DOi:10.16111/j.0258_7106.2016.02.002
黑龙江白岭铜锌矿床成矿岩体形成时代及成矿构造背景
薄军委1,杨言辰1**,李骞2,马晓阳2,韩世炯1

(1 吉林大学地球科学学院, 吉林 长春130061; 2 黑龙江省地质矿产局,黑龙江 哈尔 滨150036)

第一作者简介薄军委, 男, 1990年生, 硕士研究生, 研究方向为成矿规律与成矿预测 。 Email: bojunwei@126.com
**通讯作者杨言辰, 男, 1965年生, 教授, 主要从事矿床学与矿产勘查等方 面研究。 Email: yyc@jlu.edu.cn

收稿日期2015_04_17

改回日期2016_03_15

本文得到中国地质调查局地质调查项目(编号: 1212011120342、12120113098300)的资助

摘要:黑龙江白岭铜锌矿床位于兴蒙造山带东段,小兴安岭-张广才岭成矿带中部,是滨东Cu-Mo-Pb-Zn-Fe矿集区矽卡岩型矿床的典型代表。LA-ICP-MS锆石U-Pb年龄显示,与成矿关系密切的正长花岗斑岩的锆石加权年龄为(177.7±1.5) Ma和(175.6±1.3) Ma,表明在早侏罗世滨东矿集区发生过一期重要的岩浆-热液成矿事件,其元素地球化学具有富碱、弱铝质、轻稀土元素富集、Eu中等负异常、富集大离子亲石元素、亏损高场强元素的特点,属于高分异I型花岗岩,具有活动大陆边缘弧岩浆地球化学属性。Rb/Sr比值>3.5,Nb/Ta比值≈11,且极度富集Pb,显示出壳源特征。结合东北地区的构造演化,研究表明白岭铜锌矿床成矿岩体形成于早侏罗世太平洋板块俯冲背景之下,为增厚地壳部分熔融的产物。
关键词: 地球化学;成矿时代;构造背景;白岭铜锌矿;黑龙江
文章编号: 0258_7106 (2016) 02_0225_20 中图分类号:P618.41; P618.43 文献标志码:A
Formation age and tectonic setting of ore-forming rock body in Bailing copper-zinc deposit, Heilongjiang Province
BO JunWei1, YANG YanChen1, LI Qian2, MA XiaoYang2 and HAN ShiJiong1

(1 College of Earth Sciences, Jilin University, Changchun 130061, Jilin, China; 2 Bureau of Geology and Mineral Resource
     of Heilongjiang Province, Harbin 1500 36, Heilongjiang, China)

Abstract:The Bailing Cu-Zn deposit, located in the eastern Hinggan-Mongolian orogenic belt and the middle Xiao Hinggan Mountains-Zhangguangcai Mountain metallogenic belt, is a typical representative of skarn type deposits in the Bingdong Cu-Mo-Pb-Zn-Fe ore concentration area. Zircon U-Pb age by LA-ICP-MS shows that ore-related syenogranite-porphyry from the Bailing Cu-Zn deposit has weighted average ages of (177.7±1.5) Ma and (175.6±1.3) Ma, which indicate that there was an important magmatic-hydrothermal mineralization event that occurred in the Bindong ore concentration area in the Early Jurassic. The syenogranite-porphyry is characterized by rich alkali, weak alumina, light REE enrichment, moderate negative Eu anomaly, enrichment of large ion lithophile elements and loss of high field strength elements, thus belonging to high differentiation I-type granite with geochemical characteristics of active continental margin arc magmatic rock. Trace element features (Rb/Sr>3.5, Nb/Ta≈11 and extremely concentrated Pb) indicate that the granite porphyry might have originated from the crustal source. Combined with the tectonic evolution in northeast China, the authors hold that the ore-forming rock body of the Bailing Cu-Zn deposit formed in the background of the Pacific plate subduction in the early Jurassic, being the product of partial melting of thickened crust.
Key words: geochemistry  ore-forming epoch  tectonic setting  Bailing Cu-Zn deposit  Heilongjiang Province

小兴安岭_张广才岭是东北地区重要的Pb_Zn_Ag_Cu_Mo多金属成矿带,矽卡岩型矿床在该成 矿带分布最广(韩振新等,2004)。该成矿带先后经历了加里东期、海西期—印支期、燕 山 期多期次构造岩浆活动及成矿作用,造就了成矿带内丰富的矿产资源,在时间上可分为3个 主成矿期:早寒武世成矿期(小西林热水喷流型铅锌矿床);早燕山成矿期(霍吉河、鹿鸣 斑岩型矿床,翠宏山、二股东山、响水河、徐老九沟矽卡岩型矿床);晚燕山成矿期(东安 浅成低温热液型矿床)(陈静,2011;唐臣等,2011;马芳芳等,2012;杨言辰等,2012; 黄维平,2013;郝宇杰等,2013;陈贤等,2014)。近年来,在成矿带中段 发现了白岭铜锌矿床、弓棚子铜锌钨矿床、五道岭钼铁矿床、苏家围子铁锌钼矿床、闹枝沟 铁矿床等数个矽卡岩型矿床,使得滨东地区成为该成矿带上重要的Cu_Mo_Pb_Zn_Fe矿集区。 前人对该成矿带的斑岩型矿床成矿系统的研究相对深入(葛文春等,2007;时永明等,2007 ;侯增谦等,2009;李林山等,2009;韩振哲等,2010;杨言辰等,2012;Zeng et al.,2 012;Zhou et al.,2013;2015),而对成矿带内的矽卡岩型矿床研究相对较薄弱,多集中 于对矿床地质特征及找矿方向的研究(刘宏,2006;杨凤喜等,2007;任殿举等,2010;于 崇波,2011;史鹏会,2012;史鹏会等,2012;江峰等,2012;唐铭君,2012;刘玉,2013 ;李海洋,2013),缺少成岩成矿时代、岩石成因等方面的研究,在一定程度上影响了区内 的找矿工作。
      白岭铜锌矿床位于滨东矿集区,杨凤喜等(2007)、江峰等(2012)对该矿床的地质特征进 行了总结,确定其成因类型为矽卡岩型矿床,但缺乏对与成矿相关的岩体地球化学、成岩 时代及其形成的构造背景的研究。因此,本文对与成矿相关的岩体正长花岗斑岩进行了LA_I CP_MS锆石U_Pb定年及地球化学特征的系统研究,以期对成矿机制等问题进行阐述和论证 。

1成矿背景与矿床地质特征
1.1区域成矿背景

白岭矽卡岩型铜锌矿床位于黑龙江省滨东地区,地处兴蒙造山带东段,小兴安岭_张广才岭 成矿带中部,该成矿带东部以牡丹江断裂为界与佳木斯地块接壤,北部以黑河_嫩江_贺根山 断裂为界与兴安地块相接(尹冰川等,1997)(图1a)。该区具有多块体拼合属性及复杂的 演化历史,先后经历了古生代晚期松嫩地块沿贺根山_嫩江_黑河断裂与兴安_额尔古纳联合 地块的拼贴,古生代末期华北克拉通与上述块体聚合,以及佳木斯地块沿牡丹江断裂与兴蒙 造山带内已联合的块体拼合(葛文春等,2007;褚少雄等,2012)。
区域上经历了多期次多阶段强烈的岩浆活动,主要分为4个期次: 新元古代花岗闪长岩、二 长花岗岩(Rb_Sr、Sm_Nd同位素年龄为672~614 Ma;许文良等,1994a)、加里东期混染花 岗岩、钾长花岗岩、二长花岗岩、花岗闪长岩(Rb_Sr、Sm_Nd、Pb_Pb同位素年龄为460~40 0 Ma;许文良等,1994b)、印支期钾长_碱长花岗岩(Rb_Sr、K_Ar同位素年龄为235~180 Ma;许文良,1994b)、燕山期石英闪长岩_花岗闪长岩_花岗斑岩组合(尹冰川等,1997) ,多期次的岩浆活动为该区成矿提供了优越的岩浆条件。
区域上的地层主要为寒武系碎屑岩_碳酸盐岩、奥陶系火山_沉积建造、泥盆系—二叠系酸性 火山碎屑岩_熔岩,中生代以陆相火山沉积和碎屑沉积为主。寒武系碎屑岩_碳酸盐岩建造为 该区大中型接触交代型矿床的主要赋矿层(赵寒冬,2009)。

1.2矿床地质特征

白岭铜锌矿床位于滨绥断裂南侧,一撮毛岩体的东北部(图1b)。一撮毛岩体呈岩株状侵位 于二叠系上统五道岭组地层,被侏罗系上统帽儿山组覆盖。地表形态为不规则的椭圆形,长 10 km,宽8 km,出露面积约80 km2。岩体内部为粗粒碱长花岗岩,过渡相为似斑状碱长花 岗 岩、中细粒碱长花岗岩,边缘相为正长花岗斑岩、细粒碱长花岗岩,呈似同 心环 状,正长花 岗斑岩分布在一撮毛岩体边缘,呈北东向在地表出露,为一撮毛岩体岩浆演化后期产物。
矿床围岩为二叠系下统土门岭组的砂板岩、粉砂岩、板岩夹大理岩透镜体和二叠系上统五道 岭组的流纹岩、流纹质角砾熔岩、流纹质凝灰熔岩、流纹质凝灰岩、安山岩、安山质凝灰角 砾熔岩、安山质凝灰岩等(图1c)。矿区内出露的侵入岩为正长花岗斑岩(图2a)、闪长玢 岩、煌斑岩等。白岭铜锌矿床已控

图 1大地构造位置图(a, 据薄军委等,2015修改)、区域地质简图(b, 据唐铭君 ,2012修改)及白岭铜锌矿床
    地质图(c)     1—第四系冲积物; 2—二叠系上统安山质凝灰岩; 3—二叠系上统流纹质凝灰岩; 4—二 叠系上统流纹岩; 5—二叠系下统板岩; 6—二叠系上统五道岭组流纹岩、碎屑岩和砂岩; 7—二叠系下统玉泉组大理岩、灰岩; 8—二叠系下统土门岭组砂质板岩、粉砂岩; 9—石 炭系 上统杨
     木岗组; 10—早侏罗世正长花岗斑岩; 11—早侏罗世花岗岩; 12—早侏 罗世花岗 岩(花岗斑岩); 13—矽卡岩; 14—断裂; 15—国界线; 
16—地质界线; 17 —矿床所在大地构造位置; 18—见矿钻孔及编号; 19—采样位置
F1—西拉木伦长春断裂; F2—敦化_密山断裂; F3—伊通_依兰断裂; F4—牡丹江断裂 ; F5—贺根山_黑河断裂; F6—塔源_喜桂图断裂
     ①一撮毛铜矿点; ②—白岭铜锌多金属矿床; ③—苏家围子铁锌矿床; ④—石发铁锌矿 床; ⑤—二道岭黄铁矿床; ⑥—五道岭钼矿床; 
    ⑦—小河口铁铜矿化点; ⑧—天成窑 铁矿点
Fig. 1Tectonic location map (a, modified after Bo et al., 2015), regional geo logical map (b, modified after Tang 
    et al., 2010) and geological map of the B ailing copper_zinc deposit (c)
     1—Quaternary alluvium; 2—Andesitic tuff in Upper Permian; 3—Rhyolitic tuff in Upper Permian; 4—Rhyolite in Upper Permian; 5—Slate in Lower Permian; 6—Rhyo lite, clastic rocks and sandstone of Wudaoling in Upper Permian; 7—Marble and l imestone of Yuquan Group in Lower Permian; 8—Sandy slate and siltstone of Tumen gling Group in Lower Permian; 9—Yangmugang Group of Upper Carboniferous; 10—Syenogranite porphyry in Early Jurassic; 11—Granite in Early Ju rassic; 12—Granite (syenogranite_porphyry) in Early Jurassic; 13—Skarn; 14—F ault; 15—National boundaries; 16—Geological boundary; 17—Tectonic loc ation of the deposit; 18—Ore_intersecting drill hole and its serial 
number; 19—Sampling lo cation   F1—Xilamulun_Changchun fault; F2—Dunhua_Mishan fault; F3—Yitong_Yilan fault; F4—Mudanjiang fault; F5—Hegenshan_Heihe fault; 
    F6—Tayuan_Xiguitu fault      ①—Yizuomao copper ore spot; ②—Bailing copper deposit; ③—Sujiaweizi iron_z inc deposit; ④—Shifa iron_zinc deposit; ⑤—Erdaoling     pyrite deposit; ⑥—Wu daoling molybdenum deposit; ⑦—Xiaohekou iron_copper mineralized spot; ⑧—Tian chengyao iron ore spot
制矿体有4条,其中I号矿体最大,矿体走向延长27 5 m, 宽度>150 m,总厚度>250 m,最大穿截厚度62.1 m,平均7.51 m,厚度变化较大,铜平 均 品位为0.5%,锌平均品位1.88%。矿体赋存于正长花岗斑岩与土门岭组和五道岭组地层接 触 带及土门岭组大理岩与砂板岩层间矽卡岩、正长花岗斑岩与中酸性
图 2白岭铜锌矿床黄铁矿化矽卡岩、正长花岗斑岩照片
     a. 正长花岗斑; b. 阳起石矽卡岩; c. 黄铁矿化碳酸盐化阳起石矽卡岩; d. 针状 阳起石矽卡岩; e. 正长花岗斑岩; 
    f. 正长花岗斑岩
     Act—阳起石; Cal—方解石; Kfs—钾长石; Pl—斜长石; Py—黄铁矿; Qtz—石英; Ep—绿帘石
Fig. 2Pyritized skarn and syenogranite_porphyry photographs in the Bailing cop per_zinc deposit
     a. Syenogranite_porphyry; b. Actinolite skarn; c. Pyritization and carbonatizati on actinolite skarn; d. Acicular actinolite skarn;
     e. Syenogranite_porphyry; f. Syenogranite_porphyry
     Act—Actinolite; Cal—Calcite; Kfs—K_feldspar; Pl—Plagioclase; Py—Pyrite; Q tz—Quartz; Ep—Epidote

凝灰岩接触带矽卡岩和层 间矽卡岩中,以大理岩层间矿体为主。矿石组构为浸染状构造,以交代结构 为主,矿石矿物主要为磁铁矿、闪锌矿、黄铜矿,其次为黄铁矿、白铁矿、赤铁矿,少量的 闪锌矿、辉钼矿 、斑铜矿、辉铜矿、铜蓝,矿石矿物多沿石榴子石裂隙充填分布。矿化和蚀变特征均显示该 矿 床具有矽卡岩型矿床的属性(图2b、c、d)。围岩蚀变主要为硅化、角岩化、矽卡岩化、绿 帘石化、绿泥石化、碳酸盐化、绢云母化、高岭土化,与成矿关系密切的蚀变为硅化、矽卡 岩化、绿帘石化。

2测试样品选取及分析方法
        在所采的测试样品中,BL编号样品取自ZK2(BL_1、2)、ZK8682(BL_6、7、8)、ZK18(BL _1A、12、5)新鲜的岩芯,编号CSC样品取自地表岩石(图1c)。正长花岗斑岩为斑状结构 ,块状构造,斑晶为石英(5%~8%)、钾长石(条纹长石、微斜长石)(10%~15%)及少量 的黑云母(3%~5%)等,基质为细粒的石英(20%~25%)、长石(35%~45%),副矿物为锆 石、榍石等,斑晶边部均出现不同程度熔蚀现象,呈港湾状(图2e、f)。
锆石分选由河北省诚信地质服务有限公司完成,并在双目镜下反复挑选,选取晶型相对完好 、包裹体少、无裂隙的锆石,锆石制靶、透射光图像、发射光图像、阴极发光图像采集及锆 石U_Pb同位素分析均在西北大学大陆力学国家重点实验室完成。锆石样品测定中采用30 μm 的激光束斑,剥蚀时间35 s。数据测试使用德国Lambda Physik公司生产的ComPex102型ArF 准分子激光器(波长193 nm)和Shield Torch的Agilient 7500a ICP_MS仪器,用高纯的He 气作为剥蚀物质的载体,用人工合成硅酸盐物质NIT610进行仪器最优化,用哈佛大学国际标 准锆石91500分馏校正,年龄计算和谐和图的绘制用Isoplot3.0(2006)程序。
        主量元素、微量元素测试工作均在中国地质科学院应用地球化学重点开放实验室完成。主量 元素使用熔片法X_射线荧光光谱法(XRF)测试,分析准确度和精度优于5%;微量元素及稀 土元素利用酸溶法制备样品,使用等离子体质谱法(ICP_MS)测试,分析准确度和精度优于 10%;烧失量采用重量法(GR)测试;Fe2O3、FeO采用容量法(VOL)测试,As、Sb采用 氢化物_原子荧光光谱法(HG_AFS)测试。
3样品分析结果
3.1锆石U_Pb年龄
        BL_12样品锆石粒度80~200 μm,大部分锆石具有良好的晶型,除BL_12_09、19、20号测试 点的206Pb/238U表面年龄与其对应的207Pb/ 235U表面年龄存在较大误差外,其余17个测试点 的数据具有较好的谐和性(图3)。样品20个测点的206Pb/238U表面 年龄为171~191 Ma,测定锆石的w(U)为385×10-6~1972×10-6w(Th)为151×10-6~1702×10-6,Th/U比值为0.4~0.9 (表1),明显大于变质锆石的Th/U比值(<0.1, Hermann et al., 2001),岩浆震荡环 带明显 (图4),为典型的岩浆锆石。
CSC_1样品锆石的粒度90~260 μm,主要为短柱状,少部分呈长柱状,除CSC_1_19号测试点 的206Pb/238U表面年龄与其对应的207Pb/ 235U表面年龄存在较大 误差外,其余19个测试点的数据具有较好的谐和性(图5)。样品20个测点的206 Pb/238U表面年龄主要集中在171~179 Ma之间,测定锆石的w(U)为 129×10-6~1806×10-6w(Th)为107×10-6~553×10 -6,Th/U比值为0.3~1.1(表1),明显大于变质锆石的Th/U比值(<0.1, Hermann et al., 2001),大部分锆石具有明显的岩浆震荡环带(图6),为典型的岩浆锆石。
2个样品的锆石测试点206Pb/238U年龄与207Pb/ 235U年龄在误差允许范围内一致,在206Pb/238U_ 207Pb/235U谐和图(图3、5)中分析点均落在谐和线及其附近。实 验 结果显示可将白岭 铜锌矿床正长花岗斑岩(BL_12)锆石年龄划分为2组(图3):第一组锆石加权年龄为(189 .0±2.6) Ma(MSWD=0.72, n=5);第二组锆石加权年龄为(177.7±1.5) Ma (MSWD=0.80, n=15)、谐和年龄为(178.2±1.5) Ma(MSWD=1.11, n=15 )。CSC_1样品锆石年龄亦分为2组(图5):第一组只有1颗锆石,获得的锆石20 6Pb/238U年龄为(196±3) Ma;第二组锆石加权年龄为(175.6± 1.3) Ma(MSWD=1.9, n=19),谐和年龄为(177.0±2.1) Ma(MSWD=1.4, n=19)。
3.2主量元素
白岭矽卡岩型铜锌矿床正长花岗斑岩主量元素分析结果列于表2。在TAS图解(图7a)中,样 品数据主要落在石英二长岩、花岗岩区域,属中酸性_酸
图 3白岭铜锌矿床正长花岗斑岩(BL_12)锆石U_Pb谐和图及加权平均年龄
Fig. 3The concordia age and weighted average ages of zircon U_Pb dating of the syenogranite_porphyry (BL_12) from 
    the Bailing copper_zinc deposit    
图 4白岭铜锌矿床正长花岗斑岩(BL_12)锆石阴极发光(CL)图像及测试位置
     Fig. 4Cathodoluminescence (CL) images of zircons and their measuring positions in the syenogranite_porphyry (BL_12) 
    from the Bailing copper_zinc deposit
        性侵入岩,其岩相学特征表明成矿 岩体的岩性为正长花岗斑岩。w(SiO2)、w(Al2O3)、 w(MgO)的变化范围分别为63.66%~76.36%、10.51%~17.38%、0.07%~1.8 5%,K2O/Na2O比值主要在0.36~1.25之间,w(TFe2O3)为0.70%~4.04 %。岩石总体富碱〔w(K2O)+w(Na2O)=7.58%~10.97%〕,在SiO2_K2O 图解(图7b)中,岩石主要落在高钾钙碱性系列,部分落在钾玄岩系列,碱质成分分异较大 。随w(SiO2)的增加,w(TiO2)、w(CaO)、w(FeO)、w(MgO)、w (Al2O3)、w(P2O5)、w(MnO)呈递减趋势,显示 良好的负相关性(图8)。里特曼指数(σ)为2.26~5.18,碱度率(AR)主要在2 .29~4.92之间 ,分异指数(DI)为78.24~96.98。岩石样品A/CNK=0.67~1.02(<1.1),属于弱铝 质岩石。根据CIPW计算, 主要标准矿物为石英、钠长石、正长石、刚玉、透辉石、紫苏辉石等,样品无标准 刚玉分子或少量的标准刚玉分子(含量<1%),副矿物主要为钛铁矿、磁铁矿、磷灰石等。
表 1白岭铜锌矿床正长花岗斑岩LA_ICP_MS锆石U_Pb测试结果
Table 1LA_ICP_MS zircon U_Pb data for the syenogranite_porphyry in the Bailing copper_zinc deposit
图 5白岭铜锌矿床正长花岗斑岩(CSC_1)锆石U_Pb谐和图及加权平均年龄
Fig. 5The concordia age and weighted average ages of zircon U_Pb dating of the syenogranite_porphyry (CSC_1) 
    from the Bailing copper_zinc deposit

图 6白岭铜锌矿床正长花岗斑岩(CSC_1)锆石阴极发光(CL)图像
Fig. 6Cathodoluminescence (CL) images of zircons and their measuring positions in the syenogranite_porphyry (CSC_1) 
    from the Bailing copper_zinc deposit
3.3稀土和微量元素
        白岭矽卡岩型铜锌矿床正长花岗斑岩稀土及微量元素分析结果列于表3。从表3和稀土元素配 分图(图9a)可以看出,正长花岗斑岩的稀土元素总量为135.36×10-6~218.28× 10 -6,稀土元素总量较低。样品的稀土元素配分趋势基本一致,表现为轻稀土元素富集( ΣLR EE=109.73×10-6~160.05×10-6),重稀土元素相对亏损(ΣHREE=22.41 ×10-6~58.23×10-6)的右倾模式,轻、重稀土元素分馏明显(ΣLREE/ΣH REE=2.75~7.08),轻稀土元素内部分馏明显,重 稀土元素内部分馏不明显,铕表 现出弱负异常(δEu= 0.32~0.94),岩石中出现早阶段的斜长石斑晶,暗示斜长石发生分离结晶。微量元素蛛 网图(图9b)中显示,亏损Nb、Ta、Ti、P等高场强元素,富集Rb、K等大离子亲石元素,U 、Pb元素强烈富集。Sun等(1989)认为岩石明显亏损Nb、 Ta、Ti元素显示俯冲带幔源岩石的成分特点,而Mckenzie (1989)认为岩 浆受到地壳物质的混染或岩浆源区残留金红石、钛铁矿等富有Nb、Ta、Ti的矿物也可能造 成“TNT"亏损,稀土元素和微量元素显示其具有活动陆缘弧花岗岩的特征。
表 2白岭铜锌矿床正长花岗斑岩主量元素分析结果及参数
Table 2Composition and parameters of major elements of the syenogranite_porphy ry in the Bailing copper_zinc deposit
4讨论
4.1岩石成因类型
        白岭铜锌矿床正长花岗斑岩的主量元素显示随 w(SiO2)的增加,w(TiO2)、w(CaO)、w(FeO)、 w(MgO)、w(Al2O3)、w(P2O5)、w(MnO)呈递减趋势 ,表现出良好的负相关性,这与角闪石、斜长石、磁铁矿及 磷灰石等矿物的分离结晶作用有关,解释了岩石中仅存在少量黑云母,不含其他暗色矿物的 原因。里特曼指数(σ=2.26~5.18)、碱度率(AR集中在2.29~4.92之间)和分异指 数(DI=78.24~96.98)均显示岩浆分异程度高、岩石富碱,这与岩浆演化到后期碱质成 分增高的特征相似。
图 7白岭铜锌矿床正长花岗斑岩TAS图解(a, Middlemost, 1994)及SiO2_K2O图解 (b, Peccerillo et al., 1976) 
1—橄榄辉长岩; 2a—碱性辉长岩; 2b—亚碱性辉长岩; 3—辉长闪长岩; 4—闪长岩; 5—花岗闪长岩; 6—花岗岩; 7—硅英岩; 8—二长辉   
长岩; 9—二长闪长岩; 10—二长 岩; 11—石英二长岩; 12—正长岩; 13—副长石辉长岩; 14—副长石二长闪长岩; 15 —副长石二长正长
岩; 16—副长正长岩17—副长深成岩; 18—霓方钠岩/磷霞岩/ 粗白榴岩
Fig. 7TAS diagram (a, after Middlemost, 1994) and SiO2_K2O diagram (b, a fter Peccerillo et al., 1976) of the 
    syenogranite_porphyry in the Bailing copp er_zinc deposit
     1—Olive gabbro; 2a—Essexite; 2b—Sub_alkaline gabbro; 3—Gabbro_diorite; 4—Di orite; 5—Granodiorite; 6—Granite; 7—Quartzolite; 
    8—Monzogabbro; 9—Monzodi or ite; 10—Monzonite; 11—Adamellite; 12—Syenite; 13—Foid gabbro; 14—Foid monzo diorite; 
    15—Foid monzosyenite; 16—Foid syenite; 17—Foid plutonite; 18—Tawi te/urtite/italite
        在Zr10000 Ga/Al、Y_10000 Ga/Al岩石成因类型判别图(图10)中,样品点主要落在I 、S型花岗岩区 ; 主量元素研究显示其属于弱铝质花岗岩(A/CNK=0.67~1.02,小于1.1 ),与过铝质S型花 岗岩(A/CNK>1.1)明显不同(Chappell et al., 1974;邱家骧,1991),并且CIPW标 准 矿物中未出现刚玉分子或其含量小于1%;稀土元素配分模式呈明显右倾,轻、重稀土元素分 馏明显,Eu负异常,微量元素富集大离子亲石元素(LILE),亏损高场强元素(HFSE),P 2O5随着SiO2含量的增加而降低,这些与区域上早侏罗世I型花岗岩的特征相一致(W u et a l. , 2003a;2003b;2004;杨言辰等,2012)。因此,笔者认为矿区内与成矿相关的正长花岗 斑岩属于I型花岗岩。
白岭正长花岗斑岩Rb/Sr比值集中于0.38~1.34,大于地壳值(0.35,Taylor et al., 1 995 ),Nb/Ta比值为10.02~14.47(均值11.86),接近于大陆地壳平均值(11,Taylor et al ., 1985),低于地幔平均值(17.5,Sun et al., 1989),极度富集Pb,且亏损Nb、Ti、 P等元素,显示出大陆地壳的化学属性(McDonough et al., 1995)。
        综上所述,笔者认为白岭矿区与成矿相关的正长花岗斑岩具有壳源特征,由地壳部分熔融形 成,为一撮毛岩体岩浆演化晚期的产物,属于高分异的I型花岗岩。
4.2成岩成矿时代
        目前,对滨东地区一撮毛岩体成岩年龄的研究相对较少,特别是区内成矿岩体的成岩年龄研 究尤为缺乏。前人获得一撮毛岩体中碱长花岗岩锆石U_Pb年龄为(193.9±1.3) Ma 和(1 93.6±1.1) Ma, 其南部的五道岭钼矿床 (图1b⑥)成矿岩体石英斑岩的锆石U_Pb年龄 为(186±2) Ma (史鹏会,2012), 而 本次对正长花岗斑岩的锆石LA_ICP_MS测年共获得2组数据:( 196±3) Ma~(189.0±2.6) Ma(n=6)和(177.7±1.5) Ma~(175.6±1.3 ) Ma(n=34)。第 一组年龄与一撮毛碱长花岗岩的年龄相近,为岩浆捕获锆石,暗示了一撮毛岩体岩浆房的结 晶年龄;第二组年龄为成矿岩体正长花岗斑岩的成岩
图 8白岭铜锌矿床正长花岗斑岩哈克图解(据Bhatia,1983)
Fig. 8Harker diagram of the syenogranite_porphyry in the Bailing copper_zinc d eposit (after Bhatia, 1983)
        年龄。实验结果显示,一撮毛岩体的成岩年龄与小 兴安岭_张广才岭早_中侏罗世近SN向展布的花岗岩带的主体成岩年龄(190~160 M a)相吻合(孙德有,2001;孙德有等,2001;Wu et al.,2002;苗来成等,2003;Zhang et al.,2004;葛文春等,2007;隋振民等,2007)。
白岭铜锌矿床的矿体产于正长花岗斑岩与中酸性火山岩、大理岩接触带内,以矽卡岩型矿石 为主,正长花岗斑岩与成矿存在直接的时空关系。本次获得白岭正长花岗斑岩的成岩年龄为 (177.7±1.5) Ma~(175.6±1.3) Ma,即早侏罗世。由于迁移富集成矿要经历岩浆 热液从 岩体内部→岩体与围岩接触带→围岩裂隙的客观地质过程,而且矽卡岩型矿 床的铜锌成矿阶段主要发生在石英_硫化物期。
表 3白岭铜锌矿床岩石样品稀土元素及微量元素分析结果及参数
Table 3Chemical composition of trace elements and REE elements of the syenogra nite_porphyry in the Bailing copper_zinc deposit
图 9白岭铜锌矿床正长花岗斑岩稀土元素球粒陨石标准化图解(a)及微量元素原始地幔 标准化图解(b)
    (球粒陨石和原始地幔值据Sun et al., 1989)
Fig. 9Chondrite_normalized REE patterns (a) and primitive mantle_normalized tr ace elements patterns (b) of the 
    syenogranite_porphyry in the Bailing copper_z inc deposit (chondrite and primitive_mantle values after Sun et al., 1989)    

图 10白岭铜锌矿床正长花岗斑岩Zr_10000 Ga/Al(a)及Y_10000 Ga/Al图解(b) 
Fig. 10Zr_10000 Ga/Al diagram (a) and Y_10000 Ga/Al diagram (b) of syenogran ite_porphyry in the Bailing 
    copper_zinc deposit
        
所以,成矿时间要晚于成岩年龄,推测白岭铜锌矿床的成矿 时代应为早侏罗世晚期,表明在早侏罗世滨东地区存在一期重要的岩浆_成矿事件,且白岭 矿床的成矿时代与小兴安岭_张广才岭成矿带中铜钼矿床的成矿时间(184~167 Ma;图11 )(表4)基本一致。
4.3成岩成矿构造背景

通过以上对成矿岩体地球化学特征的研究,白岭正长花岗斑岩整体上亏损Nb、Ta、Ti、P等 高场强元素,富集Rb、K等大离子亲石元素,高La/Nb比值 (>2),具有活动大陆边缘岩浆的地球化 学属性(Salters et al., 1991);正长花岗斑岩在Rb_(Y+Nb)和Ta_Yb 构造图解(图12)中,显示出火山弧花岗岩的特征。

        白岭铜锌矿床位于小兴安岭_张广才岭成矿带中部,成矿带东部以牡丹江断裂为界与佳木斯 地块接壤,北部以黑河_嫩江_贺根山断裂为界与兴安地块相接。在晚古生代以前,松嫩地块 已 与兴安地块碰撞拼合为一体;晚古生代(445~413 Ma),松嫩地块与佳木斯地块完成碰撞 拼贴(孟恩,2011),中泥盆世松嫩地块和佳木斯地块处于碰撞后伸展环境,到早 二叠世张广才岭地区处于陆内伸展环境,晚古生代
图 11小兴安岭_张广才岭成矿带早_中侏罗世典型矿床(据许文良等,2013修改)
     1—中_新生代沉积盆地; 2—中生代火山岩; 3—晚古生代地层; 4—早古生代地层; 5— 前寒武纪岩石; 6—中生代花岗岩; 7—蛇绿岩; 
    8—断裂(缝合带); 9—早_中侏罗 世矿床及编号
     ①—翠宏山矿床; ②—霍吉河矿床; ③—翠岭矿床; ④—鹿鸣矿床; ⑤—松江矿床; ⑥—丘皮沟矿床; ⑦—福安堡矿床; ⑧—大黑山矿床
Fig. 11Typical de posits of the early_middle Jurassic in the Xiao Hing apos;apos;apos;an Mount ains_Zhangguangcai Mountain metallogenic
     belt (modified after Xu et al., 2013) 
     1—Sedimentary basins of Mesozoic_Cenozoic; 2—Volcanic of Mesozoic; 3—Layer of Neopaleozoic; 4—Layer of Early Paleozoic; 5—Rock 
    of Precambrian; 6—Granite o f Mesozoic; 7—Ophiolite; 8—Fault (suture zone); 9—Deposit of EarlyMiddle Ju rassic and its serial number
      ①—Cuihongshan deposit; ②—Huojihe deposit; ③—Cuiling deposit; ④—Luming deposit; ⑤—Songjiang deposit; ⑥—Qiupigou deposit; 
    ⑦—Fuanpu deposit; ⑧— Daheishan deposit
表 4小兴安岭_张广才岭成矿带典型矿床成岩成矿年龄一览表
Table 4Ages of magmatism and mineralization in the Xiao Hing apos;apos;apos;an Mountains_Zhan gguangcai Mountain metallogenic belt
图 12白岭铜锌矿床正长花岗斑岩Rb_(Y+Nb) (a)及(Ta_Yb) (b)图解(据Pearce et a l., 1984)
Fig. 12Rb_Y+Nb diagram (a) and Ta_Yb diagram (b) of the syenogranite_porphyry in the Bailing copper_zinc deposit
     (after Pearce et al., 1984)
        晚期—早中生代(254~210 Ma)松嫩地块与佳木斯地块沿牡丹江断裂发生裂解,在早_中侏 罗世松嫩地块与佳木斯地块拼合(葛文春等,2007 ;孟恩,2011;许文良等,2012;2013)。中生代花岗岩Sr_Nd同位素结果显示,小兴安岭_ 张广才岭地区的地壳增生作用主要在中侏罗世前(180~165 Ma;范蔚茗等,2008),该地 区地壳的增厚可能是松嫩地块与佳木斯地块拼合的结果。由于古太平洋板块的俯冲作用使得 已稳定的小兴安岭_张广才岭地区伸展拉伸,增厚的岩石圈发生拆沉作用(葛文春等,2007 ;杨言辰等,2012)。岩石圈拆沉诱发深部热液和物质的上升,与地壳先前存在的岩石发生 作用形成一些酸性岩浆,这些岩浆的产生与板块俯冲而导致的区域深部热液异常或地幔柱有 关(吴福元等,1999),与白岭正长花岗斑岩亏损高场强元素,富集大离子亲石元素的俯冲 带地球化学属性相吻合。在中国东部关于古太平洋板块 开始俯冲的时间存在2种观点:彭玉 鲸等(2007)认为其开始俯冲时间为晚三叠世;另一种观点认为在早_中侏罗世(Xu et al. , 2009;Wu et al., 2011),这些观点均表明在早侏罗世小兴安岭_张广才岭地区 处于环太 平洋构造域,区内大面积分布的侏罗纪花岗岩及伴随的成矿作用与古太平洋板块的俯冲作用 有密切关系。
综合上述区域演化背景,笔者认为白岭铜锌矿床的成岩成矿机制与古太平洋板块的俯冲作用 及佳木斯地块与松嫩地块拼合存在直接关系。在古太平洋板块俯冲挤压下,已稳定的小兴安 岭_张广才岭地区由于板块间作用方式的调整而出现短暂的张性环境,即板块俯冲背景下的 挤压向伸展转换的过程,加厚岩石圈发生拆沉作用,诱发深部软流圈地幔上涌和岩浆底侵作 用,加热地壳岩石而发生 部分熔融,岩浆沿构造裂隙上侵,高分异岩浆热液与富钙围岩发生交代作用形成白岭矽卡岩 型矿床。
5结论
(1) 白岭正长花岗斑岩为一撮毛岩体岩浆演化晚期产物,属于高分异I型花岗岩,碱质成 分 分异较大,稀土、微量元素特征表明其具有壳源特征,为俯冲背景下增厚地壳部分熔融的产 物。
(2) 与成矿关系密切的正长花岗斑岩形成时代为早侏罗世,一撮毛岩体岩浆房结晶年龄为 196~189 Ma,成矿岩体岩浆上升至地壳浅部的结晶时间为177.7~175.6 Ma,高分异岩浆 就位结晶时间滞后于一撮毛岩体的结晶年龄(13.4 Ma)。
(3) 白岭铜锌矿床形成于古太平洋板块俯冲背景之下,松嫩地块与佳木斯地块拼贴导致小 兴安岭_张广才岭地区地壳加厚,加厚地壳受板块俯冲影响,岩石圈发生拆沉引发深部热液 与物质上涌,受热地壳发生部分熔融,高分异岩浆热液与富钙围岩发生交代作用形成矽卡岩 型矿床,其成矿时代大致为早侏罗世晚期。
参考文献
Bhatia M R. 1983. Plate tectonics and geochemical composition of sandsto nes[J]. The Journal of Geology, 91: 611_627.
     Bo J W, Yang Y C, Zhao Q Q, Yang L, Han S J and Zhang F C. 2015. Geochemical cha racteristics and its geological significance of ore_hosting rocks in Dongfenggou gold deposit, Heilongjiang[J]. Global Geology, 34(2): 385_395 (in Chinese wit h English abstract).
     Chappell B W and White A J R. 1974. Two contrasting granite type[J]. Pacific G eology, 8: 173_174.
     Chen J. 2011. Metallogenic setting and metallogenesis of nonferrous_precious met als in Lesser Hinggan Mountain, Heilongjiang Province (Doctor Dissertation)[D] . Supervisor: Sun F Y. Changchun: Jilin University. 161p (in Chinese with English abstract).
     Chen X, Liu J J, Zhang Q B, Yang Z H, Yang L B and Wu J. 2014. Characterist ics of Hf isotopes and zircon U_Pb ages of granites in the Cuihongshan iron poly metalli deposit, Heilongjiang and their geologic implications[J]. Bulletin of Mi neralogy, Petrology and Geochemistry, 33(5): 636_644 (in Chinese with English ab stract).
     Chu S X, Liu J M, Xu J H, Wei H, Chai H and Tong K Y. 2012. Zircon U_Pb dating, petrogenesis and tectonic significance of the granodiorite in the Sankuanggo u sk arn Fe_Cu deposit, Heilongjiang Province[J]. Acta Petrologica Sinica, 28(2): 4 33_450 (in Chinese with English abstract).
     Fan W M, Guo F, Gao X F and Li C W. 2008. Sr_Nd isotope mapping of Mesozoic igne ous rocks in NE China: Constrains on tectonic framework and crustal growth[J]. Geochimica, 37(4): 361_372 (in Chinese with English abstract).
     Ge W C, Wu F Y, Zhou C Y and Zhang J H. 2007. Metallogenic epoch and its geodyna mic meaning of Cu_Mo deposit in the eastern of Xing_Meng orogenic belts[J]. Ch inese Science Bulletin, 52(20): 2407_2417 (in Chinese with English abstract).
     Han Z X, Xu Y Q and Zheng Q D. 2004. Metallogenetic series and evolution of sign ificant metal and non_metal mineral resources in Heilongjiang Province[M]. Har bi n: Heilongjiang People apos;apos;apos;s Publishing House. 76_80 (in Chinese with English abstra ct).
     Han Z Z, Jin Z Y, Lv J, Li G C and Zhang K. 2010. Characteristics of diagenesis and mineralization of the ore_bearing granite and its tectonic setting in the ea rly Mesozoic Era in the Luming_Xing an_Qianjin area, southeast of the Lesser H in ggan Mountains[J]. Geology and Exploration, 46(5): 852_862 (in Chinese with En glish abstract).
     Hao Y J, Ren Y S, Zhao H L, Zou X T, Chen C, Hou Z S and Qu W J. 2013. Re_Os iso topic dating of the molybdenite from the Cuihongshan W_Mo polymetallic deposit i n Heilongjiang Province and its geological significance[J]. Journal of Jilin U ni versity (Earth Science Edition), 43(6): 1840_1850 (in Chinese with English abstr act).
     Hermann J, Rubatto D and Korsakov A. 2001. Multiple zircon growth during fast ex humation of diamondiferous, deeply subducted continental crust (Kokchetav Massif , Kazakhstan)[J]. Contributions to Mineralogy and Petrology, 141: 66_82.
     Hou Z Q and Yang Z M. 2009. Porphyry deposit in continental setting of China: Ge ological characteristics, magmatic_hydrothermal system, and metallogenic model[ J]. Acta Geologica Sinica, 83(12): 1779_1817 (in Chinese with English abstract) .
     Huang W P. 2013. Genesis and metallogenic prediction of Xiaoxilin Pb_Zn deposit, Yichun City, Heilongjiang Province (Master Dissertation)[D]. Supervisor: Sun F Y. Changchun: Jilin University. 140p (in Chinese with English abstract).
     Jiang F and Li H. 2012. Geological characteristics and ore_controlling factors o f Bailing Cu_Zn deposit[J]. Modern Mining, 4: 41_43 (in Chinese).
     Li H Y. 2013. Geological characteristics and prospecting direction of the Sujia Fe_Zn deposit, Heilongjiang Province (Master Dissertation)[D]. Supervisor: Yan g Y C. Changchun: Jilin University. 72p (in Chinese with English abstract).
     Li L S, Wei Y M and Sun D F. 2009. Prospecting method of geochemistry in Huo jihe area of Xunke, Heilongjiang[J]. Global Geology, 28(1): 68_74 (in Chinese with English abstract).
     Li L X, Song Q H, Wang D H, Qu W J, Wang C H, Wang Z G, Bi S Y and Yu C. 2009. R e_Os isotopic dating of molybdenite from the Fu apos;apos;apos;anpu molybdenum deposit of Jilin Province and discussion on its metallogenesis[J]. Rock and Mineral Analysis, 28(3): 283_287 (in Chinese with English abstract).
     Liu H. 2006. Tectonic alteration and mineralization of Wudaoling Mo deposit[J] . Heilongjiang Metallurgy, 4: 18_19 (in Chinese).
     Liu Y. 2013. The geological characteristics and prospecting direction of Gongpen gzi Cu_Zn_W deposit in Heilongjiang Province (Master Dissertation)[D]. Supervi s or: Ye S Q. Changchun: Jilin University. 40p (in Chinese with English abstract).
     Liu Z H. 2009. Geological characteristic and origin of deposit in Cuihongshan W_ Mo_Zn polymentallic deposit (Master Dissertation)[D]. Supervisor: Yan g Y C. Changchun: Jilin University. 80p (in Chinese with English abstract).
     Ma F F, Sun F Y, Li B L and Xue M X. 2012. Zircon U_Pb ages of Dongan gold depos it in Heilongjiang Province: Geological implication[J]. Geology and Resour ces, 21(3): 277_280 (in Chinese with English abstract).
     McDonough W F and Sun S S. 1995 The composition of the earth[J]. Chemical Geol ogy, 120: 223_253.
     Mckenzie D P. 1989. Some remarks on the movement of small melt fractions in the mantle[J]. Earth and Planetary Science Letters, 95: 53_72.
     Meng E. 2011. Chronology and geochemistry of Late Paleozoic volcanic rocks in ea stern and southeastern margins of the Jiamusi massif (Master Dissertation)[D]. S upervisor: Xu W L. Changchun: Jilin University. 89p (in Chinese with English abs tract).
     Miao L C, Fan W M, Zhang F Q, Liu D Y, Jian P, Shi G H, Tao H and Shi Y R. 2003. Zircon SHRIMP geochronology of the Xinkailing_Kele complex in the northwest ern Lesser Xing apos;apos;apos;an Range, and its geological implications[J]. Chinese Science Bull etin, 48(22): 2315_2323 (in Chinese).
     Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Science Review, 37: 215_224.
     Pearce J A, Harris N B W and Tindle A G. 1984. Trace element discrimination diag rams for the tectonic interpretation of granitic rocks[J]. Journal of Petrolog y, 25, 956_983.
     Peccerillo A and Taylor S R. 1976. Geochemistry of Eocene calc_alkaline volcanic rocks of the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58: 63_81.
     Peng Y J and Chen Y J. 2007. Location of structural boundary between Ji_Hei orog enic zone and Kaiyuan_Shanchen Town section of North China platform[J]. Global Geology, 26(1): 1_6 (in Chinese with English abstract).
     Qiu J X. 1991. Application of magmatic petrology[M]. Wuhan: China University o f Geosciences Press. 414p (in Chinese).
     Ren D J and Ha E Z. 2010. Characterisitcs of ore_bearing skarn zone from Kunlunq i Pb_Zn_Ag deposit, Yichun[J]. Silicon Valley, 31(1): 1_2 (in Chinese).
     Salters V J M and Hart S R. 1991. The mantle sources of ocean ridges, island arc s: The Hf_isotope connection[J]. Earth and Planetary Science Letters, 104: 364 _380.
     Shi P H, Yang Y C, Ye S Q and Han S J. 2012. Geological and geochemical characte ristics and genesis of ferromolybdenum deposit in Wudaoling, Heilongjiang Provin ce[J]. Global Geology, 31(2): 262_270 (in Chinese with English abstract).
     Shi P H. 2012. Geological characteristics and genesis of the Wudaoling molybdenu m deposit, Heilongjiang Province (Master Dissertation)[D]. Supervisor : Yang Y C. Changchun: Jilin University. 59p (in Chinese with English abstract).
     Shi Y M, Cui B and Jia W L. 2007. Geological features of Luming molybdenum depos it sit at Tieli in the Heilongjiang Province[J]. Geology and Prospecting, 47(2 ): 19_22 (in Chinese with English abstract).
     Sui Z M, Ge W C, Wu F Y, Zhang J H, Xu X C and Cheng R Y. 2007. Zircon U_Pb ages , geochemistry and its petrogenesis of Jurassic granites in northeastern part of the Da Hinggan Mts[J]. Acta Petrologica Sinica, 23(2): 461_480 (in Chinese wi th English abstract).
     Sun D Y, Wu F Y, Lin Q and Lu X P. 2001. Petrogenesis and crust_mantle interact ion of early Yanshanian Baishishan pluton in Zhangguangcai Range[J]. Acta Petr ologica Sinica, 17(2): 227_235 (in Chinese with English abstract).
     Sun D Y. 2001. Petrogenesis of Mesozoic granite and its geodynamic significance in Zhangguangcai Range (Doctor Dissertation)[D]. Supervisor: Lin Q and Wu F Y. Changchun: Jilin University. 112p (in Chinese with English abstract).
     Sun J G, Zhang Y, Xing S W, Zhao K Q, Zhang Z J, Bai L A, Ma Y B and Liu Y S. 20 12. Genetic types, ore_forming age and geodynamic setting of endogenic molybdenu m deposits in the eastern edge of Xing_Meng Orogenic Belt[J]. Acta Petrologica Sinica, 28(4): 1317_1332.
     Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic ba salts: Implications for mantle composition and processes[A]. In: Saunders A D an d Norry M J, eds. Magmatism in the Ocean Basins[C]. London: Geological Society of Special Publication, 42:313_345.
     Tang C, Chai P, Sun J G, Wang Q H, Chen X S, Li Y X, Yang F and Liu Y S. 2001. S HRIMP U_Pb zircon age of gabbro in Da apos;apos;apos;anhe gold deposit and its geological impli cations of Yichunm Heilongjiang Province[J]. Global Geology, 30(2): 173_179 (i n Chinese with English abstract).
     Tang M J. 2012. Ore_forming regularties and mineralization forecast of the Baili ng Cu_Zn deposit in A apos;apos;apos;Cheng area, Heilongjiang Province (Master Dissertation)[D ] . Supervisor: Yang Y C. Changchun: Jilin University. 87p (in Chinese with Englis h abstract).
     Tang Z. 2012. The Characteristics and metallogenic condition of Songjiang Cu_W_Z n polymetallic deposit in Heilongjiang Province (Master Dissertation)[D]. Supe rv isor: Yang Y C.Changchun: Jilin University. 63p (in Chinese with English abstrac t).
     Taylor S R and McLennan S M. 1985. The continental crust: Its composition and ev olution[M]. Oxford: Blackwell. 57_114.
     Taylor S R and McLennan S M. 1995. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 33(2): 241_265.
     Wang C H, Song Q H, Wang D H, Li L X, Yu C, Wang Z G, Qu W J, Du A D and Ying L J. 2009. Re_Os isotopic dating of molybdenite from the Daheishan molybdenum depo sit of Jilin Province and its geological significance[J]. Rock and Mineral Ana lysis, 28(3): 269_273 (in Chinese with English abstract).
     Wang L, Yang Y C, Zhang G B and Li H Y. 2013. Chronology, geochemical characteri stics and genesis of Qiupigou copper deposit in Heilongjiang[J]. Global Geolog y, 32(1): 24_34 (in Chinese with English abstract).
     Wu F Y, Sun D Y and Lin Q. 1999. Petrogenesis of the Phanerozoic granites and cr ustal growth in Northeast China[J]. Acta Petrologica Sinica, 15(2): 181_189 (i n Chinese with English abstract).
     Wu F Y, Sun D Y, Li H M, Jahn B M, Simon A and Wilde S A. 2002. A type granites in northeastern China: Age and geochemical constraints on their petrogenesis[J ]. Chemical Geology, 187: 143_173.
     Wu F Y, Sun D Y, Jahn B M and Wilde S A. 2004. A Jurassic garnet_bearing graniti c pluton from NE China showing tetrad REE patterns[J]. Journal of Asian Earth Sciences, 23: 731_744.
     Wu F Y, Jahn B M, Wilde S A, Lo C H, Yui T F, Lin Q, Ge W C and Sun D Y. 2003a. Highly fractionated I_type granites in NE China (I): Geochronology and petrogen esis[J]. Lithos, 66: 241_273.
     Wu F Y, Jahn B M, Wilde S A, Lo C H, Yui T F, Lin Q, Ge W C and Sun D Y. 2003b. Highly fractionated I_type granites in NE China (Ⅱ): Isotopic geochemistry and implications for crustal growth in the Phanerozoic[J]. Lithos, 67: 191_204.
     Wu F Y, Sun D Y, Ge W C, Zhang Y B, Grant M L, Wilde S A and Jahn B M. 2011. Geo chronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1_30.
     Xu W L, Sun D Y, Zhou Y, Yan J Q, Lin Q and Luan H M. 1994a. The division of Pal aeozoic tectonic in Manzhouli_Suifenhe transect indicators from igneous rocks[M ] . Beijing: Earthquake Publishing House. 105_114 (in Chinese with English abstrac t).
     Xu W L, Sun D Y, Zhou Y, Yan J Q, Lin Q and Luan H M. 1994b. The tectonic enviro nment of the formation of the Late Hercynian_Early Indosinian and the Late Indos inian granitoids in Manzhouli_Suifenhe transect[M]. Beijing: Earthquake Publis hing House. 123_132 (in Chinese with English abstract).
     Xu W L, Ji W Q, Pei F P, Meng E, YuY, Yang D B and Zhang X Z. 2009. Triassic vol canism in eastern Heilongjiang and Jilin Provinces, NE China: Chronology, g eoche mistry, and tectonic implications[J]. Journal of Asian Earth Sciences, 34( 3): 392_402.
     Xu W L, Wang F, Meng E, Gao F H, Pei F P, Yu J J and Tang J. 2012. Paleozoic_ear ly Mesozoic tectonic evolution in the eastern Heilongjiang Province, NE China: E vidence from igneous rock association and U_Pb geochronoloy of detrital zircons [ J]. Journal of Jilin University (Earth Science Edition), 42(5): 1378_1389 (in C hinese with English abstract).
     Xu W L, Wang F, Pei F P, Meng E, Tang J, Xu M J and Wang W. 2013. Mesozoic tecto nic regimes and regional ore_forming background in NE China: Constraints from sp atial and temporal variations of Mesozoic volcanic rock associations[J]. Acta Petrologica Sinica, 29(2): 339_353 (in Chinese with English abstract).
     Yang F X, Duan P C, Yan W Q, Mao A S and Gao S X. 2007. The Bailing copper zinc multi_metals deposit ore controlling factors by Yizuomao rocks in Bindong areas [ J]. Gold Science and Technology, 15(3): 15_18 (in Chinese with English abstract ).
     Yang Y C, Han S J, Sun D Y, Guo J and Zhang S J. 2012. Geological and geochemica l features and geochronology of porphyry molybdenum deposits in the Lesser Xing apos;apos;apos; an Range_Zhangguangcai Range metallogenic belt[J]. Acta Petrologica Sinica, 28 (2): 379_390 (in Chinese with English abstract).
     Yin B C and Ran Q C. 1997. Metallogenic evolution in Xiaohingganling_Zhangguangc ailing region, Heilongjiang Province[J]. Mineral Deposits, 16(3): 235_242 (in Chinese with English abstract).
     Yu C B.2011. Mineralogy characteristics and genesis of Wudaoling molybdenum depo sit[J]. Nonferrous Meting (Part of Mine), 63(1): 30_33 (in Chinese).
     Zeng Q D, Liu J M, Chu S X, Wang Y B, Sun Y, Duan X X and Zhou L L. 2012. Mesozo ic molybdenum deposits in the East Xingmeng Orogenic Belt, northeast China: Char acteristics and tectonic setting[J]. International Geology Review, 54(16): 184 3_1869.
     Zhang S J. 2009. Analysis on the prospecting potentiality and ore_forming ge olog ical conditions in Tieli area Mo (Cu) deposit, Heilongjiang Province (Master Dis sertation)[D]. Supervisor: Yang Y C. Changchun: Jilin University. 55p (in Chin ese with English abstract).
     Zhang Y B, Wu F Y, Wilde S A, Zhai M G and Lu X P. 2004. Zircon U_Pb ages and te ctonic implications of “Early Paleozoic” granitoids at Yanbian, Jilin Province , northeast China[J]. Island Arc, 13: 484_505.
     Zhao H D. 2009. Paleozoic igneous rock assemblages and tectonic evolution i n southern Xiaoxing apos;apos;apos;anling_northern Zhangguangcailing, northeastern China (D octor Dis sertation)[D]. Supervisor: Deng J F. Beijing: China University of Geosciences. 118p (in Chinese with English abstract).
     Zhou L L, Zeng Q D, Liu J M, Friis H, Zhang Z L and Duan X X. 2013. Geochronolog y of the Xingshan molybdenum deposit, Jilin Province, NE China, and its Hf isoto pe significance[J]. Journal of Asian Earth Sciences, 75: 58_70.
     Zhou L L, Zeng Q D, Liu J M, Friis H, Zhang Z L and Duan X X. 2015. Ore genesis and fluid evolution of the Daheishan giant porphyry molybdenum deposit, NE China [J]. Journal of Asian Earth Sciences, 97: 486_505.
    
     附中文参考文献
    
     薄军委,杨言辰,赵清泉,闫力,韩世炯,张富程. 2015. 黑龙江省东风沟金矿 赋矿岩石地球化学特征及其地质意义[J]. 世界地质,34(2):385_395.
     陈静. 2011. 黑龙江小兴安岭区域成矿背景与有色、贵金属矿床成矿作用(博士学位论文) [D]. 导师:孙丰月. 长春:吉林大学. 161页.
     陈贤,刘家军,张琪彬,杨增海,杨隆勃,吴杰. 2014. 黑龙江翠宏山铁多金属矿区岩体锆 石U_Pb年龄、Hf同位素特征及其地质意义[J]. 矿物岩石地球化学通报,33(5):63 6_644.
     褚少雄,刘建明,徐九华,魏浩,柴辉,佟匡胤. 2012. 黑龙江三矿沟铁铜矿床花岗闪长岩 锆石U_Pb定年、岩石成因及构造意义[J]. 岩石学报,28(2):433_450.
     范蔚茗,郭峰,高晓峰,李超文. 2008. 东北地区中生代火成岩Sr_Nd同位素区划及其大地 构造意义[J]. 地球化学,37(4):361_372.
     葛文春,吴福元,周长勇,张吉衡. 2007. 兴蒙造山带东段斑岩型Cu_Mo矿床成矿时代及其 地球动力学意义[J]. 科学通报,52(20):2407_2417.
     韩振新,徐衍强,郑庆道. 2004. 黑龙江省重要金属和非金属矿产的成矿系列及演化[M]. 哈尔滨:黑龙江人民出版社. 76_80.
     韩振哲,金哲岩,吕军,李国臣,张坤. 2010. 小兴安岭东南鹿鸣_兴安_前进地区早中生代 含矿花岗岩成岩成矿特征[J]. 地质与勘探,46(5):852_862.
     郝宇杰,任云生,赵华雷,邹欣桐,陈聪,侯召硕,屈文俊. 2013. 黑龙江省翠宏山钨钼多 金属矿床辉钼矿Re_Os同位素定年及其地质意义[J]. 吉林大学学报(地球科学版),43( 6):1840_1850.
     侯增谦,杨志明. 2009. 中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概 念模型[J]. 地质学报,83(12):1779_1817.
     黄维平. 2013. 黑龙江伊春小西林铅锌矿矿床成因及成矿预测(硕士学位论文)[D]. 导 师:孙丰月. 长春: 吉林大学. 140页.
     江峰,李慧. 2012. 白岭铜锌矿床地质特征及控矿因素[J]. 现代矿业,4:41_43.
     李海洋. 2013. 黑龙江省苏家铁锌矿床地质特征及找矿方向(硕士学位论文)[D]. 导师 :杨言辰. 长春:吉林大学. 72页.
     李立兴,松权衡,王登红,王成辉,屈文俊,汪志刚,毕守业,于城. 2009. 吉林福安堡钼 矿中辉钼矿铼_锇同位素定年及成矿作用探讨[J]. 岩矿测试,28(3):283_287.
     李林山,魏玉明,孙德福. 2009. 黑龙江逊克霍吉河地区地球化学找矿方法[J]. 世界地 质,28(1):68_74.
     刘宏. 2006. 五道岭钼矿床构造蚀变与成矿作用[J]. 黑龙江冶金,4:18_19.
     刘玉. 2013. 黑龙江省弓棚子铜锌钨矿床地质特征及找矿方向(硕士学位论文)[D]. 导 师:叶松青. 长春:吉林大学.40页.
     刘志宏. 2009. 黑龙江省翠宏山钨钼锌多金属矿床地质特征及成因(硕士学位论文)[D]. 导师:杨言辰. 长春:吉林大学. 80页.
     马芳芳,孙峰月,李碧乐,薛明轩. 2012. 黑龙江东安金矿床锆石U_Pb年龄及其地质意义[ J]. 地质与资源,21(3):277_280.
     孟恩. 2011. 佳木斯地块东缘及东南缘晚古生代火山岩的年代学和岩石地球化学(硕士学位 论文)[D]. 导师:许文良. 长春:吉林大学. 89页.
     苗来成,范蔚茗,张福勤,刘敦一,简平,施光海,陶华,石玉若. 2003. 小兴安岭西北部 新开岭_科洛杂岩锆石SHRIMP年代学研究及其意义[J]. 科学通报,48(22):2315_2323.
     彭玉鲸,陈跃军. 2007. 吉黑造山带与华北地台开原_山城镇段构造边界位置[J]. 世界地 质, 26(1):1_6.
     邱家骧. 1991. 应用岩浆岩岩石学[M]. 武汉:中国地质大学出版社. 414页.
     任殿举,哈恩忠. 2010. 伊春市昆仑气铅锌银矿床含矿矽卡岩带特征[J]. 硅谷,31(1) :1_2.
     时永明,崔彬,贾维林. 2007. 黑龙江省铁力市鹿鸣钼矿床地质特征[J]. 地质与勘探,4 7(2):19_22.
     史鹏会. 2012. 黑龙江省五道岭钼矿床地质特征及成因(硕士学位论文)[D]. 导师:杨 言辰.长春:吉林大学. 59页.
     史鹏会,杨言辰,叶松青,韩世炯. 2012. 黑龙江五道岭钼铁矿床地质地球化学特征及成因 [J]. 世界地质,31(2):262_270.
     隋振民,葛文春,吴福元,张吉衡,徐学纯,程瑞玉. 2007. 大兴安岭东北部侏罗纪花岗质 岩石的锆石U_Pb年龄、地球化学特征及成因[J]. 岩石学报,23(2):461_480.
     孙德有. 2001. 张广才岭中生代花岗岩成因及其地球动力学意义(博士学位论文)[D]. 导师:林强, 吴福元. 长春:吉林大学. 112页.
     孙德有,吴福元,林强,路孝平. 2001. 张广才岭燕山早期白石山岩体成因与壳幔相互作用 [J]. 岩石学报,17(2):227_235.
     孙景贵,张勇,邢树文,赵克强,张增杰,白令安,马玉波,刘勇胜. 2012. 兴蒙造山带东 缘内生钼矿床的成因类型、成矿年代及成矿动力背景[J]. 岩石学报,28(4):1317_133 2.
     唐臣,柴鹏,孙景贵,王清海,陈行时,李怡欣,杨帆,刘勇胜. 2001. 黑龙江伊春大安河 金矿床辉长岩的锆石U_Pb年龄及地质意义[J]. 世界地质,30(2):173_179.
     唐铭君. 2012. 黑龙江阿城白岭铜锌矿床及外围成矿规律与成矿预测(硕士学位论文)[D ].导师:杨言辰. 长春:吉林大学. 87页.
     唐忠. 2012. 黑龙江松江Cu_W_Zn多金属矿床特征及成矿条件(硕士学位论文)[D]. 导师 :杨言辰. 长春:吉林大学. 63页.
     王成辉,松权衡,王登红,李立兴,于城,汪志刚,屈文俊,杜安道,应立娟. 2009. 吉林 大黑山超大型钼矿辉钼矿铼_锇同位素定年及其地质意义[J]. 岩矿测试,28(3):269_2 73.
     王林,杨言辰,张国宾,李海洋. 2013. 黑龙江秋皮沟铜矿床年代学与地球化学特征及成因 [J]. 世界地质,32(1):24_34.
     吴福元,孙德有,林强. 1999. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报 ,15(2):181_189.
     许文良,孙德有,周燕,闫静奇,林强,栾慧敏. 1994a. 满洲里_绥芬河地学断面域内古生 代构造单元划分的岩浆岩标志[M]. 北京:地震出版社. 105_114.
     许文良,孙德有,周燕,闫静奇,林强,栾慧敏. 1994b. 满洲里_绥芬河地带断面域内晚海 西_早印支期花岗岩的形成环境[M]. 北京:地震出版社. 123_132.
     许文良,王枫,孟恩,高福红,裴福平,于介江,唐杰. 2012. 黑龙江省东部古生代—早中 生代的构造演化:火成岩组合与碎屑锆石U_Pb年代学证据[J]. 吉林大学学报(地球科学 版),42(5):1378_1389.
     许文良,王枫,裴福平,孟恩,唐杰,徐美君,王伟. 2013. 中国东北中生代构造体制与区 域成矿背景:来自中生代火山岩组合时空变化的制约[J]. 岩石学报,29(2):339_353.
     杨凤喜,段培成,闫文强,毛爱生,高树学. 2007. 滨东地区一撮毛岩体对白岭铜、锌多金 属成矿的制约因素[J]. 黄金科学技术,15(3):15_18.
     杨言辰,韩世炯,孙德有,郭嘉,张苏江. 2012. 小兴安岭_张广才岭成矿带斑岩型钼矿床 岩石地球化学特征及其年代学研究[J]. 岩石学报,28(2):379_390.
     尹冰川,冉清昌. 1997. 小兴安岭_张广才岭地区区域成矿演化[J]. 矿床地质,16(3) :235_242.
     于崇波. 2011. 五道岭钼矿床矿物学特征及成因[J]. 有色金属,63(1):30_33.
     张苏江. 2009. 黑龙江省铁力地区钼(铜)矿床成矿地质条件及找矿潜力分析(硕士学位论 文)[D]. 导师:杨言辰. 长春:吉林大学. 55页.
     赵寒冬. 2009. 东北地区小兴安岭南段_张广才岭北段古生代火成岩组合与构造演化(博士 学位论文)[D]. 导师:邓晋福. 北京:中国地质大学. 118页.