代及地质意义[J].岩石学报,31(3):709-724.
- 郭春丽,王登红,陈毓川,王彦斌,陈郑辉,刘善宝.2007. 赣南中生代 淘锡坑钨矿区花岗岩锆石 SHRIMP 年龄及石英脉 Rb-Sr 年龄测 定[J]. 矿床地质,26(4): 432-442.
- 郭娜欣,赵正,陈振宇,陈毓川,侯可军,王少轶.2014. 赣南鹅婆岩体 的年代学和岩石地球化学特征及其地质意义[J]. 岩矿测试,33 (4):589-597.
- 华仁民.2005a. 南岭中生代陆壳重熔型花岗岩类成岩-成矿的时间 差及其地质意义[J]. 地质论评,51(6): 633-639.
- 华仁民,陈培荣,张文兰,姚军明,林锦富,张展适,顾晟彦.2005b.南 岭与中生代花岗岩类有关的成矿作用及其大地构造背景[J].高 校地质学报,11(3):291-304.
- 黄凡,王登红,曾载淋,张永忠,曾跃,温珍连.2012. 赣南园岭寨大型 钼矿岩石地球化学、成岩成矿年代学及其地质意义[J]. 大地构 造与成矿学,36(3): 363-376.
- 蒋国豪,胡瑞忠,谢桂青,赵军红,唐群力.2004.江西大吉山钨矿成 矿年代学研究[J].矿物学报,24(3):253-256.
- 康志强,冯佐海,李晓峰,廖家飞,余勇,潘会彬.2012. 桂东北水岩坝 钨锡矿田白云母⁴⁰Ar-³⁹Ar年代学研究及其地质意义[J]. 矿物岩 石地球化学通报,31(6): 606-611.
- 李光来,华仁民,韦星林,屈文俊,黄小娥,胡东泉,周龙全.2014.赣 南樟东坑钨矿两类矿化中辉钼矿的Re-Os同位素定年及其地质 意义[J].地球科学(中国地质大学学报),39(2):165-173.
- 刘善宝,陈毓川,范世祥,许建祥,屈文俊,应立娟.2010. 南岭成矿带中、东段的第二找矿空间-来自同位素年代学的证据[J]. 中国地质,37(4):1034-1049.
- 刘汉彬,金贵善,李军杰,韩娟,张建锋,张佳,丁迎军.2014.桃山复 式花岗岩体单颗粒锆石 U-Pb 年龄及地质意义[J].世界核地质 科学,31(2):109-114.
- 毛景文,李晓峰,Bernd L,陈文,蓝晓明,魏绍六.2004. 湖南芙蓉锡 矿床锡矿石和有关花岗岩的⁴⁰Ar-³⁹Ar年龄及其地球动力学意 义[J]. 矿床地质,23(2):164-175.
- 毛景文,谢桂青,郭春丽,陈毓川.2007. 南岭地区大规模钨锡多金属 成矿作用:成矿时限及地球动力学背景[J]. 岩石学报,23(10): 2329-2338.
- 彭建堂,胡瑞忠,毕献武,戴橦谟,李兆丽,李晓敏,双燕,袁顺达,刘 世荣.2007.湖南芙蓉锡矿床⁴⁰Ar-³⁹Ar同位素年龄及地质意义[J]. 矿床地质,26(3):237-248.
- 舒良树,于津海,贾东,王博,沈渭洲,张岳桥.2008.华南东段早古生

代造山带研究[J]. 地质通报, 27(10): 1581-1593.

- 舒徐洁,陈志洪,朱延辉,廖圣兵,周博文,李功振,赵旭辰,刘爽,陈 雷超.2018.赣南兴国东固高分异花岗岩成因及地质意义[J].地 质论评,64(1):108-126.
- 谭俊,魏俊浩,李艳军,李闫华,鄢云飞.2007. 南岭中生代陆壳重熔型花岗岩类成岩成矿的有关问题[J]. 地质论评,53(3): 349-362.
- 田泽瑾,陈振宇,王登红,陈郑辉,黄凡,赵正,侯可军.2014. 赣南桃 山复式岩体的锆石U-Pb年代学及其产铀性探讨[J]. 岩矿测试, 33(1):133-141.
- 童日发,杨瑞栋.2012. 江西雷公嶂矿区钼矿化特征及找矿方向[J]. 矿产勘查,3(6):755-760.
- 王登红,陈毓川,陈郑辉,刘善宝,许建祥,张家菁,曾载淋,陈富文, 李华芹,郭春丽.2007. 南岭地区矿产资源形势分析和找矿方向 研究[J].地质学报,81(7):882-890.
- 王浩洋,赵正,陈伟,周辉,陈振宇,侯可军,李超.2017. 江西梅树坪 钨钼矿床地质、成岩成矿时代与找矿方向[J]. 地学前缘,24(5): 109-119.
- 王少轶,赵正,方贵聪,欧阳翔,陈振宇,侯可军.2017.赣南樟(东坑)-九(龙脑)钨多金属矿床矿物学、年代学特征及其地质意义[J].地 学前缘,24(5):120-130.
- 王崴平,陈毓川,王登红,陈振宇.2014. 赣南兴国县良村花岗岩锆石 LA-ICP-MSU-Pb年代学、岩石地球化学与成岩机制研究[J]. 大 地构造与成矿学,38(2):347-358.
- 杨斌,赵磊,陈正乐,莫火华,鲁捷,谭友.2021.赣南兴国县见龙铜钨 矿床U-Pb和Re-Os同位素定年:对成岩成矿时代的限定[J].中 国地质,48(2):495-506.
- 杨瑞栋,童日发,邵伟江,曾跃.2013. 赣南兴国旋卷构造区寻找富大 矿床的思考[J]. 矿产勘查,4(2):121-130.
- 杨世文,楼法生,张芳荣,吴正昌,丰成友.2019.赣南晚侏罗世铝质 A型花岗岩带及其意义[J].地质科技情报,38(3):12-29.
- 于扬,陈振宇,陈郑辉,侯可军,赵正,许建祥,张家菁,曾载淋.2012. 赣南印支期清溪岩体的锆石 U-Pb 年代学研究及其含矿性评价[J]. 大地构造与成矿学,36(3):413-421.
- 曾载淋,张永忠,朱祥培,陈郑辉,王成辉,屈文俊.2009. 赣南崇义地 区茅坪钨锡矿床铼-锇同位素定年及其地质意义[J]. 岩矿测试, 28(3): 209-214.
- 张思明,陈郑辉,施光海,李丽侠,屈文俊,李超.2011.江西省大吉山 ,钨矿床辉钼矿铼-银同位素定年[J].矿床地质,30(6):1113-1121.
- 张文兰,华仁民,王汝成,李惠民,屈文俊,季建清.2009. 赣南漂塘钨 矿花岗岩成岩年龄与成矿年龄的精确测定[J].地质学报,83(5): 659-670.
- 赵磊,漆富勇,李江东.2013. 江西赣县洋西坑钼矿床地质特征及 Re-Os 同位素测年[J]. 地球科学与环境学报,35(4): 77-82.
- 赵正,陈毓川,曾载淋,陈郑辉,王登红,赵斌,张家菁.2013. 南岭东 段岩前钨矿床地质特征及成岩成矿时代[J]. 吉林大学学报(地 球科学版),43(6): 1828-1839.