文章编号: 0258-7106 (2023) 06-1195-19

内蒙古复兴屯超大型银铅锌矿床成因:闪锌矿微量 元素组成的制约^{*}

陆泽芊^{1,2,3},陈公正^{1,2,3**},段海龙⁴,杨艳霞⁴,刘洪岩⁴,李 敏⁴,钱 军⁴,李海军⁴, 梁新强⁴,武 广^{2,3**}

 (1河北地质大学河北省战略性关键矿产研究协同创新中心,河北石家庄 050031;2河北地质大学蛇绿岩带成矿理论与找 矿技术创新基地,河北石家庄 050031;3中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室, 北京 100037;4内蒙古自治区国土资源勘查开发有限责任公司,内蒙古呼和浩特 010020)

摘要复兴屯矿床位于大兴安岭南段,是一个以银为主,伴生铅锌的超大型矿床。矿体产于早白垩世火山 岩及火山碎屑岩中,发育贫铁闪锌矿+方铅矿+黄铜矿+(银)黝铜矿的矿物组合,围岩蚀变以碳酸盐化、高岭土化和 叶腊石化为主。其成矿可以划分为以下3个阶段:铜锌硫化物阶段(阶段Ⅰ)、铅锌硫化物阶段(阶段Ⅱ)和银锌硫 化物阶段(阶段Ⅲ)。文章对复兴屯矿床闪锌矿开展了LA-ICP-MS 微量元素分析,矿床中闪锌矿以富集Cu、Ag、 Pb,贫Fe、Cd、Ga、Ge为特征。矿床闪锌矿均为贫铁闪锌矿,暗示复兴屯矿床形成于中低温环境。由阶段Ⅰ至阶段 Ⅲ,闪锌矿中的Fe、Mn、In含量逐渐降低,Ga、Ge、Sb含量略有增加,暗示成矿流体温度逐渐下降。复兴屯闪锌矿中 Ag 可与Cu联合置换Zn进入闪锌矿晶格,这可能是复兴屯矿床闪锌矿中Ag含量高的重要因素。此外,闪锌矿中常 见韵律环带,反映了闪锌矿形成过程中成矿流体有多次压力波动,成矿流体多次压力波动引发的流体相分离是矿质沉 淀的主要机制之一。闪锌矿微量元素含量与中低温岩浆热液矿床基本一致,明显区别于MVT型矿床、块状硫化物矿 床、砂卡岩型矿床和中高温岩浆热液矿床,结合矿床地质特征,认为复兴屯银铅锌矿床属于浅成低温热液矿床。

关键词 LA-ICP-MS;闪锌矿;微量元素;浅成低温热液矿床;复兴屯银铅锌矿床 中图分类号:P618.52;P618.42;P618.43 文献标志码:A

Genesis of Fuxingtun super large Ag-Pb-Zn deposit, Inner Mongolia: Constraints on the trace elements composition of sphalerite

LU ZeQian^{1, 2, 3}, CHEN GongZheng^{1, 2, 3}, DUAN HaiLong⁴, YANG YanXia⁴, LIU HongYan⁴, LI Min⁴, QIAN Jun⁴, LI HaiJun⁴, LIANG XinQiang⁴ and WU Guang^{2, 3}

(1 Hebei Province Collaborative Innovation Center for Strategic Critical Mineral Research, Hebei GEO University, Shijiazhuang 050031, Hebei, China; 2 Innovation Base for Ophiolite Belt Mineralization Theory and Ore Prospecting Technology, Hebei GEO University, Shijiazhuang 050031, Hebei, China; 3 MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 4 Inner Mongolia Land Resources Exploration and Development Company Limited, Hohhot 010020, Inner Mongolia, China)

Abstract

The Fuxingtun deposit, located in the southern Great Xing'an Range, is a newly discovered giant Ag-Pb-Zn

^{*} 本文得到內蒙古自治区地质勘查基金项目(编号:18-1-KY02)、国家自然科学青年基金项目(编号:42202080)和内蒙古玉龙矿业股份 有限公司科研项目(编号:2020110033002072)联合资助

第一作者简介 陆泽芊,女,1999年生,硕士研究生,地球化学专业。Email:923345165@qq.com

^{**} 通讯作者 陈公正, 男, 1993 年生, 讲师, 主要从事矿床学及矿床地球化学研究。Email: gzchen@hgu.edu.cn

^{**} 通讯作者 武 广,男,1965年生,博士生导师,研究员,从事矿床学及地球化学工作。Email: wuguang65@163.com 收稿日期 2023-06-02;改回日期 2023-11-06。张绮玲编辑。

deposit dominated by Ag. The deposit, hosted in the early Cretaceous volcanic rocks and pyroclastic rocks, is characterized by the occurrence of (Fe-poor) sphalerite, chalcopyrite, galena, and tetrahedrite / tennantite associations. Carbonate, kaolinization, and pyrophyllitization are the most common wall rock alteration in this deposit. The ore-forming process of this deposit can be divided into three stages: Cu-Zn sulfide stage (stage I), Pb-Zn sulfide stage (stage II), and Ag-Zn sulfide stage (stage III). The composition and trace elements occurrence of sphalerite in this deposit were analyzed by LA-ICP-MS. The results show that the sphalerite in this deposit is characterized by enrichment of Cu, Ag, Pb and depletion in Fe, Cd, Ga and Ge. The Fe-poor sphalerite in the deposit indicates that the Fuxingtun deposit was formed in a medium to low temperature environment. From the stages I to III, Fe, Mn, and In in sphalerite gradually decreased, while the contents of Ga, Ge and Sb slightly increased, indicating that the temperature of ore-forming fluid gradually decreased. Ag and Cu can substitute Zn in the lattice of sphalerite, which may be an important possible factor for the enrichment of Ag in the sphalerite of this deposit. The oscillatory zoning of sphalerite reflects that the ore-forming fluid was in an oscillatory environment during sphalerite formation. The phase separation of ore-forming fluids caused by multiple pressure fluctuations is an important mechanism of metallogenic material precipitation. The trace elements of sphalerite in this deposit are similar to that of medium-low temperature magmatic-hydrothermal deposit and different from MVT, Sedex, VMS, Skarn, and medium-high temperature magmatic-hydrothermal deposits. Combined with the geological characteristics, we considered that the Fuxingtun Ag-Pb-Zn deposit belongs to the epithermal deposit.

Key words: LA-ICP-MS, sphalerite, trace elements, epithermal deposit, Fuxingtun Ag-Pb-Zn deposit

大兴安岭南段位于古亚洲成矿域和环太平洋成 矿域重叠部位,地质条件复杂,成矿条件优越,是中 国北方重要的有色金属矿产地,发育大量银铅锌矿 床和锡多金属矿床(图 1a; Wang et al., 2001; 刘建明 等,2004;毛景文等,2013; Ouyang et al., 2015)。该 区南部银铅锌矿床成群分布,与锡多金属矿床成矿 时代一致,硫铅同位素研究反映二者成矿物质来源 一致,流体包裹体研究表明成矿流体具有连续演化 特征,表明二者为同一成矿系统(Ouyang et al., 2015; 陈公正等, 2018; 刘瑞麟等, 2018)。这些矿床 赋矿围岩以古生代地层为主,与早白垩世高分异花 岗岩关系密切(Ouyang et al., 2015; 陈公正等, 2018; 刘瑞麟等, 2018)。而成矿条件同样优越的该 区北部由于中生代火山岩盖层相对较厚,长期以来 找矿没有突破(图1b),直至近期随着复兴屯超大 型矿床的发现,该区银铅锌成矿潜力才得到重视。 复兴屯矿床矿体主要赋存于下白垩统白音高老组 火山岩及火山碎屑岩中,矿床以低温矿化蚀变为特 征,与大兴安岭南段南部银铅锌矿床有较大区别 (Ruan et al., 2015; Liu Y F et al., 2016; Liu Y et al., 2017; Wang et al., 2019a)。目前,复兴屯矿床仍处 于勘查状态,矿床地质特征及成矿作用的研究均为 空白,人们对于该矿床成因类型尚不清楚,这严重 阻碍了矿区下一步工作部署及外围地质勘探工作

的深入。此外,该矿床发育大量隐爆角砾岩型矿石 和陡立脉状矿石,反映成矿流体经历了较大的压力 波动,而压力在成矿物质沉淀过程中起了怎样的作 用仍待探讨。闪锌矿作为银铅锌矿床中最常见的 矿石矿物,常含有Fe、Mn、Cd、In、Ga、Ge等多种微 量元素,蕴含了丰富的成因信息,不仅可以为成矿 流体的物理化学条件提供制约,还能用于指示矿床 成因类型(Di Benedetto et al., 2005; Gottesmann et al., 2007; Ishihara et al., 2006; 2007; Martín et al., 2005; Monteiro et al., 2006; Wang et al., 2010; Ye et al., 2011)。此外,闪锌矿的形貌、结构构造及成分 特征可以反映矿物沉淀和生长历史,其微量元素含 量是由成矿流体性质和元素自身特性所决定(范宏 带可以反映成矿流体元素的迁移和富集规律以及 成矿流体演化特征(Large et al., 2009; Yang et al., 2016; Qiu et al., 2017; Wu et al., 2019)。本文在地 质现象和矿床地质研究基础之上,对该矿床主要矿 石矿物闪锌矿的结构特征进行了细致观察,运用 LA-ICP-MS 原位微量元素分析查明闪锌矿微量元 素含量和分布特征,以约束成矿流体物理化学条 件,精细解剖成矿过程并开展对比研究,以期为成 矿模型的建立提供依据,为区域找矿工作提供 思路。

图1 大兴安岭南段大地构造位置图(a)及矿产地质图(b)(据徐志刚等。2008修改)

1-新生界;2-新生代玄武岩;3-晚侏罗世-早白垩世火山岩;4-中侏罗世火山岩;5-二叠系板岩;6-石炭系海相碎屑岩;7-泥盆系碎屑 岩;8-志留系片岩;9-奥陶系火山岩;10-早白垩世花岗岩;11-三叠纪花岗岩;12-石炭纪花岗岩;13-蛇绿岩;14-矿床及编号:1-巴根 黑格其尔陆相火山岩型锌铅铁矿床;2-马银山热液脉型银矿床;3-朝不楞矽卡岩型铁锌矿床;4-阿尔哈达热液脉型铅锌银矿床;5-滚呼都 根沟陆相火山岩型银铅锌矿床;6-勒马戈山陆相火山岩型铅锌矿床;7-夏日嘎音高图陆相火山岩型银铅锌矿床;8-哈场大山热液脉脉型萤 石矿床;9-扎木软陆相火山岩型铅锌银矿床;10-复兴屯陆相火山岩型银铅锌矿床;11-树木沟乡热陆相火山岩型叶腊石矿点;12-和勒欣 哈达陆相火山岩型银矿床;13-哈日努拉陆相火山岩型叶腊石矿点;14-阿木古楞敖瑞陆相火山岩型银矿点;15-罕山热液脉型叶腊石矿床; 16-八〇-岩浆岩型稀土铌钽锆铍矿床;17-花敖包特热液脉型银铅锌矿床;21-石长温都尔陆相火山岩型铜铅锌矿床;15-国界

Fig. 1 Sketch geological map of the southern Great Xing'an Range and its neighboring areas, showing geotectonic units (a) and locations of major deposits (b) (modified after Xu et al., 2008)

1—Cenozoic; 2—Cenozoic basalt; 3—Late Jurassic-Early Cretaceous volcanic rocks; 4—Middle Jurassic volcanic rocks; 5—Permian silty slate; 6—Carboniferous marine clastic rocks; 7—Devonian clastic rocks; 8—Silurian schist; 9—Ordovician volcanic rocks; 10—Early Cretaceous granite; 11—Triassic granite; 12—Carboniferous granite; 13—Ophiolite; 14—Deposit and its number: **1—Bagenheiqigeer continental volcanic type Pb-Fe deposit; 2—Mayinshan hydrothermal vein-type Ag deposit; 3—Chaobuleng skarn type Fe-Zn deposit; 4—Aerhada hydrothermal vein type Pb-Zn-Ag deposit; 5—Gunhudugengou continental volcanic type Ag-Pb-Zn deposit; 6—Lemageshan continental volcanic type Pb-Zn de-**

posit; 7—Xiarigayingaotu continental volcanic type Ag-Pb-Zn deposit; 8—Hachangdashan continental volcanic type fluorite deposit; 9—Zhamuqin continental volcanic type Pb-Zn-Ag deposit; 10—Fuxingtun continental volcanic type Ag-Pb-Zn deposit; 11—Shumugou continental volcanic type pyrophyllite deposit; 12—Helexinhada continental volcanic type Ag deposit; 13—Harinula continental volcanic type pyrophyllite deposit; 14—Amugulengaorui continental volcanic type Ag deposit; 15—Hanshan hydrothermal vein type pyrophyllite deposit; 16—Balingyi magmatic type REE-Nb-Ta-Zr-Be deposit; 17—Huaaobaote hydrothermal vein type Pb-Zn-Ag deposit; 18—Arikundu hydrothermal vein type Ag deposit; 19—Maoxigadaban continental volcanic type Ag-Pb-Zn deposit; 20—Saibuer continental volcanic

type Ag-Pb-Zn deposit; 21—Shichangwenduer continental volcanic type Cu-Pb-Zn deposit; 15—National boundary

1 区域地质

大兴安岭南段位于中亚中生代东段,该区古生 代构造受古亚洲洋的俯冲、增生和闭合控制(Chen et al., 2009; Yuan et al., 2016; Lu et al., 2019),在大兴 安岭南段形成了米生庙复背斜、林西复向斜等多个 NEE向的大型褶皱以及贺根山断裂和西拉木伦断裂 等深大断裂。中生代主要受蒙古国-鄂霍茨克洋和 古太平洋构造体制控制(Cogné et al., 2010; Wang et al., 2012; Xu et al., 2013; Zhou et al., 2017),在此期间 形成了 NE-NNE 向断裂,这些断裂叠加在前中生代 构造之上,构成了网格状构造格架。

研究区位于大兴安岭南段北部,区域出露地层 主要包括二叠系、侏罗系、白垩系以及少量第四系。 其中,下二叠统大石寨组(P₁ds)中酸性火山岩、火山 碎屑岩、板岩等,上二叠统林西组(P₃l)泥质粉砂岩、 粉砂质板岩,上侏罗统满克头鄂博组(Jamk)主要为 酸性火山岩及火山碎屑岩,上侏罗统玛尼吐组 (J₃mn)主要为安山岩、英安岩以及部分火山碎屑岩, 下白垩统白音高老组(K₁b)主要为酸性火山岩及火 山碎屑岩,下白垩统梅勒图组(K₁m)主要为一套中 基性火山岩及部分安山质火山碎屑岩,第四系主要 呈树枝状分布于地势低洼处。总体而言,区内区域 性构造不发育,主要构造为多期火山活动所形成的 火山构造相互叠置形成,火山机构常沿一定方向呈 带状展布或产出于火山喷发盆地中,构成火山构造 洼地或火山喷发盆地。区内主要发育早白垩世一晚 侏罗世侵入岩,亦有少量中三叠世和晚二叠世侵入 岩零星分布在矿区之中。早白垩世一晚侏罗世侵入 岩在区内主要集中于北部,岩性主要为二长花岗岩, 亦有斑状花岗闪长岩等出露。此外,区内脉岩较为 发育,主要为二长花岗斑岩脉、闪长玢岩脉及石英 脉,多呈NE向展布。

2 矿区和矿床地质特征

2.1 矿区地质特征

复兴屯银铅锌矿床位于内蒙古自治区兴安盟科 尔沁右翼前旗境内,地理坐标为东经:120°15'02"~ 121°01'01",北纬:45°58'15"~46°13'16"。目前矿 床仍处于勘查阶段,已探明银金属量5258 t、平均品 位198 g/t;伴生锌金属量776万t、平均品位1.07%; 铅金属量22万t、平均品位0.4%,为超大型银多金属 矿床。

矿区出露地层主要为中生代火山岩及火山碎屑 岩(图2a)。其中,上侏罗统玛尼吐组出露于矿区东 侧及西北角,岩性以中性火山碎屑岩为主;下白垩统 白音高老组分布于矿区中部及西南部,是主要赋矿 围岩,其岩性主要为火山碎屑岩及流纹岩,下白垩统 梅勒图组零星分布于矿区中部,岩性以玄武岩为主, 第四系多分布于矿区西部。矿区整体位于北东向火 山构造洼地中,周围发育放射状断裂和环状断裂,构 造走向以北东向和北西向为主,区域构造不发育。 区内岩浆岩见有次火山岩及部分脉岩,主要分布于 矿区中南部和北部,次火山岩常呈岩枝状产出,向上 侵入到白音高老组之中。

2.2 矿床地质特征

目前,钻探工程控制矿区共计575条矿体,矿体 类型以锌银矿体、银铅锌矿体、锌矿体、铅锌矿体为 主,其次为铅矿体、银铅矿体和铜矿体。所有矿体均 为隐伏矿体,矿体总体走向317°~20°,呈"拱形"产出 (图 2b), 矿体西翼倾向 230°~290°, 东翼倾向 47°~ 92°,矿体倾角在1°~45°之间。矿体形态常呈似层状 或透镜状,主要赋存于下白垩统白音高老组火山角 砾岩、流纹岩、流纹质凝灰岩、角砾凝灰岩和沉凝灰 岩之中。较大规模的银矿体有2、6、9、10、11、12、13、 14、16、18、19、21、22、25、30号等15层矿体,其中12 号矿体呈层状,控制长度东西635m,南北400m,矿 体平均厚度10.2 m, 平均品位239 g/t, 赋存围岩主要 为火山角砾岩,(含)角砾凝灰岩,矿体产状与地层产 状基本一致(图2b)。复兴屯矿床银矿化主要分布于 矿体顶部,向下逐渐过渡为锌矿化,并最终演变为铜 矿化。

复兴屯矿床主要矿石构造主要发育有脉状构造 (图 3a、b)、角砾状构造(图 3c)、浸染状构造及团块状 构造等。角砾型矿石和细脉型矿石是最常见的矿石 类型,角砾型矿石亦常见于其他浅成低温热液型 Ag-Pb-Zn 矿床中(Yang et al., 2020),金属矿物主要有闪 锌矿、方铅矿、黄铁矿、黄铜矿、辉银矿、银黝铜矿、硫 砷银矿、硫锑铜银矿、锌黝铜矿,亦有少量金红石(图 31);黄铜矿常被闪锌矿、方铅矿等矿物交代(图 3d~f),含银矿物常与方铅矿和闪锌矿空间关系密切 (图 3g~i),银黝铜矿是该矿床最重要的含银矿物(图 3i);闪锌矿可分为3期:Sp I、Sp II 和 Sp III,各期次 闪锌矿有明显差异,Sp I 常与黄铜矿、黄铁矿伴生,

图2 复兴屯矿区地质图(a)及剖面图(b)(底图据内蒙古国土资源勘查开发有限责任公司,2021) 1—第四系;2—梅勒图组;3—白音高老组火山岩和火山碎屑岩;4—玛尼吐组火山碎屑岩;5—次生石英岩;6—流纹斑岩脉;7—玄武岩脉; 8—逆断层;9—正断层;10—走滑断层;11—性质不明断层;12—推测断层;13—勘探区;14—勘探剖面及编号

Fig. 2 Geological map (a) and geological section map (b) of the Fuxingtun deposit (Modified from Inner Mongolia Land Resources Exploration and Development Company Limited, 2021)

1—Quaternary; 2—Meiletu Formation; 3—Volcanic rock and pyroclastic rock of Baiyingaolao Formation; 4—Pyroclastic rock of Manitu Formation; 5
 —Secondary quartzite; 6—Rhyolite porphyry dyke; 7—Basalt dyke; 8—Reverse fault; 9—Normal fault; 10—Strike-slip fault; 11—Fault with unknown properties; 12—Inferred fault; 13—Exploration area; 14—Exploration line and its number

多数呈深棕红色,SpII常为粗粒,被黄铁矿和方铅矿 交代,多为棕红色-褐黄色,SpIII常与银矿物伴生,多 呈褐黄色-灰白色(图3k),阶段II和阶段III中闪锌矿 韵律环带均较为常见。脉石矿物可分为2种组合, 分别为硅酸盐组合和碳酸岩组合。硅酸盐组合主要 矿物为石英/玉髓(图3c),碳酸盐矿物主要有菱锰 矿、菱铁矿、菱镁矿、方解石、白云石等。与矿化相关 的石英主要与黄铜矿、闪锌矿及黄铁矿共生,矿物颗 粒相对粗大,玉髓常形成于矿区浅部,与银矿化共 生。碳酸盐多见于主成矿阶段,与矿化关系密切,常 与闪锌矿、方铅矿、黄铁矿及含银矿物共生,菱锰矿 呈粉红色(图4a),表面氧化呈褐黑色(图3b)。

复兴屯矿床发育的主要蚀变类型有高岭土化

(图4a、f、h)、菱锰矿化(图4a、d、e)、硅化(图4b、l)、 叶腊石化(图4c、h)、伊利石化(图4k)、绿泥石化(图 4i)、绢云母化(图4g、i、j)。菱锰矿化是本区最主要 的特征蚀变类型之一,分布范围较广,常与银铅锌矿 石共生;几乎所有流纹质凝灰岩均发生了不同程度 的高岭土化和叶腊石化,这是由于在热液作用下,凝 灰岩孔隙度较大且易于发生蚀变所致。绢云母化常 见于凝灰岩中,而硅化多发育于铅锌矿体及铜锌矿 体附近。

结合野外观察和室内光薄片鉴定结果,将复兴 屯矿床的成矿过程划分为3个成矿阶段:

(1) 铜锌硫化物阶段(阶段 I),该阶段属于中 温热液阶段,金属矿物以闪锌矿、黄铜矿和黄铁矿为

图3 复兴屯矿床典型矿石(a~c)及显微镜(d~l)照片

a.阶段Ⅰ块状铜锌矿石;b.阶段Ⅱ铅锌矿脉呈陡立细脉状穿切流纹质凝灰岩,矿石中含有闪锌矿、方铅矿、菱锰矿和少量黄铁矿;c.阶段Ⅲ隐 爆角砾岩型Ag矿石;d.阶段Ⅰ矿石中黄铜矿、黄铁矿、闪锌矿和黝铜矿伴生,磁黄铁矿呈不规则状交代黄铁矿;e.阶段Ⅰ矿石中黄铜矿、闪锌 矿和方铅矿伴生;f.黄铜矿、闪锌矿和方铅矿穿插早期形成的黄铁矿,黄铁矿具骸晶结构;g.阶段Ⅱ黄铁矿、闪锌矿和银黝铜矿伴生;h.阶段Ⅱ 闪锌矿、方铅矿、黄铁矿和辉银矿伴生;i.阶段Ⅱ黄铁矿、闪锌矿、银黝铜矿和硫锑铜银矿伴生;j.阶段Ⅱ破碎黄铁矿裂隙中充填石英和闪锌矿; k.阶段Ⅱ闪锌矿发育韵律环带;l.阶段Ⅲ黄铁矿与金红石伴生。

Arg一辉银矿;Chal一玉髓;Cp一黄铜矿;Fre一银黝铜矿;Gn一方铅矿;Po一磁黄铁矿;Py一黄铁矿;Rds一菱锰矿;Rt一金红石;

Sp—闪锌矿分为3期:SpⅠ、SpⅡ、SpⅢ;Pbs—硫锑铜银矿;Tet—黝铜矿

Fig. 3 Typical ore(a~c) and microscope photos(d~l) of the Fuxingtun deposit

a. Massive Cu-Zn ore of stage I ; b. The Pb-Zn vein of stage II , contains galena, sphalerite, rhodochrosite and minor pyrite, cutting the rhyolitic tuff; c. Cryptoexplosive breccia Ag ore of stage II; d. Chalcopyrite, pyrite, sphalerite and freibergite are associated in stage I , pyrite replaced by irregular pyrrhotite; e. Chalcopyrite, sphalerite and galena are associated in stage I ; f. Chalcopyrite, sphalerite, and galena cut the early formed pyrite, and the pyrite formed a skeletal structure; g. Sphalerite and freibergite are associated with pyrite in stage II ; h. Sphalerite, galena and pyrite are associated with argentite in stage II ; i. Pyrite, sphalerite and tetrahedrite are associated with polybasite in stage II ; j. Stage II fractured pyrite with microfractures infilled by sphalerite and quartz; k. Oscillatory zoning of sphalerite in stage II ; l. Pyrite; Rds—Rhodochrosite; Rt—Rutile; Sp—Sphalerite: include Sp I , Sp II ; PS II ; PS Polybasite; Tet—Tetrahedrite

图4 复兴屯矿床典型围岩蚀变照片

a. 流纹质凝灰岩发生高岭土化和菱锰矿化;b. 硅化凝灰岩;c. 流纹质凝灰岩发生叶腊石化和高岭土化;d. 铅锌矿石中发育菱锰矿;e. 流纹质凝 灰岩发育菱锰矿化;f. 凝灰岩发生高岭土化;g. 流纹岩发育绢云母化及赤铁矿化;h. 高岭土化、叶腊石化流纹岩;i. 流纹岩发生绿泥石化;j. 流 纹质凝灰岩发生黄铁绢英岩化;k. 火山角砾岩发生伊利石化;l. 硅化凝灰岩

Chl--绿泥石;Gn--方铅矿;Hem--赤铁矿;Ill--伊利石;Kln--高岭土;Py--黄铁矿;Pyr--叶腊石;Q--石英;Rds--菱锰矿;Ser--绢云母;Sp--闪锌矿 Fig. 4 Typical wall rock alteration photos of the Fuxingtun deposit

a. Kaolinization and carbonatation of rhyolitic tuff; b. Tuff with silicification; c. Pyrophyllitization and kaolinization of rhyolitic tuff; d. Rhodochrosite occurs in Pb-Zn ore; e. Rhodochrositization of rhyolitic tuff; f. Kaolinization of tuff; g. Hematite and sericite altered rhyolite; h. Pyrophyllitization and kaolinization of rhyolite; i. Chloritization of rhyolite; j. Beresitization of rhyolitic tuff; k. Volcanic breccia with illite alteration; l. Tuff with silicification

Chl—Chlorite; Gn—Galena; Hem—Hematite; Ill—Illite; Kln—Kaolinite; Py—Pyrite; Pyr—Pyrophyllite; Q—Quartz; Rds—Rhodochrosite; Ser—Sericite; Sp—Sphalerite

主,亦有少量方铅矿,脉石矿物主要以石英和菱锰矿 为主,该阶段矿石常呈块状或脉状构造,以黄铜矿的 大量出现为特征; (2)铅锌硫化物阶段(阶段Ⅱ),该阶段属于中低温热液阶段,金属矿物主要发育有闪锌矿、方铅矿、银黝铜矿、硫锑铜银矿、黝铜矿、黄铁矿等,亦有

少量毒砂,该阶段脉石矿物以菱锰(铁)矿为主,亦有 部分石英/玉髓发育,该阶段金属矿物以方铅矿和闪 锌矿为主,且常伴生有含银矿物;

(3)银锌硫化物阶段(阶段Ⅲ),该阶段主要发育角砾岩型矿石,构成银矿体、银铅锌矿体和部分锌矿体,金属矿物以黄铁矿、闪锌矿、方铅矿和银矿物为主,脉石矿物以玉髓、方解石和菱锰矿为主,常形成角砾状及细脉浸染状矿石。各阶段矿物生成顺序见图5。

3 样品采集及分析测试方法

(1) 采样情况 本次进行闪锌矿 LA-ICP-MS 微量元素分析的样品均采自复兴屯矿床钻孔之中,共选取样品26件,其中FX72、FX84、FX91和FX239为阶段 I 样品;FX12、FX17、FX72-1、FX72-2、FX72-3、FX76、FX79、FX94、FX117、FX121、FX131、FX173、

FX233、FX234和FX237为阶段II样品;FX4、FX13、 FX29、FX76-1、FX81、FX234-1、FX237-1为阶段III 样品。

(2)闪锌矿LA-ICP-MS测试方法闪锌矿LA-ICP-MS微量元素分析在南京聚谱检测科技有限责 任公司利用激光剥蚀多接收等离子质谱仪完成,采 用Teledyne Cetac Technologies制造的193nm ArF准 分子激光剥蚀系统,型号为Analyte Excite,四极杆型 电感耦合等离子体质谱仪(ICP-MS)由 Agilent Technologies制造,型号为Agilent 7700x。在正式测试之 前,所有待测点位使用大束斑预剥蚀,消除矿物表面 的潜在污染。测试时先收集15秒气体本底,然后以 40 μm 束斑,5 Hz 频率剥蚀40 s,能量密度为6.06 J/ cm²,气溶胶由氦气送出剥蚀池,与Ar 混合后进入 ICP-MS完成测试。测试采用美国地质调查局多金 属硫化物压饼 USGS MASS-1 和玄武质熔融玻璃 GSE-1G 共同标定硫化物元素含量。测试完成后,使

图5 复兴屯矿床各成矿阶段矿物组合

Fig.5 Mineral assemblages of each ore-forming stage in the Fuxingtun deposit

用 ICP-MS-data cal 进行数据处理(Liu et al., 2008), 选用 Zn 为内标元素。

4 测试结果

复兴屯矿床中闪锌矿以棕色为主,本文分析不同标高的26件闪锌矿样品,共计73个测试点。测试结果见表1,总体而言,该矿床闪锌矿中微量元素含量变化范围相对较大(图6),具有以下特征。

(1) w(Fe)均低于10%,不属于铁闪锌矿,含量相 对其他元素较高,但变化范围较大,在779×10⁻⁶~ 99 128×10⁻⁶之间,平均为29 064×10⁻⁶,中位数为 18 422×10⁻⁶。由阶段 I 至阶段 Ⅲ,Fe含量呈降低趋 势(图 6a),由阶段 I 的4858×10⁻⁶~99 128×10⁻⁶(平均 值为58 965×10⁻⁶,中位数为68 416×10⁻⁶,n=13)经阶 段 Ⅱ 的779×10⁻⁶~69 393×10⁻⁶(平均值为25 259× 10⁻⁶,中位数为19 820×10⁻⁶,n=48)变为阶段 Ⅲ 的 1525×10⁻⁶~36 141×10⁻⁶(平均值为11 894×10⁻⁶,中位 数为11 391×10⁻⁶,n=12)。

(2) 富集Cu、Mn、Ag和In元素,但其含量在闪 锌矿中变化范围较宽。其中,排除2个含黄铜矿包 裹体测试点后,其余点w(Cu)在4.99×10⁻⁶~4457×10⁻⁶ 之间,平均为848×10⁻⁶,中位数为180×10⁻⁶;w(Mn)在 43×10-6~15 233×10-6之间,平均为1215×10-6,中位数 为836×10⁻⁶;w(Ag)在1.84×10⁻⁶~13 619×10⁻⁶之间,平 均为729×10⁻⁶,中位数为89.3×10⁻⁶;w(In)在0.01× 10⁻⁶~6323×10⁻⁶之间,平均为463×10⁻⁶,中位数为 89.4×10⁻⁶。由阶段 I 至阶段 II, Cu、Mn、Ag 和 In 含 量均有降低趋势(图 $6b \sim e$), w(Cu)由阶段 I 的 $60.3 \times$ 10-6~4457×10-6(平均值为1185×10-6,中位数为346× 10-6, n=12) 经阶段 II 的 4.99×10-6~4095×10-6(平均值 为711×10⁻⁶,中位数为205×10⁻⁶, n=48)变为阶段Ⅲ的 20.2×10-6~3925×10-6(平均值为814×10-6,中位数为 77.3×10⁻⁶, n=11); w(Mn)由阶段I的80.0×10⁻⁶~8699× 10⁻⁶(平均值为1913×10⁻⁶,中位数为1422×10⁻⁶, n= 13) 经阶段 Ⅱ的 43.0×10⁻⁶~15 233×10⁻⁶(平均值为 1175×10⁻⁶,中位数为845×10⁻⁶,n=48)变为阶段Ⅲ的 130×10-6~2182×10-6(平均值为621×10-6,中位数为 244×10⁻⁶, n=12); w(Ag)由阶段 I 的 14.7×10⁻⁶~13 619×10-6(平均值为2492×10-6,中位数为297× 10⁻⁶, n=13) 经阶段 Ⅱ的 1.84×10⁻⁶~4197×10⁻⁶(平均 值为392×10⁻⁶,中位数为41.8×10⁻⁶,n=48)变为阶段Ⅲ 的5.26×10-6~664×10-6(平均值为162×10-6,中位数为 96.7×10⁻⁶, n=12); w(In)由阶段 I的 30.5×10⁻⁶~5572× 10⁻⁶(平均值为841×10⁻⁶,中位数为481×10⁻⁶, n=13) 经阶段 II的 0.05×10⁻⁶~6323×10⁻⁶(平均值为426× 10⁻⁶,中位数为89.4×10⁻⁶, n=48)变为阶段 III的0.01× 10⁻⁶~1638×10⁻⁶(平均值为202×10⁻⁶,中位数为28.0× 10⁻⁶, n=12)。

(3) w(Cd)较为稳定,在163×10⁻⁶~3043×10⁻⁶之 间,平均值为1223×10⁻⁶,中位数为1068×10⁻⁶。3个 成矿阶段闪锌矿Cd值相差不多(图 6f),阶段 I 闪锌 矿w(Cd)在713×10⁻⁶~2511×10⁻⁶之间(平均值为 1535×10⁻⁶,中位数为1297×10⁻⁶,n=13),阶段 II 闪锌 矿w(Cd)在163×10⁻⁶~2693×10⁻⁶之间(平均值为 1129×10⁻⁶,中位数为1016×10⁻⁶,n=48),阶段 III 闪锌 矿w(Cd)在556×10⁻⁶~3043×10⁻⁶之间(平均值为 1261×10⁻⁶,中位数为1316×10⁻⁶,n=12)。

(4) 富集 Pb 元素,但变化范围极大,测试闪锌矿 中常含方铅矿微晶包裹体,排除 23 个含微晶包裹体 的测试点后,w(Pb)在 0.02×10⁻⁶~7693×10⁻⁶之间,平 均值为 846×10⁻⁶,中位数为 11.5×10⁻⁶。在各阶段中 无明显变化规律(图 6g),阶段 I 闪锌矿中w(Pb)为 0.05×10⁻⁶~6972×10⁻⁶(平均值为 1580×10⁻⁶,中位数为 128×10⁻⁶,n=12),阶段 II 为 0.02×10⁻⁶~3925×10⁻⁶(平 均值为 316×10⁻⁶,中位数为 6.23×10⁻⁶,n=38),阶段 II 为 0.09×10⁻⁶~7693×10⁻⁶(平均值为 1977×10⁻⁶,中位数 为 168×10⁻⁶,n=10)。

(5) Sn和Sb含量变化较大,w(Sn)在0.24×10⁻⁶~ 1710×10⁻⁶之间,平均为56.2×10⁻⁶,中位数为2×10⁻⁶。 w(Sb)由低于检测限到1370×10⁻⁶之间,平均为67.1× 10⁻⁶,中位数为2.63×10⁻⁶。由阶段I到阶段Ⅲ,w(Sn) 略有降低趋势(图6h),阶段I为0.41×10⁻⁶~605×10⁻⁶ (平均值为62.8×10⁻⁶,中位数为2.15×10⁻⁶,n=13),阶 段II为0.24×10⁻⁶~1710×10⁻⁶(平均值为60.1×10⁻⁶,中 位数为1.64×10⁻⁶,n=48),阶段Ⅲ为1.52×10⁻⁶~351× 10⁻⁶(平均值为33.4×10⁻⁶,中位数为2.17×10⁻⁶,n= 12);w(Sb)有增高趋势(图6i),阶段I为0.02×10⁻⁶~ 30.0×10⁻⁶(平均值为4.62×10⁻⁶,中位数为2.58×10⁻⁶,n =13),阶段II由低于检测限至1370×10⁻⁶(平均值为 77.4×10⁻⁶,中位数为2.33×10⁻⁶,n=48),Ⅲ阶段为 0.05×10⁻⁶~458×10⁻⁶(平均值为93.8×10⁻⁶,中位数为 23.8×10⁻⁶,n=12)。

(6)含微量Ga、Ge和Co元素,其中w(Ga)在
0.01×10⁻⁶~14.6×10⁻⁶之间,平均值为1.72×10⁻⁶,中位
数为0.43×10⁻⁶;w(Ge)在0.08×10⁻⁶~5.35×10⁻⁶之间,平

2023年

表1 复兴屯矿床闪	锌矿LA-ICP-MS测试结果(w(B)/10 ⁻⁶)
-----------	---

 Table 1
 LA-ICP-MS analytical results (w(B)/10⁻⁶) for sphalerite from the Fuxingtun deposit

样品号	成矿阶段	Mn	Fe	Co	Ni	Cu	Ga	Ge	As	Se	Ag	Cd	In	Sn	Sb	Tl	Bi	Pb
FX84-1	阶段 I	418	10337	0.67	1.51	11398	0.19	0.71	42.5	1.36	27.1	1297	5572	15.4	0.15	0	5.49	27.5
FX84-2	阶段 I	385	10348	0.90	1.50	2746	0.14	0.61	40.7	1.35	14.7	1192	1585	13.4	0.02	0	0.01	0.05
FX91-2-3	阶段 I	80.0	4858	1.14	0	4457	0.43	0.26	3.64	0.83	297	1226	573	1.31	2.18	0.05	149	5605
FX239-1	阶段 I	8699	42445	38.5	1.04	306	0.04	0.49	6.70	1.32	46.2	2511	481	2.13	2.58	0.05	0.01	2.35
FX239-2	阶段 I	1422	75771	12.8	1.16	1114	0.51	0.62	13.4	1.21	143	2090	735	36.1	4.17	0.05	0.26	6.68
FX239-3	阶段 I	1594	68416	0.04	1.19	442	0.25	0.62	4.01	1.23	64.5	1986	633	2.15	0.39	0.01	0.01	0.68
FX239-4	阶段 I	2640	99128	0.95	1.27	4285	2.68	1.17	3.08	1.27	581	2208	829	605	3.76	0.19	13.1	166
FX239-5	阶段 I	2462	91938	0.11	1.26	386	3.44	4.67	0.94	1.33	127	1726	243	127	30.0	0.05	5.98	90.2
FX72-1	阶段 I	1151	61272	0.58	0.03	60.3	0.04	0.40	1.06	1.43	2050	713	89.8	0.41	0.46	0	0.01	250
FX72-2	阶段 I	1254	53139	0.24	0.05	133	0.12	0.34	2.80	0.93	13619	847	45.3	0.86	5.40	0.02	0.05	6972
FX72-3	阶段 I	1407	71054	0.60	0.03	117	0.07	0.45	1.88	0.65	8927	997	72.7	0.45	4.69	0.02	0	11178
FX72-4	阶段 I	1915	79565	0.08	0.02	77.6	0.22	0.41	1.14	1.34	2896	1149	30.5	1.70	1.40	0.01	0.02	2063
FX72-5	阶段 I	1448	98271	0.01	0.07	90.4	1.55	0.55	2.42	0.75	3609	2010	38.8	10.3	4.86	0.02	0.02	3774
FX17-1	阶段Ⅱ	719	2524	0.84	1.44	128	0.09	0.35	5.18	1.20	13.1	1021	0.21	1.63	0.53	0	0.01	0.30
FX17-2	阶段Ⅱ	171	1586	0.85	1.44	311	0.16	0.47	3.51	2.08	41.9	1068	0.05	1.57	4.01	0.16	0.01	10383
FX12-2-3	阶段Ⅱ	288	4026	0.28	0.36	2630	7.92	0.39	157	1.35	2545	211	4.61	205	1370	1.75	0.18	68110
FX12-1-3	阶段Ⅱ	1732	20615	3.40	0.02	2442	14.6	1.29	35.7	1.15	95.3	1370	0.96	6.44	175	0.01	0.02	91.6
FX12-1-4	阶段Ⅱ	1477	2044	0.06	0	1132	9.13	0.33	48.9	1.13	1234	253	0.52	13.8	587	0.70	0.01	1174
FX12-1	阶段Ⅱ	353	2904	3.82	3.36	1294	14.3	2.62	154	3.21	1776	163	1.09	22.4	664	13.5	0.04	12153
FX12-2	阶段Ⅱ	282	3331	1.24	1.57	1521	9.74	1.25	50.9	1.36	185	1324	7.39	53.0	76.6	0.49	0.03	16411
FX17-1-10	阶段Ⅱ	3225	7582	0.52	0.01	953	0.99	0.27	0	0.96	475	704	0.54	1.05	66.3	0.11	0.01	6.51
FX17-1-11	阶段Ⅱ	81.0	779	3.03	0.01	19.7	0.12	0.22	0	0.98	20.5	564	0.32	0.24	2.02	0.01	0.01	2.34
FX131-1	阶段Ⅱ	232	17757	0.04	1.09	1778	0.04	0.34	4.70	0.89	7.26	1076	2263	2.22	0.79	0.01	0.08	0.65
FX131-2	阶段Ⅱ	836	2033	7.41	1.06	4.99	0.06	0.27	6.39	0.98	4.01	1732	0.43	1.12	0.01	0	0.01	0.87
FX131-3	阶段Ⅱ	1224	3275	9.85	1.06	10.0	0.12	0.26	3.72	0.90	7.91	1757	0.14	1.25	0.16	0	0.02	4.70
FX131-4	阶段Ⅱ	1105	16298	4.32	1.20	87.8	0.04	0.34	4.33	1.03	7.19	1490	20.2	1.28	3.50	0.07	0.99	8.57
FX117-1	阶段Ⅱ	995	27937	4.67	1.54	48.9	0.46	0.66	7.58	1.66	1.84	1907	71.2	1.43	0.02	0	0.01	0.67
FX117-2	阶段Ⅱ	713	20260	1.70	1.52	29.5	1.04	0.74	8.97	1.64	2.41	2002	45.2	2.00	0.62	0.01	0.01	1.17
FX117-3	阶段Ⅱ	1387	45063	5.46	1.67	45.8	0.12	0.44	5.97	1.72	2.17	2091	69.5	1.65	0.02	0	0.01	0.10
FX117-4	阶段Ⅱ	670	28065	1.00	1.69	1760	0.55	0.65	12.2	1.84	27.6	1746	238	38.5	3.37	0.07	0.75	5.94
FX173-1	阶段Ⅱ	1450	19379	8.75	1.71	4095	0.08	0.87	29.6	1.63	19.1	1188	33.8	5.04	0.57	0	0.02	29.8
FX173-2	阶段Ⅱ	15233	5965	1.64	1.50	3732	0.26	0.59	37.1	1.42	47.7	1153	16.5	2.28	8.02	0.09	17.7	156625
FX121-2-1	阶段Ⅱ	496	15595	0.02	0.04	230	0.02	0.08	1.66	1.70	18.5	798	409	0.26	1.02	0.04	0.25	1.64
FX121-2-2	阶段Ⅱ	1179	38388	0.01	0.01	22.2	0.15	0.32	0.39	1.35	4.12	1113	27.1	0.26	0.44	0.01	0.02	1.12
FX121-2-3	所投Ⅱ	144	12536	0.03	0.03	120	0.46	0.32	0.90	1.82	12.8	1011	220	0.78	1.45	0.01	0.31	6.89
FX121-2-4	所投 Ⅱ 匹□	1269	17060	1.58	0.03	328 25 7	0.21	0.27	1.20	1.70	0.52 5.17	1026	501	0.32	0.02	0	0	0.05
FX121-2-3	防戌Ⅱ	155	0200	1.96	0.03	124	0.01	0.50	1.29	1.55	5.17	957	04.5	0.45	0.02	0.01	0.02	1.10
FX121-2-0	防戌Ⅱ	350	27257	0.21	0.01	627	0.03	0.20	0.84	1.01	9.12	895	240	0.30	1.10	0.01	0.10	0.28
FA121-2-/	所段Ⅱ 险码 Π	690	21221 25216	0.31	0.15	30.0	0.22	0.33	0.84	1.01	20.1	501	52 4	3.09	152	354	0.01	528
FX72-1-1	防权Ⅱ	058	51075	0.24	0.15	52.0	0.90	0.28	2 55	0.01	048	381 714	08 1	0.41	2.62	0.01	0.02	2009
EX72.2.1	防戌Ⅱ	9007 2007	12815	0.14	0.05	J2.0	0.21	0.24	2.33 106	0.91	740 700	/14 254	70.1 32 5	1.20	2.03	0.01 8 / 2	0.02	2009 427
FX72-2-1	防段Ⅱ	1043	57128	0.04	0.02	40.9 97 N	0.63	0.55	24.7	1 57	/107	334 1046	127	1.29	24.8	0.45	0.01	+27 14374
FX72-2-2	防段Ⅱ	366	26424	0.10	0.00	34.3	0.05	0.31	2-+.7	0.02	128	607	78.7	0.44	24.0 272	0.03	0.01	9613
FX72-2-3	阶段Ⅱ	853	61230	0.20	0.00	60 1	0.18	0.31	4.83	0.92	602	760	134	0.41	11.0	0.06	0.02	1585
FX72-3-1	阶段Ⅱ	810	63985	0.05	0.04	58.0	0.21	0.47	0.94	1.12	122	864	133	3.08	0.46	0.01	0.01	62.7

续表 1 Continued Table 1

U		u	υu	π.	4.0	1	-	L
								_

样品号	成矿阶段	Mn	Fe	Co	Ni	Cu	Ga	Ge	As	Se	Ag	Cd	In	Sn	Sb	Tl	Bi	Pb
FX72-3-2	阶段Ⅱ	572	46661	0.08	0.02	38.5	0.10	0.27	1.79	0.66	50.5	591	89.4	0.35	1.91	0.01	0	33.3
FX79-1	阶段Ⅱ	1165	32683	1.91	1.26	1654	0.61	0.82	10.5	1.37	157	2230	696	10.1	5.22	0.01	11.8	757
FX94-1-1	阶段Ⅱ	51.2	1421	1.74	0	508	0.04	0.19	1.00	0.84	26.5	734	924	1.22	0.66	0	0.75	7.85
FX94-1-2	阶段Ⅱ	43.0	1401	0.58	0.02	180	1.59	0.24	1.73	1.33	14.7	998	304	5.06	3.45	0.01	0.05	1.30
FX94-1-3	阶段Ⅱ	95.3	3001	0.73	0.03	1512	0.07	0.23	0.82	0.83	24.1	785	2652	9.37	1.01	0	0.06	0.81
FX94-1-4	阶段Ⅱ	69.8	2041	0.57	0	771	0.07	0.17	0.92	0.93	10.6	867	1458	5.59	0.01	0	0	0.02
FX94-1-5	阶段Ⅱ	359	12954	0.22	0.03	3527	0.04	0.08	0.65	0.92	41.7	548	6323	0.44	0	0	0	0.03
FX233-1	阶段Ⅱ	1617	47242	1.80	1.33	860	5.82	1.22	42.4	1.27	1677	2313	112	214	13.8	0	7.40	10590
FX233-2	阶段Ⅱ	1401	52619	0.75	1.33	1712	5.36	1.10	38.6	1.26	1805	2693	140	298	29.9	0.01	11.7	30928
FX233-3	阶段Ⅱ	944	69393	0.34	1.42	818	6.34	1.54	36.5	1.36	132	2238	530	1710	27.1	0.01	1.17	566
FX237-1	阶段Ⅱ	1305	62973	1.15	0	51.1	0.90	0.68	1.12	1.25	25.7	1057	89.4	0.70	1.38	0	1.36	189
FX237-2	阶段Ⅱ	360	29463	0.50	0.13	56.2	0.53	0.36	16.3	1.44	139	945	29.0	61.4	40.2	0.04	0.22	50.8
FX234-1	阶段Ⅱ	670	43056	7.68	0.09	129	6.52	0.48	29.6	1.04	476	983	230	115	17.2	0.03	2.58	3925
FX234-2	阶段Ⅱ	1232	51986	1.23	0.15	391	3.39	1.17	52.1	1.46	214	1178	536	78.2	54.3	0.01	9.41	530
FX76-1	阶段Ⅱ	1138	51539	4.87	1.41	890	0.10	0.59	46.7	1.25	127	1828	215	1.92	0.50	0.10	187	12335
FX76-1-1	阶段Ⅲ	184	8403	4.48	1.29	71.1	0.33	0.73	34.0	1.25	11.1	1677	94.1	12.8	0.22	0	0.09	3.86
FX234-1-1	阶段Ⅲ	166	11026	0.61	0.01	20.2	2.38	0.64	2.56	1.08	52.9	556	1.88	2.62	22.9	0.01	0.04	23.9
FX234-1-2	阶段Ⅲ	231	11618	0.75	0.02	117	2.27	2.25	29.5	1.11	664	792	34.2	2.55	458	0.43	0.26	4176
FX234-1-3	阶段Ⅲ	155	11217	0.33	0.02	44.3	0.85	1.06	5.36	0.91	178	731	97.0	1.80	37.6	0.03	0.50	14228
FX4-1-1	阶段Ⅲ	130	1525	0.05	0	775	5.78	1.84	9.21	0.93	89.3	1406	0.02	2.04	24.7	0.43	0.01	9906
FX237-1-1	阶段Ⅲ	205	12469	1.26	0	29.7	1.18	3.06	3.84	1.04	104	780	21.7	1.52	36.8	0.01	0.70	7693
FX237-1-2	阶段Ⅲ	257	14331	2.10	0.05	77.3	1.86	5.35	16.0	0.69	185	745	38.2	1.57	85.8	0.01	0.30	5884
FX81-1	阶段Ⅲ	572	18422	1.83	1.49	15175	2.11	0.85	12.4	1.59	428	1450	496	18.5	2.05	0.16	4.24	312
FX81-2	阶段Ⅲ	550	36141	2.50	1.42	3925	0.17	0.31	7.61	2.95	30.6	3043	1638	351	0.05	0	0.01	0.09
FX13-2-1	阶段Ⅲ	692	11565	0.08	0.02	3454	0.55	1.88	60.2	1.04	181	1323	0.05	2.30	455	0.04	0.20	1657
FX29-1	阶段Ⅲ	2126	3003	13.4	1.44	410	2.19	0.40	3.03	1.21	18.9	1309	0.01	1.75	1.79	0.03	0.01	14.5
FX29-2	阶段Ⅲ	2182	3011	12.7	1.48	27.6	0.88	0.61	2.90	1.26	5.26	1323	0.01	1.77	0.10	0.01	0.01	0.68
												10.11 /	SU -					

注:加删除线的数据为含有矿物包裹体导致的异常值。

均值为0.78×10⁻⁶,中位数为0.48×10⁻⁶; w(Co)在 0.01×10⁻⁶~38.5×10⁻⁶之间。由阶段 I 到阶段 III,Ga、 Ge有增高趋势(图6j、k),闪锌矿中w(Ga)在 I 阶段 为0.04×10⁻⁶~3.44×10⁻⁶(平均值为0.74×10⁻⁶,中位数 为0.22×10⁻⁶,n=13),阶段 II 为0.01×10⁻⁶~14.6×10⁻⁶ (平均值为1.99×10⁻⁶,中位数为0.22×10⁻⁶,n=48),阶 段 III 为0.17×10⁻⁶~5.78×10⁻⁶(平均值为1.71×10⁻⁶,中 位数为1.52×10⁻⁶,n=12)。w(Ge)在阶段 I 为0.26× 10⁻⁶~4.67×10⁻⁶(平均值为0.87×10⁻⁶,中位数为0.55× 10⁻⁶,n=13),阶段 II 为0.08×10⁻⁶~2.62×10⁻⁶(平均值 为0.55×10⁻⁶,中位数为0.38×10⁻⁶,n=48),阶段 III 为 0.31×10⁻⁶~5.35×10⁻⁶(平均值为1.58×10⁻⁶,中位数为 0.96×10⁻⁶,n=12)。由阶段 I 到阶段 III,w(TI)变化不 明显(图61),阶段 I 为低于检测限至0.19×10⁻⁶(平均 值为0.04×10⁻⁶,中位数为0.02×10⁻⁶,n=13),阶段 II 为低于检测限至13.5×10⁻⁶(平均值为0.61×10⁻⁶,中 位数为0.01×10⁻⁶, n=48),阶段Ⅲ为低于检测限至 0.43×10⁻⁶(平均值为0.10×10⁻⁶,中位数为0.02×10⁻⁶, n=12)。

综上所述,由阶段Ⅰ到阶段Ⅲ,闪锌矿中Fe、 Mn、In含量逐渐降低,而Ga、Ge、Sb、Co含量略呈增 加趋势。

5 讨 论

5.1 微量元素赋存形式

相对于电子探针,LA-ICP-MS可以更精确的获 得硫化物中各种低含量元素的组成,结合剥蚀曲线 与元素间相关性图解,可以对各种微量元素在硫化 物中的赋存状态进行研究(Cook et al., 2009; George 床

地

质

1206

Fig. 6 Box plots of trace element content of sphalerite in the Fuxingtun deposit

et al., 2015; 2016; Ye et al., 2011)。前人通常认为 Fe、Mn、Cd等元素以类质同象形式进入闪锌矿晶格 之中(刘英俊等,1984; Ye et al., 2011),置换形式为 Zn²⁺↔Fe²⁺/Mn²⁺/Cd²⁺或S²⁻↔Se²⁻,而对于闪锌矿中常 见的Pb、Cu、Ag、Sn、Tl、Sb、In等微量元素的赋存机 制尚有较大争议,如前人研究认为,Cu可能和Sn置 换Zn进入闪锌矿晶格,置换公式为3Zn²⁺↔2Cu⁺+ Sn⁴⁺(Ye et al., 2011), Ag和Sn共同置换Zn进入闪锌 矿晶格,置换公式为3Zn²⁺↔2Ag⁺+Sn⁴⁺(Cook et al., 2009)。

复兴屯矿床闪锌矿中Fe、Mn、Cd、Pb、Sb、Cu、 Ag、In等多种微量元素含量相对较高。其中Fe、Mn 和Cd在所有LA-ICP-MS时间分辨率剖面图中均呈 平缓曲线,与Zn和S剥蚀曲线变化一致(图7a、b), 表明这3种元素以类质同象形式赋存于闪锌矿之 中。复兴屯矿床部分闪锌矿中Cu和In的剥蚀曲线

为平缓曲线,与Zn和S的剥蚀曲线变化一致(图 7a~c),且Cu与In展示出较好的正相关关系(图8a), 这暗示了Cu和In可以类质同象形式进入闪锌矿晶 格之中。Cu⁺、Zn²⁺和In³⁺的四面体共价半径分别为 1.27Å、1.30Å和1.46Å(Pekka, 2012),相对于In³⁺, Cu⁺四面体共价半径与闪锌矿更为接近,而Cu⁺的四 面体共价半径略小于Zn²⁺,Cu⁺与In³⁺结合则更接近 Zn²⁺四面体共价半径,因此Cu⁺与In³⁺结合则更接近 质同象替换Zn²⁺,在图8a中,多数投影点呈一条较为 平直的直线,根据该趋势线斜率推测其置换的形式 更可能为Cu⁺+In³⁺→2Zn²⁺,这亦与前人研究相一致 (Ye et al., 2011)。需要说明的是,有部分点投影在 趋势线下方,表明分析点中Cu含量较高,这可能与 闪锌矿中含黄铜矿等矿物的微晶包裹体有关。复兴 屯矿床闪锌矿中Ag的LA-ICP-MS时间分辨率剖面 图中常为平缓曲线(图7a~c),与Zn基本一致,表明 Ag可以呈固溶体形式存在于闪锌矿中。Ag⁺的四面 体共价半径为1.47Å(Pekka,2012),稍大于Zn²⁺四面 体共价半径,存在与Cu⁺联合置换Zn²⁺的可能。另 外,Cu与Ag展示出较明显的相关性(图8b),但其拟 合优度较低,难以推测出其类质同象替换形式,这可 能是受部分闪锌矿中Ag矿物微晶包裹体和黄铜矿 微晶包裹体的干扰以及Cu与In的联合类质同象置 换影响。图8b中存在明显两种斜率的趋势线,表明闪

图 7 闪锌矿 LA-ICP-MS 时间分辨率剖面图 7 Representative time-resolved depth profiles of LA-ICP-MS analysis for sphalerite

图 8 复兴屯矿床闪锌矿 Cu-In(a)、Cu-Ag(b)、Pb-Sb(c)、Pb-Bi(d)关系图 Fig. 8 The diagrams of Cu-In(a), Cu-Ag(b), Pb-Sb(c) and Pb-Bi(d) for sphalerite from the Fuxingtun deposit

锌矿中Ag除了可以类质同象形式进入闪锌矿晶格 外,还存在于含银矿物的微晶包裹体之中。

此外,该矿床闪锌矿中Pb含量较高,且变化极 大,最高相差7个数量级。在LA-ICP-MS时间分辨 率剖面图中均呈凹凸不平的曲线(图7),表明Pb是 以显微包裹体形式存在的,在闪锌矿剥蚀曲线中,偶 见Pb与Bi的剥蚀曲线形态近似(图7a),亦有部分 Pb与Sb的剥蚀曲线形态近似(图7c),对Pb-Bi和Pb-Sb分别进行相关性投图,二者均显示出较好的正相 关性(图8c、d),鉴于Bi和Sb含量通常远低于Pb,且 Bi和Sb在方铅矿中通常呈固溶体形式存在(Hoda, 1975; Amcoff, 1976),笔者认为本矿床Bi、Sb和Pb主 要以类质同象的形式赋存于闪锌矿的方铅矿显微包 裹体中。

5.2 对成矿过程的启示

闪锌矿中的微量元素,尤其是以类质同象进入 闪锌矿晶格之中的元素,在置换晶格中元素时受物 理化学条件的制约,而其元素浓度、成矿温度、压力 和pH值是主要影响因素,不同的成矿条件会导致这 些元素的含量发生改变(Cook et al., 2009; Ye et al., 2011)。复兴屯矿床的闪锌矿常见有韵律成分环带 (图 9a)。为更好地了解成矿过程,笔者对选择阶段 II 中粗粒闪锌矿不同颜色环带微量元素含量进行对 比,发现深红棕色闪锌矿 Fe、Mn含量明显较高,而 Cd等其他元素含量未见明显异常(图 9b)。这表明 闪锌矿韵律环带与Fe、Mn等元素含量波动有关,同 时也说明了Fe、Mn是闪锌矿的有效致色元素,而Cd 则对闪锌矿颜色影响不大。闪锌矿韵律环带的大量 出现反映了闪锌矿形成过程中的震荡环境(Huston et al., 1995),闪锌矿颜色与成矿流体温度、压力、元 素浓度、pH值变化关系密切(Maslennikov et al., 2009; Thomas et al., 2011; 赛盛勋等, 2020)。通常认 为闪锌矿形成温度与Fe含量关系密切,但分析证明 闪锌矿不同颜色环带中发育的流体包裹体均一温度 没有明显区别,更没有出现规律性的升高和降低(未 发表数据);外来流体的周期性加入可能会导致元素 浓度和pH值发生这种周期性的波动,复兴屯矿床成 矿流体为岩浆水与大气降水混合流体(未发表资 料),但大气降水的混入是持续过程,并非周期性加 入。因此,闪锌矿韵律环带的形成更可能与成矿过 程中周期性的压力波动有关(赛盛勋等,2020)。复 兴屯矿床赋矿的酸性火山岩-火山碎屑岩具有较高 的渗透性,当流体内压相对较低时,形成水压裂隙及 扩张口,成矿流体压力降低,并形成细脉状、浸染状 和团块状矿化(图3b),随着流体内压逐渐增强至远 大于外压时,发生隐爆作用,形成隐爆角砾岩(图 3c)。在阶段 II,大量流体上涌进入裂隙并发生大规 模矿质沉淀,闪锌矿韵律环带的存在表明发生隐爆 作用时流体压力可能并非直接降低至静水压力,而 是在降低过程中存在多次压力波动(赛盛勋等, 2020),复兴屯矿床黄铁矿常发生破裂(图 3j)亦指示 了这一过程。Fe、Mn作为最容易进入到闪锌矿晶格 的元素,震荡的压力环境使得这些元素周期性的进 入到闪锌矿晶格之中并形成韵律环带。阶段Ⅲ的矿

图9 闪锌矿环带点位图(a)及微量元素分布图(b)

Fig.9 Analysis points position map (a) and element map (b) of the sphalerite oscillatory zoning

				Table	2 Ti	race el	ement	s of sp	ohalerit	e fron	1 diffe	rent ty	pes o	f depo	sits			
矿床	极值								w(B)/1	0-6								粉捉来源
19 DR	议正	Mn	Fe	Co	Ni	Cu	Ga	Ge	As	Se	Ag	Cd	In	Sn	Sb	Tl	Pb	\$X1/17/10/1
								中高	温岩浆热	热液矿床	ŧ							
拜仁	最小值	1036	111201	0.67	0.02	517	2.62	0.07	-	-	-	1826	4.87	-	0.54	0.01	5.02	和汉族
达坝	最大值	1895	142137	16.3	7.57	6506	11.6	0.34	-	-	-	2883	257	-	331	0.17	9669	住伴律,
矿床	平均值	1453	129216	5.27	1.46	2898	7.25	0.14	-	-	-	2310	125	-	56.6	0.06	2572	2015
边家	最小值	1085	103752	1.24	0.15	712	3.28	0.1	-	-	-	3392	23.1	-	1.13	0.01	4.85	
大院	最大值	3029	132437	55.6	7.82	4327	6.7	0.25	-	-	-	4493	522	-	118	0.52	12980	性 律峰,
矿床	平均值	2013	121790	19.0	2.43	2383	5.58	0.15	-	-	-	4292	290	-	43.4	0.18	1847	2015
-1217 -12-	最小值	601	72900	3.26	1.77	65.9	0.7	0.19			3.68	1054	3.3	4.23		0.05	11.77	叶霖等,2017;
	最大值	3434	118700	198.4	34.2	19310	7.51	1.65			334.7	2276	535	105.8		13.6	74250	尹文杰等,
旬床	平均值	1600	107175	84	9.17	4422	2.65	0.77			89.98	1626	426	34.12		1.9	5267	2019
_L	最小值	1905	70600	0.38	1.35	502	2.51		27.9			3484	92.9	8.88	38		39.4	
人)	最大值	4059	130000	172	7.88	8525	29.6		9011			4718	1421	2451	12100		12351	皮 价 件 寺,
矿床	平均值	3104	105000	15	3.3	2392	10.5		1462			4247	903	411	1190		1309	2015
维拉	最小值	416	13937	0.03	0.47	237	1.03	0.24			1.2	1627	147	1.4	0.09		0.1	
斯托	最大值	1133	235591	3.66	13.93	31929	20.98	1.14			1015	3424	385	25016	1184		119986	陶三初,
矿床	平均值	625	89662	1.03	4.37	5552	6.33	0.50			68.0	2658	225	2338	66.9		5719	2017
	斑岩-浅成低温热液矿床																	
纳如	最小值	4.64	26000	0.28	0.49	1.04	0.07	0.2	0.12	-	0.06	1916	0.11	13.2	0.05		0.09	
松多	最大值	15131	82200	370	11.5	23821	16.6	1.11	1.12	-	114	3966	3.55	35.6	17.5		65026	龚雪婧等,
矿床	平均值	2482	40503	150	4.10	594	3.54	0.66	0.56	-	8.69	2742	0.71	17.4	2.07		1098	2019
9 /1	最小值	47.5	25800	0.03	0.49	9.72	0.02	0.25	0.28	-	1.52	1350	0.12	10.5	0.05		0.75	
冷水坑	最大值	8263	136000	12.9	1.38	6071	7.38	5.44	498	-	2977	4722	445	1180	101		35992	龚雪婧,
矿床	平均值	1848	83500	1.66	0.76	977	2.35	0.99	43.1	-	348	3044	91.8	108	11.2		3188	2017
	最小值	26	700	0.04	0	41	0	0	0	-	12	117	3	1	0.09	0	6	
斯弄多	最大值	3059	28000	39.55	1 47	9878	10.1	1.95	6093	-	1798	5637	810	2547	26.9	0.64	40772	Yang et al.,
矿床	平均值	770	9888	9 50	0.27	1326	1 75	0.25	246	-	245	3817	203	208	4 56	0.16	3741	2020
	1 × J IE		7000	7.50	0.27	1520	1.75	0.25	上:0 由状硫化	と物矿床	:	5017	205	200	4.50	0.10	0711	
	基小店	2626	121604	0.07	0.03	110	2 27	2 11	0.20	0.54	18	8206	66	2 23	Coo	0.004	0.3	
老厂	最大值	4111	154203	4.41	1.66	2020	117.1	2.11	36.4	4 75	10.1	0600	566	38 11	4.1	2 57	556	Ye et al.,
矿床	取八直	3060	130816	0.00	0.24	2020	23.1	13.15	3.03	2.64	6 70	8730	200	7.01	1.01	0.38	25.5	2011
	- 号直 - 最小佰	675	102807	0.90	0.03	110	23.1	2.57	0.17	0.36	0.79	4650	110	1.01	0.1	0.002	1.5	
大宝山	最十值	2642	125441	6.50	0.53	5803	01.7	4.19	4.05	4.07	109	5051		47	10	0.002	1.5	Ye et al.,
矿床	取八直	2042	116512	2.14	0.55	787	20.2	2.25	4.05	1.36	34.0	5600	227	12	4.07	0.02	27.3	2011
	干均阻	2140	110312	2.14	0.14	101	29.2	5.25	1.12 MVT #17	1.30 計庫	34.9	3009	JI 227	12	4.07	0.05	21.3	
	目上体	7	1072	0	0.02	-	0.05	2	MIVI 空4	9 /A	1.14	004	0.000	0.07	0	0	0.4	
会泽	取小 <u></u> 日上佐	200	4873	0	0.02	/	0.05	3	0.23	0.12	6	··· 894	0.002	0.07	0	0	0.4	Ye et al.,
矿床	取人祖	300	47248	0.06	0.24	1188	21.1	354	385	1.64	76.8	4647	5.61	27.4	307	0.83	6/./	2011
	平均值	96.1	21209	0.03	0.08	287	3.93	82.4	33.2	0.65	22.7	2120	0.70	1.66	28.8	0.08	9.94	
牛角塘	東小 徂	1	985	0.003	0.01	0.04	0.02	2.15	0.19	0.16	3.5	956	0	0.09	0.01	0.06	28	Ye et al.,
矿床	最大值 亚 b 在	225	77235	2.07	6.22	302	64.5	547	11.01	1.17	75.4	26998	0.75	12.3	1.4	43.6	3493	2011
	半均值	28.6	11860	0.18	0.33	71.4	11.1	82.4	1.3	0.51	11.1	10302	0.09	1.58	0.14	4.08	474	
勐兴	敢小 徂		79	0.06	0.02	2	0.22	2.28	0.15	0.3	3.8	7048	0.002	0.09	0.5	3.6	160	Ye et al.,
矿床	最大值 五 4 4	1451	14789	17.0	38	201	7.09	56.7	578	3.76	5.1	16560	0.04	0.46	158	18.1	3031	2011
	半均值	147	5331	2.38	3.47	88.4	2.21	16.1	73.2	0.95	4.27	12135	0.01	0.21	49.7	8.71	712	
金顶	最小 值	1	53	0.02	0.02	1	0.37	1.82	2.15	0.3	3.4	187	0.002	0.13	0.3	2	54	Ye et al.,
矿床	最大值	1937	3625	26	5.73	2798	10.87	75.11	257.86	10.4	136.2	68552	1.384	12.3	159.9	73.3	12955	2011
	半均值	188	1344	5.89	0.66	390	2.57	11.0	30.0	3.59	22.8	17374	0.12	1.00	13.9	14.7	1466	
								1	的卡岩型	矿床								
核桃坪	最小值	1241	20311	70	0.02	6	0.06	2.51	0.18	7.65	4.4	3991	0.001	0.06	0	0.002	0.2	Ye et al
矿床	最大值	5766	114483	473	0.47	8337	1.84	3.26	3.49	85.9	25.2	6995	0.18	0.23	21.5	0.075	364	10 et al.,
·//N	平均值	3073	52775	212	0.11	622	0.53	2.84	0.54	31.4	8.30	4738	0.05	0.11	4.60	0.013	37.4	2011
芦子园	最小值	601	43040	212	0.16	5	0.11	2.53	0.17	1.18	3.8	1688	0.005	0.03	0.01	0.002	0	Ye et al
矿床	最大值	2143	105858	461	1.16	873	1.03	3.73	4.74	136.5	17.2	2393	0.117	9.11	26.1	0.228	1545	2011
17 PN	平均值	1070	66805	363	0.39	103	0.33	2.99	1.02	45.2	5.96	2147	0.05	1.08	5.90	0.03	123	2011

表2 不同类型矿床闪锌矿微量元素特征

 Table 2
 Trace elements of sphalerite from different types of deposit

石中含有金红石及赤铁矿,亦有少量重晶石的发现。 这表明成矿流体在阶段Ⅲ的氧逸度较高,而阶段Ⅰ 和阶段Ⅱ中未发现此类矿物,表明成矿流体氧逸度 是逐渐升高的。其原因可能与成矿流体进入到扩容 空间时压力迅速降低及随后的水压波动诱发流体相 分离,导致H₂S等还原性气体大量逃逸有关。

闪锌矿中微量元素组成特征与成矿温度关系密 切,已有研究资料表明,形成于高温条件下的闪锌矿 往往以富Fe、Mn、In和较高的In/Ge比值为特征,而 低温条件下形成的闪锌矿则以富Ge、Cd和较低的 Fe、Mn、In/Ge比值为特征(刘英俊等,1984;蔡劲宏 等,1996;叶霖等,2016)。复兴屯矿床闪锌矿中Fe 含量均低于高温的铁闪锌矿(w(Fe)>10%),阶段 I 闪 锌矿Fe、Mn和In含量相对较高,在阶段 II 和阶段 III 闪锌矿中逐渐降低,Ga、Ge、Sb、Co含量则略有增加 (图6),流体包裹体测温研究表明成矿流体温度在 124~274℃,为低温流体。复兴屯闪锌矿各阶段内元 素含量差异亦较大(表1),其原因与周期性水压波动 形成的闪锌矿环带有直接关系,测试点为深色环带 时 Fe、Mn含量较高,而浅色环带则 Fe、Mn含量 较低。

5.3 矿床成因类型

闪锌矿的微量元素特征不仅能揭示银铅锌矿床 的元素地球化学特征,还可以反映其成因类型(Gottesmann et al., 2007; Ishihara et al., 2007; Cook, 2009; 2011; 胡鹏等, 2014)。本次对中国典型块状硫化物 矿床、矽卡岩矿床、MVT型矿床、中高温岩浆热液矿 床和斑岩-浅成低温热液矿床中的闪锌矿微量元素 特征进行了统计,结果表明MVT型矿床的闪锌矿具 有富集 Ge、Cd、Tl,贫 Fe、Mn、In、Sn 的特征(Ye et al., 2011);块状硫化物矿床的闪锌矿以富集Fe、Mn、Cd、 In,贫Sn、Pb为特征;砂卡岩型矿床的闪锌矿以富集 Co和贫In、Fe、Sn、Cd为特征;中高温岩浆热液矿床 (锡多金属矿床)的闪锌矿多具有富Fe、Cu、In、Sn、 Pb,贫Ge、Cd的特征,斑岩-浅成低温热液型银铅锌 矿床的闪锌矿多具富Cu、Pb、Ag、Sn,贫Fe、Ga、Ge、 Cd的特征(表2)。复兴屯矿床闪锌矿LA-ICP-MS分 析结果表明闪锌矿呈富集Cu、Pb、Ag,贫Fe、Ga、Ge、 Cd的特征。其Fe含量明显低于块状硫化物矿床和 中高温岩浆热液矿床,Ge含量较MVT型矿床明显 偏低,且Ag、Pb、Cu含量明显偏高。相对于矽卡岩型 矿床,该矿床In、Pb、Sb含量明显较高,与斑岩-浅成 低温热液矿床特征基本一致。综上,尽管复兴屯矿 床不同阶段闪锌矿微量元素有一定差别,但是其总体特征明显区别于块状硫化物矿床、砂卡岩矿床、 MVT型矿床和中高温岩浆热液矿床,与斑岩-浅成低 温热液矿床特征较为一致。

复兴屯矿床主要赋存于早白垩世火山岩及火山 碎屑岩中,发育金属矿物组合主要为:贫铁闪锌矿+ 方铅矿+黄铜矿+(银)黝铜矿,围岩蚀变以高岭土化、 叶腊石化、菱锰(铁)矿化和玉髓化为特征。矿体主 要受隐爆角砾岩和水压裂隙控制,与浅成低温热液 矿床特征一致(Hendenquist et al., 2000; Sillitoe et al., 2003; Wang et al., 2019b)。综上,结合矿床地质 特征和闪锌矿微量元素特征,笔者认为复兴屯矿床 为浅成低温热液矿床。

6 结 论

(1)复兴屯矿床闪锌矿中Cu-In可联合置换闪 锌矿中的Zn,置换形式是Cu⁺+In³⁺↔2Zn²⁺,Cu-Ag 亦可联合置换闪锌矿中的Zn,但亦有部分Ag以显 微包裹体形式存在。Pb在闪锌矿中主要以方铅矿显 微包裹体的形式存在。

(2)复兴屯矿床闪锌矿常发育韵律环带结构, 环带中Fe、Mn含量规律性变化,这与成矿过程中流 体周期性压力波动导致Fe、Mn等元素周期性进入闪 锌矿晶格有关。成矿流体的周期性压力波动导致的 流体相分离是重要的矿质沉淀机制。

(3)复兴屯矿床闪锌矿微量元素以富集 Cu、 Ag、Pb,贫 Fe、Cd、Ga、Ge 为特征,区别于 MVT 型、 Sedex 型、VMS 型、砂卡岩型和中高温岩浆热液矿 床,与斑岩-浅成低温热液矿床相似,结合矿物组合 及围岩蚀变特征,笔者认为复兴屯矿床为浅成低温 热液矿床。

致谢本文野外工作得到了内蒙古国土资源 勘查开发有限责任公司各级领导的大力支持;LA-ICP-MS闪锌矿微量元素测试得到了南京聚谱检测 科技有限责任公司李亮的指导。在此一并致以诚挚 的感谢。

References

Amcoff Ö. 1976. The solubility of siliver and antimony in galena[J]. Neues Jahrbuch fur Mineralogic Monatshefte, 6: 247-261.

- Cai J H, Zhou W N and Zhang J Z. 1996. Typomorphic characteristics of sphalerites in the Yinshan copper, lead and zinc polymetallic deposit, Jiangxi[J]. Journal of Guilin University of Technology, 16 (4): 370-375(in Chinese with English abstract).
- Chen B, Jahn B M and Tian W. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Sr-Nd isotope compositions of subduction and collision-related magmas and forearc sediments[J]. Journal of Asian Earth Sciences, 34(3): 245-257.
- Cheng Z F. 2015. Zinc isotopes and minor elements in sphalerite from magmatic hydrothermal deposit in the middle southern part of Da Hinggan Mountains, China[D]. Tutor: Yang Y Q and Zhang A L. Beijing: China University of Geoscience (Beijing). 1-112(in Chinese with English abstract).
- Cogné J P, Kravchinsky V A, Halim N and Hankard F. 2010. Late Jurassic-Early Cretaceous closure of the Mongol-Okhotsk Ocean demonstrated by new Mesozoic palaeomagnetic results from the Trans-Baikal area (SE Siberia) [J]. Geophysical Journal of the Royal Astronomical Society, 163(2): 813-832.
- Cook N J, Ciobanu C L, Pring A, Skinner W, Shimizu M, Danyushevsky L, Saini E B and Melcher F. 2009. Trace and minor elements in sphalerite: A LA-ICPMS study[J]. Geochimica et Cosmochimica Acta, 73(16): 4761-4791.
- Cook N J, Ciobanu C L and Williams T. 2011. The mineralogy and mineral chemistry of indium in sulphide deposits and implications for mineral processing[J]. Hydrometallurgy, 108(3-4): 226-228.
- Di Benedetto F, Bernardini G P, Costagliola P, Plant D and Vaughan D J. 2005. Compositional zoning in sphalerite crystals[J]. American Mineralogist, 90(8-9): 1384-1392.
- Fan H R, Li X H, Zuo Y B, Chen L, Liu S, Hu F F and Feng K. 2018. In-situ LA-(MC)-ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit[J]. Acta Petrologica Sinica, 34 (12): 3479-3496 (in Chinese with English abstract).
- George L, Cook N J, Ciobanu C L and Wade B P. 2015. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study[J]. American Mineralogist, 100(2-3): 548-569.
- George L, Cook N J and Ciobanu C L. 2016. Partitioning of trace elements in co-crystallized sphalerite-galena-chalcopyrite hydrothermal ores[J]. Ore Geology Reviews, 77: 97-116.
- Gong X J. 2017. Study on the genesis of porphyry Pb-Zn deposits in continental settings of China: A case study of Narusongduo deposit in Tibet and Lengshuikeng deposit in Jiangxi[D]. Tutor: Hou Z Q and Yang Z S. Beijing: China University of Geoscience Beijing. 1-216(in Chinese with English abstract).
- Gong X J, Yang Z S, Zhuang L L and Ma W. 2019. Genesis of Narusongduo Pb-Zn deposit, Tibet: Constraint from in-situ LA-ICP-MS analyses of minor and trace elements in sphalerite[J]. Mineral Deposits, 38(6): 1365-1378(in Chinese with English abstract).
- Gottesmann W and Kampe A. 2007. Zn/Cd ratios in calcsilicate-hosted sphalerite ores at Tumurtijn-ovoo, Mongolia[J]. Geochemistry, 67

(4): 323-328.

- Hendenquist J W, Arribas R A and Gonzalez U E. 2000. Exploration for epithermal gold deposit[A]. In: Hagemann S G and Brown P E. (Eds.), Gold in 2000: Reviews in Economic Geology[C]. 245-277.
- Hoda S. 1975. Phase relations in the system PbS-Ag₂S-Sb₂S₂ and PbS-Ag₂S-Bi₂S₂[J]. American Mineralogist, 60: 621-633.
- Hu P, Wu Y, Zhang C Q and Hu M Y. 2014. Trace and minor elements in sphalerite from the Mayuan lead-zinc deposit, northern margin of the Yangtze Plate: Implications from LA-ICP-MS analysis[J]. Acta Mineralogica Sinica, 34(4): 461-468(in Chinese with English abstract).
- Huston D L, Sie S H, Suter G F, Cooke D R and Both R A. 1995. Trace elements in sulfide minerals from eastern Australian volcanichosted massive sulfide deposits: Part I. Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite: Comparison with δ^{34} S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Econ. Geol., 90(5): 1167-1196.
- Inner Mongolia Land and Resources Exploration and Development Co., Ltd. 2021. Metallogenic mechanism and prospecting prediction of the Baertolgoi-Fuxingtun Ag-Pb-Zn deposit in the Horqin Right Wing Front Banner, Inner Mongolia[R]. 1-285(in Chinese).
- Ishihara S, Hoshino K, Murakami H and Endo Y. 2006. Resource evaluation and some genetic aspects of indium in the Japanese ore deposits[J]. Resource Geology, 56(3): 347-364.
- Ishihara S and Endo Y. 2007. Indium and other trace elements in volcanogenic massive sulfide ores from the Kuroko, Besshi and other types in Japan[J]. Bulletin of the Geological Survey of Japan, 58 (1-2): 7-22.
- Large R R, Danyushevsky L, Hollit C, Maslennikov V, Meffre S, Gilbert S, Bull S, Scott R, Emsbo P, Thomas H, Singh B and Foster J. 2009. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits[J]. Econ. Geol., 104(5): 635-668.
- Liu Y J, Cao L M, Li Z L, Wang H N, Chu T Q and Zhang J R. 1984. Elemental geochemistry[M]. Beijing: China Science Publishing & Media Ltd. 1-548(in Chinese).
- Liu J M, Zhang R and Zhang Q Z. 2004. The regional metallogeny of Da Hinggan Ling, China[J]. Earth Science Frontiers, 11(1): 269-277 (in Chinese with English abstract).
- Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G and Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43.
- Liu Y F, Jiang S H and Bagas L. 2016. The genesis of metal zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) deposits in the shallow part of a porphyry Sn-W-Rb system, Inner Mongolia, China[J]. Ore Geology Reviews, 75: 150-173.
- Liu Y, Jiang S H, Bagas L, Han N, Chen C L and Kang H. 2017. Isoto-

- Lu L, Qin Y, Zhang K J, Han C Y, Wei T, Li F Z and Qu Z H. 2019. Provenance and tectonic settings of the late Paleozoic sandstones in central Inner Mongolia, NE China: Constraints on the evolution of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 77: 111-135.
- Mao J W, Zhou Z H, Wu G, Jiang S H, Liu C L, Li H M, Ouyang H G and Liu J. 2013. Metallogenic regularity and minerogenetic series of ore deposits in Inner Mongolia and adjacent areas[J]. Mineral Deposits, 32(4): 715-729(in Chinese with English abstract).
- Martín J D and Gil A S I. 2005. An integrated thermodynamic mixing model for sphalerite geobarometry from 300 to 850°C and up to 1GPa[J]. Geochimica et Cosmochimica Acta, 69(4): 995-1006.
- Maslennikov V V, Maslennikova S P, Large R R and Danyushevsky L V. 2009. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) [J]. Econ. Geol., 104 (8): 1111-1141.
- Monteiro L V S, Bettencourt J S, Juliani C and De Oliveira T F. 2006. Geology, petrography, and mineral chemistry of the Vazante nonsulfide and Ambrósia and Fagundes sulfide-rich carbonate-hosted Zn (Pb) deposits, Minas Gerais, Brazil[J]. Ore Geology Reviews, 28(2): 201-234.
- Ouyang H G, Mao J W, Zhou Z H and Su H M. 2015. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, northeastern China[J]. Gondwana Research, 27 (3): 1153-1172.
- Pi Q H, Hu R Z, Wang D H, Miu B K, Tan X F, Chen H Y. 2015. Enrichment of indium in West ore belt of Dachang orefield: Evidence from ore textures and sphalerite geochemistry[J]. Mineral Depo-sits, 34(2): 379-396(in Chinese with English abstract).
- Pekka P. 2012. Refitted tetrahedral covalent radii for solids[J]. Physical Review B, 85(2): 24115.
- Qiu K F, Marsh E, Yu H C, Pfaff K, Gulbransen C, Gou Z Y and Li N. 2017. Fluid and metal sources of the Wenquan porphyry molybdenum deposit, western Qinling, NW China[J]. Ore Geology Reviews, 86: 459-473.
- Ruan B X, Lv X B, Yang W, Liu S T, Yu Y M, Wu C M and Adam M M A. 2015. Geology, geochemistry and fluid inclusions of the Bianjiadayuan Pb-Zn-Ag deposit, Inner Mongolia, NE China: Implications for tectonic setting and metallogeny[J]. Ore Geology Reviews, 71(SI): 121-137.
- Sai S X and Qiu K F. 2020. Ore-forming processes of the Rushan gold deposit, Jiaodong: Fluid immiscibility induced by episodic fluid pressure fluctuations[J]. Acta Petrologica Sinica, 36(5): 1547-1566 (in Chinese with English abstract).
- Sillitoe R H and Hedenquist J W. 2003. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious

metal deposits[A]In: Simmons S F, Graham I, eds. Volcanic, Geothermal, and ore-forming fluids: Rulers and witnesses of processes within the Earth[C]. Society of Economic Geologists, Special Publication, 315-343.

- Tao L C. 2017. In situ LA-ICP-MS trace element analysis of sulfides from Weilasituo polymetallic deposit and its significance[D]. Tutor: Hou Q Y. Beijing: China University of Geoscience Beijing. 1-72(in Chinese with English abstract).
- Thomas H V, Large R R, Bull S W, Maslennikov V, Berry R F, Fraser R, Froud S and Moye R. 2011. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: Insights for ore genesis[J]. Econ. Geol., 106(1): 1-31.
- Wang J B, Wang Y W, Wang L J and Uemoto T. 2001. Tin-polymetallic mineralization in the southern part of the Da Hinggan Mountains, China[J]. Resource Geology, 51(4): 283-291.
- Wang C M, Deng J, Zhang S T, Xue C J, Yang L Q, Wang Q F and Sun X. 2010. Sediment-hosted Pb-Zn deposits in Southwest Sanjiang Tethys and Kangdian area on the western margin of Yangtze Craton[J]. Acta Geologica Sinica (English Edition), 84(6): 1428-1438.
- Wang T, Guo L, Zheng Y D, Donskaya T, Gladkochub D, Zeng L S, Li J B, Wang Y B and Mazukabzov A. 2012. Timing and processes of Late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes[J]. Lithos, 154(6): 315-345.
- Wang X, Ren Y S, Zhao D S and Ren X G. 2019a. Ore-forming fluids and ore genesis of the large Bayanbaolege Ag polymetallic deposit, southern Great Xing an Range, NE China[J]. Ore Geology Reviews, 111: 102987.
- Wang L, Qin K Z, Song G X and Li G M. 2019b. A review of intermediate sulfidation epithermal deposits and subclassification[J]. Ore Geology Reviews, 107: 434-456.
- Wu Y F, Evans K, Li J W, Fougerouse D, Large R R and Guagliardo P. 2019. Metal remobilization and ore-fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit[J]. Geochimica et Cosmochimica Acta, 245: 98-117.
- Xu W L, Pei F P, Wang F, Meng E, Ji W Q, Yang D B and Wang W. 2013. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences, 74(SI): 167-193.
- Yang L Q, Deng J, Wang Z L, Guo L N, Li R H, Groves D I, Danyushevsky L V, Zhang C, Zheng X L and Zhao H. 2016. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and eposition in a brittle epizonal environment[J]. Econ. Geol., 111(1): 105-126.
- Yang Z Y, Zhao X Y, Hu G Y, Wang Y, Ran F Q, Huang Y R, Wu X, Hao J Y and Xiao H T. 2020. Geology, geochronology, and geochemistry of the Sinongduo Ag-Pb-Zn deposit in the Gangdese

metallogenic belt: Implications of intermediate sulfidation mineralization in the Linzizong volcanic succession[J]. Ore Geology Reviews, 127: 103796.

- Ye L, Cook N J, Ciobanu C L, Liu Y P, Zhang Q, Liu T G, Gao W, Yang Y L and Danyushevskiy L. 2011. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study[J]. Ore Geology Review, 39(4): 188-217.
- Ye L, Li Z L, Hu Y S, Huang Z L, Zhou J X, Fan H F and Danyushevskiy L. 2016. Trace elements in sulfide from the Tianbaoshan Pb-Zn deposit, Sichuan Province, China: A LA-ICPMS study[J]. Acta Petrologica Sinica, 32(11): 3377-3393(in Chinese with English abstract).
- Ye L, Liu Y P, Zhang Q, Bao T, He F, Wang X J, Wang D P and Lan J B. 2017. Trace and rare earth elements characteristics of sphalerite in Dulong super large Sn-Zn polymetallic ore deposit, Yunnan Province[J]. Journal of Jilin University (Earth Science Edition), 47(3): 734-750(in Chinese with English abstract).
- Yin W J, Cheng Y S and Wu X B. 2019. Main element and trace element characteristics and metallogenic indication of sphalerite in Dulong Sn-Zn polymetallic deposit, Yunnan Province[J]. Southern Metals, 229(4): 18-23(in Chinese with English abstract).
- Yuan L L, Zhang X H, Xue F H and Liu F L. 2016. Juvenile crustal recycling in an accretionary orogen: Insights from contrasting Early Permian granites from central Inner Mongolia, North China[J]. Lithos, 264: 524-539.
- Zhou J B and Li L. 2017. The Mesozoic accretionary complex in Northeast China: Evidence for the accretion history of Paleo-Pacific subduction[J]. Journal of Asian Earth Sciences, 145(SI): 91-100.

附中文参考文献

- 蔡劲宏,周卫宁,张锦章.1996. 江西银山铜铅锌多金属矿床闪锌矿 的标型特征[J]. 桂林工学院学报, 16(4): 370-375.
- 程泽锋.2015. 闪锌矿锌同位素和微量元素在岩浆热液矿床中的初步研究[D]. 导师: 杨永强, 张安立.北京:中国地质大学(北京), 1-112.

- 范宏瑞,李兴辉,左亚彬,陈蕾,刘尚,胡芳芳,冯凯.2018.LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与 矿床形成的精细过程[J]. 岩石学报,34(12): 3479-3496.
- 龚雪婧. 2017. 大陆环境斑岩铅锌矿床成因研究——以西藏纳如松 多矿床与江西冷水坑矿床为例[D]. 导师: 侯增谦, 杨竹森. 北 京: 中国地质大学(北京). 1-216.
- 龚雪婧,杨竹森,庄亮亮,马旺.2019.闪锌矿LA-ICP-MS微量元素 组成对西藏纳如松多铅锌矿床成矿作用的制约[J].矿床地质, 38(6):1365-1378.
- 胡鹏, 吴越, 张长青, 胡明月. 2014. 扬子板块北缘马元铅锌矿床闪锌 矿 LA-ICP-MS 微量元素特征与指示意义[J]. 矿物学报, 34(4): 461-468.
- 刘建明,张锐,张庆洲.2004.大兴安岭地区的区域成矿特征[J]. 地学 前缘,9(1):269-277.
- 刘英俊,曹励明,李兆鳞,王鹤年,储同庆,张景荣.1984. 元素地球化 学[M]. 北京:科学出版社.1-548.
- 毛景文,周振华,武广,江思宏,刘成林,李厚民,欧阳荷根,刘军. 2013. 内蒙古及邻区矿床成矿规律与成矿系列[J]. 矿床地质,32 (4):716-730.
- 内蒙古自治区国土资源勘查开发有限责任公司.2021.内蒙古科尔 沁右翼前旗巴尔陶勒盖一复兴屯超大型银铅锌矿床成矿机制 与找矿预测[R].1-285.
- 皮桥辉,胡瑞忠,王登红,缪秉魁,覃小峰,陈宏毅.2015.广西大厂锡 多金属矿田西矿带稀散元素钢的富集规律研究—来自矿石组 构和闪锌矿地球化学的证据[J].矿床地质,34(2):379-396.
- 赛盛勋, 邱昆峰. 2020. 胶东乳山金矿床成矿过程: 周期性压力波动 诱发的流体不混溶[J]. 岩石学报, 36(5): 1547-1566.
- 陶兰初.2017.维拉斯托多金属矿床硫化物LA-ICP-MS微量元素特征 及其意义[D].导师:侯青叶.北京:中国地质大学(北京).1-72.
- 叶霖,李珍立,胡字思,黄智龙,周家喜,樊海峰,Leonid D. 2016.四川 天宝山铅锌矿床硫化物微量元素组成:LA-ICPMS研究[J]. 岩 石学报, 32(11):3377-3393.
- 叶霖,刘玉平,张乾,鲍谈,何芳,王小娟,王大鹏,蓝江波.2017.云南 都龙超大型锡锌多金属矿床中闪锌矿微量及稀土元素地球化 学特征[J].吉林大学学报(地球科学版),47(3):734-750.
- 尹文杰, 成永生, 吴湘滨. 2019. 云南都龙锡锌多金属矿床闪锌矿 主微量元素特征及其成矿指示意义[J]. 南方金属, 229(4): 18-23.