DOi:10.16111/j.0258_7106.2017.02.006
山东谢家沟金矿床流体包裹体研究及成矿机制的探讨
(1 东北大学资源与土木工程学院, 辽宁 沈阳110819; 2 中国地质科学院矿产资源研究 所 国土资源部成矿作用与资源 评价重点实验室, 北京100037; 3 山东招金集团, 山 东 招远265400)
第一作者简介丁东胜, 男, 1988年生, 博士研究生, 矿产普查与勘探专业。 Email: 987441156@qq.com
**通讯作者陈蕾, 女, 1984年生, 助理研究员, 主要从事微区原位分析在金属矿床 研究中的应用。 Email: chenlei1211@cags.ac.cn
收稿日期2016_08_30
本文得到国家自然科学基金项目(编号: 41303008)和招金矿业股份有限公司“山东金亭岭 金矿床成因模式及找矿靶区预测”项目资助
摘要:谢家沟金矿床位于胶东隆起西北缘的焦家断裂带和招平断裂带之间。 矿床赋存在中 生代玲珑花岗岩体中,矿体主要受NNE向和NNW向断裂构造控制,主要呈脉状或透镜状产出。 矿石矿物主要有黄铁矿、黄铜矿、方铅矿、闪锌矿、自然金、银金矿以及少量的碲银矿和辉 银矿。围岩蚀变主要有钾长石化、硅化、黄铁绢英岩化、绿泥石化和碳酸盐化等。成矿作用 从早到晚可划分为4个阶段:石英_黄铁矿阶段(Ⅰ)、石英_绢云母_黄铁矿阶段(Ⅱ)、石英 _多金属硫化物阶段(Ⅲ)、碳酸盐_萤石阶段(Ⅳ)。流体包裹体显微测温和激光拉曼成分分 析 表明,成矿早期流体温度为308~377℃,盐度为6.29%~8.55%,压力为350 MPa,属于H 2O_CO2 _NaCl流体体系;主成矿期的流体温度为226~331℃,盐度为4.87%~10.29%,压力为280 ~300 MP a,属于H2O_CO2_NaCl±CH4流体体系。包裹体显微测温及岩相学观察发现,主成矿期 的成矿流 体发生了不混溶作用,这可能是导致金矿化的主要原因之一。硫同位素研究表明,谢家沟金 矿 床主成矿期黄铁矿的δ34S值接近或略低于胶东典型金矿床成矿期黄铁矿的δ34 S值,暗示这 些金矿床的成矿物质可能来自相同的源区;氢、氧同位素对比研究表明,谢家沟金矿床成矿 流体表现出较明显的岩浆水特征,可能有大气降水的参与,但参与程度较弱。大气降水与岩 浆水混合引起的温度降低、挥发分含量的降低可能是导致金矿化的另一原因。
关键词:
地球化学;流体包裹体;稳定同位素;成矿机制;谢家沟金矿床
文章编号: 0258_7106 (2017) 02_0345_19 中图分类号: P618.31 文献标志码:A
Fluid inclusion study and metallogenic mechanism of Xiejiagou gold deposit
in Shandong Province
in Shandong Province
(1 School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, Liaoning, China; 2 MLR Laboratory of Metallogeny and Mineral Assessmen t, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beiji ng 100037, China; 3 Jintingling Gold Mining Co., Ltd., Shandong Zhaojin Group Co., Ltd., Zhaoyuan 265400, Shandong, China)
2016_08_30
Abstract:The Xiejiagou gold deposit is one of numerous gold deposits in Jiaodong peninsul a. Tectonically, it is located on the southwestern margin of Jiaodong uplift and between Jiaojia fault zone and Zhaoyuan_Pingdu fault zone. Orebodies are mainly controlled by NNE_ and NNW_ trending fracture structure. Gold mineralization is hosted in Mesozoic Linglong granite and consists of auriferous quartz veins and subordinate disseminated ores in the vein_proximal alteration zone. Ore_related hydrothermal alteration is dominated by sericite+quartz+sulfide assemblage clos e to gold veins, and K_feldspar, chlorite and carbonate alteration. Pyrite is th e predominant sulfide mineral, locally coexisting with minor amounts of chalcopy rite, sphalerite, and galena. Gold occurs mostly as free gold and electrum enclo sed in or filling microfractures of pyrite and quartz and is also present in equ ilibrium with hessite and argentite. Fluid inclusion studies suggest that gold w as deposited at intermediate temperatures (226~331℃) from H2O_CO2_NaCl±CH 4 flu ids with moderate salinity (w(Nacleq) 4.87%~10.29%). δ34S va lues of pyrite range mainly from 5.9‰ to 7.8‰, which are close to or slightly less than the valu es of typical gold deposits in Jiaodong peninsula, suggesting that the ore_formi ng material of these gold deposits might have come from the same reservoir. In c omparison with other deposits in Jiaodong peninsula, the hydrogen and oxygen iso topic composition shows that the ore_forming fluid of the Xiejiagou gold deposit was mainly from magmatic water accompanied by participation of meteoric water. The ore_forming fluids of the main mineralization stage exhibit features of mult iple sources. Temperature decrease and fluid immiscibility constitute the import ant mechanism for deposition and enrichment of gold and other ore_forming elemen ts.
Key words:
geochemistry, fluid inclusion, stable isotope, metallogenic m echanism, Xiejiagou gold deposit
胶东地区是中国最大的黄金产地,根据金矿床的空间产出位置和构造控制特征等将胶东划分 为三大金成矿带,由西向东依次为莱州_招远_平度成矿带、蓬莱_栖霞成矿带、牟平_乳山成 矿带(陈光远 等,1989)。国内外学者对三大金成矿带在矿床地质特征(刘星,1990;李治平,1992;Li et al.,2013;Song et al.,2014;Wen et al.,2015)、成矿流体性质和来源(张理刚 等,1994;翟建平等,1996;李厚民等,2003;Fan et al.,2003;胡芳芳等,2005;徐九 华等,2005;张祖青等,2007;姜晓辉等,2011;Hu et al.,2013;Wen et al.,2015) 、成矿年代学(卢焕章等,1999;Yang et al.,2000;Hu et al.,2004;Li et al.,200 6;Li et al.,2008)和成矿动力学背景(刘建明等,2001;翟明国等,2001,2003;周新 华等,2002;陈衍景等,2004;范宏瑞等,2005;Li et al.,2014;朱日祥等,2015)等 方面进行了大量的研究。胶东地区金矿床主要分为蚀变岩型(“焦家式”)和石英脉型(“ 玲珑式”)2种类型(裘有守等,1988)。蚀变岩型金矿床主要包括焦家金矿床、三山岛金 矿床、新城金矿床、大尹格庄金矿床等;石英脉型金矿床主要包括玲珑金矿床、九曲金矿床 、乳山金矿床、邓格庄金矿床等。蚀变岩型金矿床主要产于沿区域主干断裂分布的蚀变带内 ,矿化类型为浸染型 和网脉型;石英脉型金矿床主要以含金石英脉的形式产于次级及三级断裂内(Qiu et al., 20 02;Deng et al.,2003;Li et al.,2015)。这2种类型金矿床的矿化机制明显不同(We n et al.,2015):蚀变岩型金矿床可能形成于广泛的水/岩交换作用,而石英脉型金矿床 可能是流体不混溶作用的结果。胶东地区金矿床的成矿流体及成矿物质来源仍存在争议,尽 管大多数 金矿床的成矿流体显示了岩浆流体的特征(Fan et al.,2003;Yang et al.,2008 ;Wang et al.,2010;郭林楠等,2014),然而也有一部分矿床的成矿流体显示了变质流体的特征 (Wang et al.,2015)。
谢家沟金矿床是近年来在招平断裂和焦家断裂之间发现的一处大型金矿床(金储量37.5 t; 孙杰等,2012),其产出位置与石英脉型金矿矿床(玲珑、九曲、乳山、邓格庄等金矿床) 的 产出位置相似,即位于壳源花岗岩(玲珑花岗岩体)内的主断裂或次级断裂内(图1;范宏 瑞等,2005)。谢家沟金矿床的矿石类型主要为蚀变岩型矿石,矿石结构、构造与典型的蚀 变岩型金矿相似,局部出现石英脉型矿石。蚀变岩型金矿床的矿体产状与断裂一致,倾角较 平缓 ,一般30~50°,有倾伏和侧伏现象;石英脉型金矿床的矿体产状与主干构造多呈入字型产 出, 倾角较陡,大都大于60°,空间上斜列分布;过渡型金矿床的矿体倾角很陡,一般为70~85 °, 有倾伏和侧伏现象(郭涛,2005)。谢家沟金矿床与区域内的灵山沟金矿床(张均,1991; 1993;陈桥等,2004;于晓飞等,2007;孙丰月等,2008)和台上金矿床(周凤英等,1991 ;崔书 学,2008;陈炳翰等,2014;Yang et al.,2016)在控矿构造、成矿围岩、矿体特征、矿 石类型和围岩蚀变等方面相似,是胶东地区兼具蚀变岩型和石英脉型金矿特点的过 渡类型金 矿。本文通过对谢家沟金矿床详细的流体包裹体研究,探讨了该矿床的成矿流体性质和来源 及演化,为进一步认识谢家沟金矿床及此过渡类型金矿的成因提供制约。
区内大面积的侵入岩包括玲珑、栾家河、郭家岭和艾山花岗岩等(Wang et al.,1998;H ou et al.,2007;Yang et al.,2012;Zhang et al.,2010)。玲珑花岗岩岩体的主要岩 性为 黑云母花岗岩,含胶东群包体,局部有片麻状构造(Wang et al.,1998),呈NNE向带状分 布于焦家断裂与招平断裂之间(图1),其锆石U_Pb年龄为165~155 Ma(Wang et al.,199 8;Zhang et al.,2010;Jiang et al.,2012;Yang et al.,2012;Ma et al.,2013) 。栾家河花岗岩体的主要岩性为黑云母花岗岩,与玲珑花岗岩体相比,黑云母含量降低,主 要以 浅色矿物为主,局部出现白云母,铁镁质包体较少(Wang et al.,1998),呈NNE向带状 分布于玲珑花岗岩体中部以及东侧以栾家河为中心的地区,其锆石U_Pb年龄为160~147 Ma ( Wang et al.,1998;Yang et al.,2012;陈俊等,2015)。郭家岭花岗岩体的主要岩性为 花 岗闪长岩,呈近EW向岩株状侵入到玲珑花岗岩体和胶东群变质岩中(杨进辉等,2003;Ho u et al.,2007;张良等,2014),其锆石U_Pb年龄为130~126 Ma(Wang et al.,1998;Ya ng ,et al.,2012;陈广俊等,2014)。艾山花岗岩体主要岩性为二长花岗岩,呈近NE向侵 入 到郭家岭花岗岩岩体中(杨宽等,2012;张良等,2014),其锆石U_Pb年龄为118~114 Ma (Go ss et al.,2010)。其中,玲珑和郭家岭花岗岩岩体内赋存了胶东地区95%的金资源量,为 胶东地区金矿床的主要赋矿围岩(张炳林等,2014)。
区域构造以断裂为主,NE_NNE向展布的三山岛断裂带、焦家断裂带、招平断裂带、栖霞断裂 带、和牟乳断裂带(自西向东)以及分布在其之间的次级断裂控制了胶东金矿床的产出(图 1;翟明国等,2001;Yang et al.,2003;陈衍景等,2004;范宏瑞等,2005;张炳林等, 2014)。
石英_黄铁矿阶段(Ⅰ)石英呈乳白色、半透明块状,黄铁矿以粗粒自形的立方 体呈团块 状充填于石英中,微量的黄铜矿呈他形充填于石英裂缝中或产于黄铁矿颗粒间。该主要的围 岩蚀变类型为硅化、钾长石化、微弱的绢云母化;该阶段金矿化微弱,为成矿早阶段。
石英_绢云母_黄铁矿阶段(Ⅱ)石英为透明乳白色(图3a),黄铁矿以细粒自形 _半自形 立方体呈浸染状、团块状、细脉状产出,局部见少量团块状黄铜矿。主要的围岩蚀变类型 为硅化和黄铁绢英岩化;该阶段是金富集阶段。
石英_多金属硫化物阶段(Ⅲ)矿石为细脉_浸染状多金属硫化物型矿石,矿物共 生组合为 黄铁矿_黄铜矿_方铅矿_闪锌矿_碲银矿_金。该阶段石英呈透明烟灰色(图3b),黄铁矿裂 隙发育并局部破碎,被脉石矿物穿插。方铅矿、闪锌矿、黄铜矿等多呈他形粒状(集合体) 充填于黄铁矿裂隙、孔隙或与脉石矿物的颗粒间隙,并可交代溶蚀黄铁矿(图3c、3d)。闪 锌矿多与黄铜矿、方铅矿相伴生或含乳滴状黄铜矿(图3d、3e)。主要的围岩蚀变类型为 硅化、黄铁绢英岩化、绿泥石化;该阶段是成矿的主要阶段,金以自然金和银金矿出现,呈 金黄色或浅黄色浑圆状、片状和不规则粒状,与晚期硫化物共生,充填在黄铁矿的裂隙(裂 隙金,图3f)、孔隙(包体金,图3g)和黄铁 矿与石英颗粒之间隙(晶隙金,图3g、3i),或与铜铅锌硫化物连生(图3g、3h、3i)。
碳酸盐_萤石阶段(Ⅳ)方解石、萤石等呈粗晶脉状充填成矿后断裂,主要的 围岩蚀变类型为硅化和碳酸盐化,此阶段矿化极微弱。
流体包裹体显微测温分析在中国科学院地质与地球物理研究所矿产资源研究重点实验室流体 包裹体实验室LinkamTHMS600型冷热台上进行的,并用美国FLUID INC公司提供的人工合成流 体包裹体标准样品对冷热台进行了温度标定,该冷热台在-120~-70℃温度的测定精度为±0 .5℃、-70~+100℃区间为±0.2℃,在100~500℃区间为±2℃。流体包裹体测 试过程中 ,升温速率一般为0.2~5 ℃/min, 含CO2三相流体包裹体在其相转变温度附近升温速率 降低为0.2 ℃/min, 气液两相流体包裹体在其冰点和均一温度附近的升温速率为 0.2~0.5 ℃/min, 以准确记录相转变温度 (胡芳芳等,2005)。对于含CO2三相流体包裹体,显微测温需记录固相CO2熔化温度、笼合 物融化温度、CO2相部分均一温度和完全均一 温度;气液两相流体包裹体的显微测温结果主要包括冰点和完全均一温度。含CO2三相流 体包裹体的盐度根据Roedder(1984)的公式: WNaCl=15.52022-1.02342· T-0.05286·T2计算,公式中WNaCl为水溶液中NaCl的质量分数,T为笼 合物的熔化温度(℃),应用范围为-9.6℃≤T≤+10℃;气液两相流体包裹体的 盐度 根据Bodnar(1993)提出的公式估算。利用Flincor程序(Brown,1989)对获得的流体包裹 体数据进行了处理。
单个流体包裹体的激光拉曼探针分析在中国科学院地质与地球物理研究所流体包裹体实验室 完成,在法国JobinYevon公司生产的LabRAM HR可见显微共焦拉曼光谱仪上完成,使用Ar + 离子激光器,波长532 nm,输出功率为44 mV,所测光谱的计数时间为3 s,每1 cm-1 (波数)计数一次,100~4000 cm-1全波段一次取峰,激光束斑大小约为1 μm,光 谱分辨率0.65 cm-1,测试之前使用单晶硅片对拉曼光谱进行校正,经校正使单晶硅 片的拉曼位移对应520.7(胡芳芳等,2005)。
CO2_H2O包裹体(Ⅰ型): 三相包裹体(液相H2O (LH2O)+液相CO2 (L CO2)+气相CO2 (VCO2) (Ⅰa型)(图4c_A、4h),LCO2+V CO2约占流体包裹体体积的15%~75%左右,气相CO2总体暗色而中心发亮,VC O2体积相对较大,LCO2通常围绕VCO2形成薄薄的一圈,此类型流 体包裹体多为不规则形、负晶形或长条形,体积通常较大,直径一般为5~20 μm,部分直 径 大于10 μm(图4c_A)。两相包裹体(LH2O+VCO2)(Ⅰb型)(图4c_B 、4d),VCO2百分比变化范围大,约占流体包裹体体积的5%~75%左右,此类型流 体包裹体多为椭圆形、负晶形,直径通常3~10 μm,并以3~5 μm居多。
H2O溶液包裹体(Ⅱ型): 一般以气、液(LH2O+VH2O)两相形式存在 ( Ⅱa型),其中气相占流体包裹体体积的5%~75%左右。气液两相流体包裹体多为椭圆形、负 晶形,直径通常3~10 μm,并以3~5 μm居多(图4e)。局部可见水溶液(LH2O )单相流体包裹体(Ⅱb型),室温下无色透明,不见气泡,偶见呈群体发育,通常呈长条 形或椭圆形,直径通常为3~5 μm (图4f)。
CO2单相包裹体(Ⅲ型): 由纯CO2气相组成,包裹体呈暗黑色,一般为不规则状零星 分布(与纯液相H2O和CO2_H2O包裹体在一个视域内,图4g_A)直径一般为3~5 μm (图4g_A)。
含子矿物包裹体(Ⅳ型): 由水溶液(LH2O)+气相(V)+子矿物(S)组成,直 径约5~7 μm,室温下子矿物位于水溶液(LH2O)中,直径1~3 μm(图4i)。
(1) 在成矿早期(第Ⅰ阶段),石英为乳白色,镜下呈乳浊状,透明度较差,包裹体主要 为富CO2三相包裹体(LH2O+LCO2+VCO2)(图4c_A)和富CO2 两相包裹体(LH2O+VCO2)(图4c_B),直径较小,一般为3~5 μm。富C O2三相包裹体固态CO2的熔化温度为-56.6~-56.5℃,与纯CO2三相点的温度 (-56.6℃)基本相同,表明基本为纯CO2,笼合物融化温度为6.0~6.7℃,CO2部 分均一 到气态或液态CO2,部分均一温度为30.5~31.0℃,完全均一温度为308~377℃,多数 完全均一至液相,个别完全均一至气相,对应的盐度为6.29%~7.48% (表1;图5a);富 CO2两相包裹体中固态CO2的熔化温度为-56.8~-56.6℃,与纯CO2三相点 的 温度(-56.6℃)基本相同,基本为纯CO2相,冰点为-5.5~-4.3℃,完全均 一温度为308~37 7℃,多数 完全均一至液相,个别完全均一至气相(表1;图5b),对应的盐度为6.88%~8.55%。成 矿早期流体平均密度为0.90 g/cm3,流体压力为350 MPa。
(2) 主成矿期(第Ⅱ、Ⅲ阶段)的石英较干净且透明度好,与金属硫化物共生时呈烟灰色 ,其中的流体包裹体主要为富CO2两相包裹体(图4d_A,4d_B),并含有少量富CO2三相 包裹体、水溶液气液两相包裹体(图4e),直径多为5~10 μm,可呈孤立状或群体分布。 与此阶 段载金黄铁矿共生的石英中可见CO2单相包裹体(图4g_A)、富CO2两相包裹体(图4g_B )、 水溶液单相包裹体(图4g_C)共生。此阶段流体包裹体中固态CO2的熔化温度为-57.2~ -56.2℃,部分流体包裹体的固态CO2的熔化温度略低于纯CO2三相点的温度,表明其 中可能有 其他 组分的加入。激光拉曼分析在富CO2的包裹体中检测到了CH4的特征峰值(图6d),说明 该阶段流 体中含有少量CH4。富CO2三相包裹体笼合物融化温度为4.2~7.5℃,CO2部分均一 到气态或液态CO2,部分均一温度为31.0~32.3℃,完全均一温度为265~331℃,对应 的盐度为4.87%~10.29%(表1;图5b);富CO2两相包裹体和H2O溶液 两相包裹体的
注: tm,CO2为固相CO2的熔化温度;tm,clath为笼合物的融化温 度; th,CO2为CO2的部分均一温度;th,ice为冰点温度;th, tot为完全均一温度;w(NaCleq)为盐度。
冰点为-5.7~-3.1℃,完全均一温度为226~324℃,对应的盐度为5.11%~8.81%(表1 ;图5b)。主成矿期流体平均密度为0.85~0.90 g/cm3,流体压力为280~300 MPa。
激光拉曼光谱显示成矿早期LH2O_LCO2_VCO2型(Ⅰa型)和L H2O_VCO2型(Ⅰb型)流体包裹体中气相成分为纯CO2(图6a、6b、6c),与 均一法测温中固态CO2的熔化温度等于纯CO 2的三相点的显微测温结果相符。
主成矿期部分LH2O_VCO2型(Ⅰb型)流体包裹体中气相的激光拉曼光谱出 现了CO2和CH4特征峰(图6d),表明主成矿期的成矿流体中有CH4的加入,这与主成 矿期部分流体包裹体的 固 态CO2的熔化温度略低于纯CO2的三相点的显微测温结果相一致。LH2O_VH 2O型(Ⅱa型)流体包 裹体中的气相部分只出现了气相H2O的特征峰(图6e),并无CO2的特征峰出现。成矿晚 期流体包裹体中偶见碳酸钙子矿物(图6f)。
谢家沟金矿床主成矿期黄铁矿的δ34S值变化范围在5.9‰~7.8‰,平均值为6.7 ‰,结果见表2。
谢家沟金矿床主成矿期石英的氢、氧同位素数据与胶东典型金矿床比较(图8),δ18 O和δD值与焦家型台上金矿床主成矿期石英较为一致。投影到δ18O和δD判别图 (图8)上,谢家沟金矿床的投影点与台上金矿床基本重叠。与其他矿床相比,δD值较低, δ 18O值范围变化较小。将前人对胶东典型矿床石英黄铁矿脉中石英及其包裹体的δ 1 8OH2O和δDH2O值投影在δ18OH2O和δDH2O关 系图上,显示玲珑型金矿床的数据点基本落在岩浆水区域及岩浆水区域与雨 水线之间靠近岩浆水的区域。焦家型金矿床数据投影落在岩浆水区域与雨水线之间靠近初始 岩 浆水的区域,较玲珑型金矿床更靠近雨水线。近年来的大量研究表明(杨忠芳等,1991;卢 焕 章等,1999;杨金中等,2000;周新华等,2002;Fan et al.,2003;胡芳芳等,2005;侯 明兰等,2007;蔡亚春等,2011;姜晓辉等,2011),胶东金矿床的初始流体以岩浆水为主 , 在成矿的中、晚期有天水加入,组成了岩浆水_天水的复合或混合成矿序列。然而,张连昌 等(2002)通过研究胶东金矿区He_Ar同位素系统,认为胶东金矿床成矿流体具有地幔流体 特征,不同矿床的成矿流体呈现不同的特征,如蓬家夼_发云夼金矿床的成矿流体来源以大 气降 水为主,仅有少量地幔流体或岩浆水的加入;焦家、邓格庄金矿床的成矿流体来源以地幔流 体为 主,岩浆水和大气降水参与其中。由图8可以看出,蚀变岩型金矿床的成矿流体的δ18 O值比石英脉 型金矿床的低,暗示蚀变岩型矿床具有更加明显的大气降水加入的特征。δ18O和δD 关系图 显示,谢家沟金矿床的成矿流体表现出较明显的岩浆 水特征,虽然可能有大气降水的参与,但参与程度相对较弱。
对热液金矿床中Au的搬运形式已经获得较为一致的认识,即Au主要以金氯络合物(AuCl- 2)、金硫络合物[Au(HS)-2,Au(HS)0]的形式在热液中迁移(Seward,1 973;19 90; Ha yashi et al.,1991;Gammons et al.,1994;Benning et al.,1996)。谢家沟金矿床的 矿相学特征显示,金与黄铁矿等硫化物密切共生(图3),流体包裹体特征显示成矿流体为 富 含CO2的中_高温流体(<400℃),推断谢家沟金矿床中Au以Au(HS)-2的形式迁移 。部分 学者提出CO2在金矿形成中起着非常重要的作用,表现为CO2可调节流体的pH值使其保持 在Au _S络合物稳定存在的范围内,从而提高金的溶解度(Phillips et al.,2004);CO2可以 加 速气相的形成,其沸腾作用可导致残留液相的p(CO2)降低和pH升高,从而使Au_S络合 物失稳以及金的沉淀(Lowenstern,2001)。
谢家沟金矿床金沉淀期间,出现过显著的温度降低,包裹体显微测温获得的成矿前流体均一 温度为308~377℃,主成矿期流体均一温度为226~331℃。造成成矿流体温度降低可能有2 个 原因:其一,谢家沟金矿床成矿流体主要为岩浆水,演化到后期有部分来源于浅部、温度较 低的大气降水参与其中,成矿流体发生混合,不同性质的流体混合促使大规模金沉淀事件的 发生;其二,伴随着成矿流体迁移至容矿构造,热液流体压力迅速降低,导致成矿流体发生 沸腾作用,达到CO2_H2O两相不混溶区,CO2从成矿流体中逃逸,流体pH值升高,氧化 性降低 或还原性增强,大量HS-变成H2S而脱离热液,成矿流体中的Au_S络合物发生分解,形 成大量硫化物,同时金发生沉淀。
(2) 成矿流体的来源:硫同位素研究表明谢家沟金矿床主成矿期黄铁矿的δ34S值 接近或略 低于胶东典型的金矿床,暗示这些金矿床的成矿物质可能来自相同的源区;氢、氧同位素对 比研究表明,谢家沟金矿床主成矿期石英δ18O和δD值与玲珑矿田中的“焦家型”台 上金矿 床主成矿期石英δ18O和δD值较为一致,成矿流体表现出较明显的岩浆水特征,可能 有大气降水的参与,但参与程度相对较弱。
(3) 矿化机制:大气降水与岩浆水混合引起的温度降低、挥发分含量的降低以及压力降低 引起的不混溶作用可能是促使谢家沟金矿床金沉淀的主要原因。
志谢感谢范宏瑞研究员和文博杰博士在流体包裹体测试过程中提供的帮助 。
谢家沟金矿床是近年来在招平断裂和焦家断裂之间发现的一处大型金矿床(金储量37.5 t; 孙杰等,2012),其产出位置与石英脉型金矿矿床(玲珑、九曲、乳山、邓格庄等金矿床) 的 产出位置相似,即位于壳源花岗岩(玲珑花岗岩体)内的主断裂或次级断裂内(图1;范宏 瑞等,2005)。谢家沟金矿床的矿石类型主要为蚀变岩型矿石,矿石结构、构造与典型的蚀 变岩型金矿相似,局部出现石英脉型矿石。蚀变岩型金矿床的矿体产状与断裂一致,倾角较 平缓 ,一般30~50°,有倾伏和侧伏现象;石英脉型金矿床的矿体产状与主干构造多呈入字型产 出, 倾角较陡,大都大于60°,空间上斜列分布;过渡型金矿床的矿体倾角很陡,一般为70~85 °, 有倾伏和侧伏现象(郭涛,2005)。谢家沟金矿床与区域内的灵山沟金矿床(张均,1991; 1993;陈桥等,2004;于晓飞等,2007;孙丰月等,2008)和台上金矿床(周凤英等,1991 ;崔书 学,2008;陈炳翰等,2014;Yang et al.,2016)在控矿构造、成矿围岩、矿体特征、矿 石类型和围岩蚀变等方面相似,是胶东地区兼具蚀变岩型和石英脉型金矿特点的过 渡类型金 矿。本文通过对谢家沟金矿床详细的流体包裹体研究,探讨了该矿床的成矿流体性质和来源 及演化,为进一步认识谢家沟金矿床及此过渡类型金矿的成因提供制约。
![]() |
图 1胶东区域地质及主要金矿分布图(据Wang et al.,1998;Fan et al.,2003;陈衍 景等,2004;Goss et al.,2010; Yang et al.,2012;Yang et al.,2014) 1—第四系; 2—早白垩世火山岩; 3—艾山花岗岩; 4—郭家岭花岗岩; 5—栾家河花岗 岩; 6—玲珑花岗岩; 7—晚三叠世花岗岩; 8—元古 代变质岩; 9—太古代变质 岩; 10 —超高压变质岩; 11—主要断裂; 12—蚀变岩型金矿床; 13—石英脉型金矿床; 14—过 渡型金矿床; 15—滑动角砾岩型金矿床; 16—城市 Fig. 1Simplified geological map of the Jiaodong Peninsula showing locations of the major gold deposits (after Wang et al.,1998; Fan et al.,2003; Chen e t al.,2004; Goss et al.,2010; Yang et al.,2012; Yang et al.,2014) 1—Quaternary; 2—Early Cretaceous volcanic rock; 3—Aishan granite; 4—Guoj ialing granite; 5—Luanjiahe granite; 6—Linglong granite; 7—Late Tr iassic g ranite; 8—Proterozoic metamorphic rock; 9—Archean metamorphic rock; 10—UHP metamorphic rock; 11—Main fault; 12—Altered rock type gold deposit; 13— Quartz vein type gold deposit; 14—Transitional type gold deposit; 15—Interla yer slide breccia type gold deposit; 16—City |
1区域地质
胶东地区位于华北克拉通东南缘,西部以郯庐断裂带为界与鲁西地块相邻,东南部以五莲_ 荣成断裂带为界与胶南地块和苏鲁超高压变质带相邻(图1)。研究区位于胶东地区的西北 部,出露的地层有新太古界胶东群、古元古界荆山群和粉子山群。胶东群的主要岩性是斜长 角 闪岩、斜长片麻岩和黑云变粒岩,其原岩为超镁铁质_镁铁质及长英质火山岩、碎屑沉积岩 ,其锆石U_Pb年龄为2.4~2.9 Ga (杨敏之等,1996;Zhang et al.,2003;Tang et al.,2007;Jahn et al.,2008)。古元古代荆山群和粉子山群不整合于新太古代胶东 群之上,为一套含碳质富铝的泥质碎屑岩和富镁碳酸盐岩建造(陈光远等,1993)。区内大面积的侵入岩包括玲珑、栾家河、郭家岭和艾山花岗岩等(Wang et al.,1998;H ou et al.,2007;Yang et al.,2012;Zhang et al.,2010)。玲珑花岗岩岩体的主要岩 性为 黑云母花岗岩,含胶东群包体,局部有片麻状构造(Wang et al.,1998),呈NNE向带状分 布于焦家断裂与招平断裂之间(图1),其锆石U_Pb年龄为165~155 Ma(Wang et al.,199 8;Zhang et al.,2010;Jiang et al.,2012;Yang et al.,2012;Ma et al.,2013) 。栾家河花岗岩体的主要岩性为黑云母花岗岩,与玲珑花岗岩体相比,黑云母含量降低,主 要以 浅色矿物为主,局部出现白云母,铁镁质包体较少(Wang et al.,1998),呈NNE向带状 分布于玲珑花岗岩体中部以及东侧以栾家河为中心的地区,其锆石U_Pb年龄为160~147 Ma ( Wang et al.,1998;Yang et al.,2012;陈俊等,2015)。郭家岭花岗岩体的主要岩性为 花 岗闪长岩,呈近EW向岩株状侵入到玲珑花岗岩体和胶东群变质岩中(杨进辉等,2003;Ho u et al.,2007;张良等,2014),其锆石U_Pb年龄为130~126 Ma(Wang et al.,1998;Ya ng ,et al.,2012;陈广俊等,2014)。艾山花岗岩体主要岩性为二长花岗岩,呈近NE向侵 入 到郭家岭花岗岩岩体中(杨宽等,2012;张良等,2014),其锆石U_Pb年龄为118~114 Ma (Go ss et al.,2010)。其中,玲珑和郭家岭花岗岩岩体内赋存了胶东地区95%的金资源量,为 胶东地区金矿床的主要赋矿围岩(张炳林等,2014)。
区域构造以断裂为主,NE_NNE向展布的三山岛断裂带、焦家断裂带、招平断裂带、栖霞断裂 带、和牟乳断裂带(自西向东)以及分布在其之间的次级断裂控制了胶东金矿床的产出(图 1;翟明国等,2001;Yang et al.,2003;陈衍景等,2004;范宏瑞等,2005;张炳林等, 2014)。
2矿床地质
谢家沟金矿床位于华北地台胶东隆起区西北缘的焦家断裂带和招平断裂带之间(图1)。矿 区 内出露岩石主要是片麻状黑云母花岗岩(玲珑花岗岩)及燕山期中基性脉岩群(闪长玢岩、 辉石闪长岩、正长斑岩、闪长岩等),偶见胶东群等老地层捕掳体(斜长角闪岩、黑云变粒 岩、黑云斜长片麻岩等)。矿区内NNE向构造十分发育,基本控制了矿区的构造格局(图 2);NNW向构造规模较小,一般稍晚于NNE向断裂;EW向断裂往往切割其他方向构造,属 于晚期构造,规模较大。与成矿相关的断裂主要为NNE向和NNW向断裂。围岩蚀变 主要有钾长石化、硅化、黄铁绢英岩化、绿泥石化和碳酸盐化等。矿体主要呈脉状或透镜状 赋存于强蚀变的断裂带内,产状稳定,倾角较陡(72~89°)。3号矿体金储量占整个矿床7 0 %以上(孙杰等,2012),主要由8条呈左行雁列式排列的矿脉组成,走向均为北东34~50 ° (图2)。矿石类型主要为黄铁绢英岩化矿石,局部为石英细脉型矿石,偶见石英多金属硫 化物型矿石。矿石矿物主要有黄铁矿、黄铜矿、方铅矿、闪锌矿、自然金、银金矿,以及少 量 的碲银矿和辉银矿。基于野外地质观察、矿物共生组合及结构构造等特征,可将该金矿床的 成矿从早到晚分为以下4个阶段:石英_黄铁矿阶段(Ⅰ)石英呈乳白色、半透明块状,黄铁矿以粗粒自形的立方 体呈团块 状充填于石英中,微量的黄铜矿呈他形充填于石英裂缝中或产于黄铁矿颗粒间。该主要的围 岩蚀变类型为硅化、钾长石化、微弱的绢云母化;该阶段金矿化微弱,为成矿早阶段。
石英_绢云母_黄铁矿阶段(Ⅱ)石英为透明乳白色(图3a),黄铁矿以细粒自形 _半自形 立方体呈浸染状、团块状、细脉状产出,局部见少量团块状黄铜矿。主要的围岩蚀变类型 为硅化和黄铁绢英岩化;该阶段是金富集阶段。
石英_多金属硫化物阶段(Ⅲ)矿石为细脉_浸染状多金属硫化物型矿石,矿物共 生组合为 黄铁矿_黄铜矿_方铅矿_闪锌矿_碲银矿_金。该阶段石英呈透明烟灰色(图3b),黄铁矿裂 隙发育并局部破碎,被脉石矿物穿插。方铅矿、闪锌矿、黄铜矿等多呈他形粒状(集合体) 充填于黄铁矿裂隙、孔隙或与脉石矿物的颗粒间隙,并可交代溶蚀黄铁矿(图3c、3d)。闪 锌矿多与黄铜矿、方铅矿相伴生或含乳滴状黄铜矿(图3d、3e)。主要的围岩蚀变类型为 硅化、黄铁绢英岩化、绿泥石化;该阶段是成矿的主要阶段,金以自然金和银金矿出现,呈 金黄色或浅黄色浑圆状、片状和不规则粒状,与晚期硫化物共生,充填在黄铁矿的裂隙(裂 隙金,图3f)、孔隙(包体金,图3g)和黄铁 矿与石英颗粒之间隙(晶隙金,图3g、3i),或与铜铅锌硫化物连生(图3g、3h、3i)。
![]() |
图 2胶西北构造背景图(a)和谢家沟金矿矿体分布图(b)(据王建国等,2009) 1—玲珑花岗岩; 2—中基性脉岩; 3—硫铁矿带; 4—断层及编号; 5—蚀变带及编号; 6—金矿体; 7—金矿床; 8—城市 Fig. 2Geotectonic map of northwestern Jiaodong peninsula (a) and distributio n of orebody in the Xiejiagou gold deposit (b) (After Wang et al., 2009) 1—Linglong granite; 2—Intermediate_basic dikes; 3—Pyrite zone; 4—Fault an d its serial number; 5—Alteration zone and its serial number; 6—Gold ore b ody; 7—Gold deposit; 8—City |
3流体包裹体地球化学
3.1样品采集和分析方法
笔者对谢家沟金矿床的9件含金石英脉样品进行了流体包裹体的观测分析,在对流体包裹体 的 形态、大小、相态、类型、分布特征进行详细观察的基础上,主要选择成矿早期(第Ⅰ阶段 )及主成矿期(第Ⅱ、Ⅲ阶段)有代表性的流体包裹体进行显微测温和激光拉曼探针 成分分析(图4a)。流体包裹体显微测温分析在中国科学院地质与地球物理研究所矿产资源研究重点实验室流体 包裹体实验室LinkamTHMS600型冷热台上进行的,并用美国FLUID INC公司提供的人工合成流 体包裹体标准样品对冷热台进行了温度标定,该冷热台在-120~-70℃温度的测定精度为±0 .5℃、-70~+100℃区间为±0.2℃,在100~500℃区间为±2℃。流体包裹体测 试过程中 ,升温速率一般为0.2~5 ℃/min, 含CO2三相流体包裹体在其相转变温度附近升温速率 降低为0.2 ℃/min, 气液两相流体包裹体在其冰点和均一温度附近的升温速率为 0.2~0.5 ℃/min, 以准确记录相转变温度 (胡芳芳等,2005)。对于含CO2三相流体包裹体,显微测温需记录固相CO2熔化温度、笼合 物融化温度、CO2相部分均一温度和完全均一 温度;气液两相流体包裹体的显微测温结果主要包括冰点和完全均一温度。含CO2三相流 体包裹体的盐度根据Roedder(1984)的公式: WNaCl=15.52022-1.02342· T-0.05286·T2计算,公式中WNaCl为水溶液中NaCl的质量分数,T为笼 合物的熔化温度(℃),应用范围为-9.6℃≤T≤+10℃;气液两相流体包裹体的 盐度 根据Bodnar(1993)提出的公式估算。利用Flincor程序(Brown,1989)对获得的流体包裹 体数据进行了处理。
![]() |
图 3谢家沟金矿床含金石英脉及其金的赋存状态 a. 第Ⅱ阶段石英脉; b. 第Ⅲ阶段石英脉; c. 方铅矿、黄铜矿溶蚀交代黄铁矿; d. 方 铅矿、黄铜矿、闪锌矿充填于石英颗粒间隙; e. 闪锌矿 中乳滴状黄铜矿固溶体; f. 黄铁 矿裂隙中方铅矿及银金矿; g. 黄铁矿中包体金及晶隙金; h. 黄铜矿中包体金; i. 石英 颗粒间晶隙金 Au—自然金、银金矿; Ccp—黄铜矿; Gn—方铅矿; Kfs—钾长石; Py—黄铁矿; Qz— 石英; Sp—闪锌矿 Fig. 3Au_bearing quartz vein and gold occurrence from the Xiejiagou gold depos it a. Quartz vein in stage Ⅱ; b. Quartz vein in stage Ⅲ; c. Metasomatic dissolu tion of pyrite by galena and chalcopyrite; d. Galena,chalcopyrite,sphalerite filling clearance between quartz grains; e. Droplets chalcopyrite solid solutio n in sphalerite; f. Galena and electrum in the fissure of pyrite; g. I nclusion gold and intercrystalline gold in pyrite; h. Inclusion gold in chalcopyrite; i. Intercrystalline gold in quartz Au—Native gold or electrum; Ccp—Chalcopyrite; Gn—Galena; Kfs—K_feldspar; Py—Pyrite; Qz—Quartz; Sp—Sphalerite |
![]() |
图 4谢家沟金矿床的流体包裹体显微照片 a. 主成矿期石英中原生流体包裹体; b. 第Ⅰ阶段石英裂隙中的次生流体包裹体; c. 第 Ⅰ阶段石英中富CO2三相流体包裹体(c_A)和富CO2两相流体包裹体(c_B); d. 主成 矿期含金黄铁矿包裹的石英中的富CO2两相流体包裹体(d_A、d_B); e. 主成矿期石英 中H2O溶液包裹体; f. 石英中纯液相流体包裹体; g. 主成矿期石英中纯CO2气相包裹 体(g_A)、富CO2两相包裹体(g_B)和纯液相流体包裹体(g_C); h. 主 成矿 期石英中富CO2三相和两相流体包裹体;i. 石英中含子矿物流体包裹体 Py—黄铁矿; Qz—石英; LCO2—液相二氧化碳; VCO2—气相二氧化碳 ; LH2O—液相水; VH2O—气相水 Fig. 4Photomicrographs of fluid inclusions from the Xiejiagou gold deposit a. Primary fluid inclusions in the main metallogenic stage quartz from the Xieji agou gold deposit;b. Secondary fluid inclusions in the fissure of Ⅰ stage quar tz; c. CO2_rich three_phase(c_A) and two_phase (c_B) fluid inclusions in Ⅰ stage quartz; d. CO2_rich two_phase fluid inclusions (d_A, d_B)in the Au _bearing pyrite of main metallogenic stage; e. Aqueous inclusion in the quartz of main metallogenic stage; f. Pure H2O liquid inclusions in the quar tz; g. Pure CO2 gaseous inclusions(g_A), CO2_rich two_phase fluid inclusions(g_ B) and pure H2O liquid inclusions(g_C) in the quartz of main metall ogenic stage; h. CO2_rich three_phase and two_phase fluid inclusions in the quartz of main metallogenic stage; i. Daughter mineral bearing fluid inclusi on in the quartz Py—Pyrite; Qz—Quartz; LCO2—Carbon dioxide of liquid phase; VCO 2—Carbon dioxide of vapor phase; LH2O—Water of liquid phase; VH2O—Water of vapor phase |
3.2流体包裹体岩相学特征
石英是流体包裹体最主要的寄主矿物,成矿早期(第Ⅰ阶段)和主成矿期(第Ⅱ、Ⅲ阶段) 的石英_硫化物脉型矿石是本研究主要的流体包裹体测温对象(图3b)。对早期石英脉包裹 体群的观察表明,它们主要由原生包裹体群和沿微裂隙(裂隙穿过相邻的晶体)的次生包裹 体群组成 (图4b)。原生的流体包裹体主要分为4类:CO2_H2O包裹体(Ⅰ型): 三相包裹体(液相H2O (LH2O)+液相CO2 (L CO2)+气相CO2 (VCO2) (Ⅰa型)(图4c_A、4h),LCO2+V CO2约占流体包裹体体积的15%~75%左右,气相CO2总体暗色而中心发亮,VC O2体积相对较大,LCO2通常围绕VCO2形成薄薄的一圈,此类型流 体包裹体多为不规则形、负晶形或长条形,体积通常较大,直径一般为5~20 μm,部分直 径 大于10 μm(图4c_A)。两相包裹体(LH2O+VCO2)(Ⅰb型)(图4c_B 、4d),VCO2百分比变化范围大,约占流体包裹体体积的5%~75%左右,此类型流 体包裹体多为椭圆形、负晶形,直径通常3~10 μm,并以3~5 μm居多。
H2O溶液包裹体(Ⅱ型): 一般以气、液(LH2O+VH2O)两相形式存在 ( Ⅱa型),其中气相占流体包裹体体积的5%~75%左右。气液两相流体包裹体多为椭圆形、负 晶形,直径通常3~10 μm,并以3~5 μm居多(图4e)。局部可见水溶液(LH2O )单相流体包裹体(Ⅱb型),室温下无色透明,不见气泡,偶见呈群体发育,通常呈长条 形或椭圆形,直径通常为3~5 μm (图4f)。
CO2单相包裹体(Ⅲ型): 由纯CO2气相组成,包裹体呈暗黑色,一般为不规则状零星 分布(与纯液相H2O和CO2_H2O包裹体在一个视域内,图4g_A)直径一般为3~5 μm (图4g_A)。
含子矿物包裹体(Ⅳ型): 由水溶液(LH2O)+气相(V)+子矿物(S)组成,直 径约5~7 μm,室温下子矿物位于水溶液(LH2O)中,直径1~3 μm(图4i)。
3.3不同成矿阶段石英中流体包裹体特征和显微测温
不同成矿阶段的流体包裹体的类型、分布特征和显微测温结果如下:(1) 在成矿早期(第Ⅰ阶段),石英为乳白色,镜下呈乳浊状,透明度较差,包裹体主要 为富CO2三相包裹体(LH2O+LCO2+VCO2)(图4c_A)和富CO2 两相包裹体(LH2O+VCO2)(图4c_B),直径较小,一般为3~5 μm。富C O2三相包裹体固态CO2的熔化温度为-56.6~-56.5℃,与纯CO2三相点的温度 (-56.6℃)基本相同,表明基本为纯CO2,笼合物融化温度为6.0~6.7℃,CO2部 分均一 到气态或液态CO2,部分均一温度为30.5~31.0℃,完全均一温度为308~377℃,多数 完全均一至液相,个别完全均一至气相,对应的盐度为6.29%~7.48% (表1;图5a);富 CO2两相包裹体中固态CO2的熔化温度为-56.8~-56.6℃,与纯CO2三相点 的 温度(-56.6℃)基本相同,基本为纯CO2相,冰点为-5.5~-4.3℃,完全均 一温度为308~37 7℃,多数 完全均一至液相,个别完全均一至气相(表1;图5b),对应的盐度为6.88%~8.55%。成 矿早期流体平均密度为0.90 g/cm3,流体压力为350 MPa。
(2) 主成矿期(第Ⅱ、Ⅲ阶段)的石英较干净且透明度好,与金属硫化物共生时呈烟灰色 ,其中的流体包裹体主要为富CO2两相包裹体(图4d_A,4d_B),并含有少量富CO2三相 包裹体、水溶液气液两相包裹体(图4e),直径多为5~10 μm,可呈孤立状或群体分布。 与此阶 段载金黄铁矿共生的石英中可见CO2单相包裹体(图4g_A)、富CO2两相包裹体(图4g_B )、 水溶液单相包裹体(图4g_C)共生。此阶段流体包裹体中固态CO2的熔化温度为-57.2~ -56.2℃,部分流体包裹体的固态CO2的熔化温度略低于纯CO2三相点的温度,表明其 中可能有 其他 组分的加入。激光拉曼分析在富CO2的包裹体中检测到了CH4的特征峰值(图6d),说明 该阶段流 体中含有少量CH4。富CO2三相包裹体笼合物融化温度为4.2~7.5℃,CO2部分均一 到气态或液态CO2,部分均一温度为31.0~32.3℃,完全均一温度为265~331℃,对应 的盐度为4.87%~10.29%(表1;图5b);富CO2两相包裹体和H2O溶液 两相包裹体的
![]() |
表 1谢家沟金矿床的流体包裹体显微测温结果 Table 1Microthermometric results of fluid inclusions from the Xiejiagou gold d eposit |
![]() |
图 5谢家沟金矿床不同成矿阶段流体包裹体均一温度直方图 a. 成矿早期流体包裹体均一温度直方图; b. 主成矿期流体包裹体均一温度直方图 Fig. 5Histograms showing total homogenization temperature of different stages of fluid inclusions from the Xiejiagou gold deposit a. Histogram showing total homogenization temperature of early metallogenic stag e fluid inclusions;b. Histogram showing total homogenization temperature of m ain metallogenic stage fluid inclusions |
3.4流体包裹体激光拉曼光谱分析
对不同类型的流体包裹体开展了激光拉曼光谱分析,在拉曼图谱上出现了寄主矿物石英的特 征 峰、CO2的特征峰(1389 cm-1和1286 cm-1)、宽泛的液相H2O特征峰(33 10~3610 cm-1)、微弱的CH4的特征峰(2919 cm-1)、碳酸钙子矿物特征 峰(1084 cm-1)(图6)。激光拉曼光谱显示成矿早期LH2O_LCO2_VCO2型(Ⅰa型)和L H2O_VCO2型(Ⅰb型)流体包裹体中气相成分为纯CO2(图6a、6b、6c),与 均一法测温中固态CO2的熔化温度等于纯CO 2的三相点的显微测温结果相符。
主成矿期部分LH2O_VCO2型(Ⅰb型)流体包裹体中气相的激光拉曼光谱出 现了CO2和CH4特征峰(图6d),表明主成矿期的成矿流体中有CH4的加入,这与主成 矿期部分流体包裹体的 固 态CO2的熔化温度略低于纯CO2的三相点的显微测温结果相一致。LH2O_VH 2O型(Ⅱa型)流体包 裹体中的气相部分只出现了气相H2O的特征峰(图6e),并无CO2的特征峰出现。成矿晚 期流体包裹体中偶见碳酸钙子矿物(图6f)。
4稳定同位素研究
选取主成矿期(第Ⅱ、Ⅲ阶段)13件黄铁矿进行硫同位素分析。首先将样品粉碎到40~60目 ,挑选出纯度大于99%的黄铁矿,在中国地质科学院矿产资源研究所同位素室进行硫同位素 分析。黄铁矿以Cu2O作氧化剂制备测试样品,在真空系统和高温条件下,硫化物与Cu2O 反应,硫全部转化为纯净的SO2气体,由MAT_253质谱仪测定其34S与3 2S的比值。结果采用CDT国际标准,分析精度为±0.2‰。谢家沟金矿床主成矿期黄铁矿的δ34S值变化范围在5.9‰~7.8‰,平均值为6.7 ‰,结果见表2。
![]() |
图 6谢家沟金矿床的流体包裹体激光拉曼光谱 a. 成矿早期富CO2三相流体包裹体中CO2气相拉曼光谱; b. 成矿早期富CO2三相流体 包裹体中CO2液相拉曼光谱; c. 成矿早期富CO2两相流体包裹体中CO2气相拉曼光谱 ; d. 主成矿期富CO2两相流体包裹体中CO2气相、CH4气相拉曼光谱; e. 主成矿期H 2O溶液包裹体 H2O气相拉曼光谱; f. CaCO3子矿物拉曼光谱 Fig. 6Laser Raman spectra of the fluid inclusions from the Xiejiagou gold depo sit a. Laser Raman spectra of vapor phase CO2 in the early metallogenic stage CO 2_rich three_phase fluid inclusion; b. Laser Raman spectra of liquid phase CO 2 in the early metallogenic stage CO2_rich three_phase fluid inclusion; c. Las e r Raman spectra of vapor phase CO2 in the early metallogenic stage CO 2_rich two_phase fluid inclusion;d. Laser Raman spectra of vapor phase CO2 and CH4 in the main metallogenic stage CO2_rich two_phase fluid inclusion; e. Laser R aman spectra of vapor phase H2O in the main metallogenic stage aqueous inclusi on; f. Laser Raman spectra of CaCO3 daughter mineral |
5讨论
5.1成矿流体的来源
谢家沟金矿床主成矿期黄铁矿的δ34S值变化范围在5.9‰~7.8‰,平均值为6.7 ‰,接近胶 东灵山沟金矿床(成矿期黄铁矿的δ34S值变化范围在5.3‰~8.3‰,平均值为7. 0‰)和台上金矿床(成矿期黄铁矿的δ34S值变化范围在4.5‰~8.0‰,平均 值为6.8‰),略低于胶东典型的石英脉型金矿床,明显低于胶东典型的蚀变岩型金矿床(图7)。胶东地区硫同位素组成分布范围集中,且与太 古代胶东群、玲珑花岗岩、郭家岭花岗岩以及中基性脉岩相似。
![]() |
表 2谢家沟金矿床中主成矿期黄铁矿的硫同位素数据 Table 2Sulfur isotope data of pyrite of main metallogenic stage from the Xieji agou gold deposit |
![]() |
图 7谢家沟金矿、胶东典型金矿、玲珑花岗岩及胶东基底岩石的硫同位素组成(据王义文 ,1982;黄德业,1994;应汉龙,1994;肖武权等,1995;杨忠芳等,1998;张竹如等,19 99;高太忠等,2001;王义文等,2002;李俊健等,2005;毛景文等,2005;胡芳 芳,2006; 姜晓辉等2011;李旭芬,2011; 王佳良等,2013;Yan et al.,2014;丛智超等, 2015;Yang et al.,2016) Fig. 7 Histograms of δ34S composition of the Xiejiagou gold depos it,different types gold deposits,Linglong granite and basement rocks in Jiaod ong peninsula ( after Wang,1982; Huang,1994;Ying,1994;Xiao et al.,1995;Yang et al ., 1998 ;Zhang et al.,1999;Gao et al.,2001;Wang et al., 2002;Li et al.,20 05;Mao et al.,2005;Hu,2006;Jiang et al.,2011;Li,2011;Wang et al.,2013 ;Yan et al.,2014; Cong et al.,2015;Yang et al.,2016) |
![]() |
图 8谢家沟及胶东典型金矿δ18OH2O_δD关系图解 (底图据Taylor,1974;Hoefs,2009;同位素数据引自杨敏之等,1996;毛景文等,2005; 辛洪波,2005;孙莉,2006;姜晓辉 等,2011;郭林楠等,2014;Yang et al.,2 016) 1—焦家金矿早期; 2—焦家金矿主成矿期; 3—望儿山金矿早期; 4—望儿山金矿主成矿 期; 5—三山岛金矿早期; 6—三山岛金矿主成矿期; 7—玲珑金矿早期; 8—玲珑金矿主 成矿期; 9—台上金矿早期; 10—台上金矿主成矿期; 11—灵山沟金矿早期及主成矿 期; 12—谢家沟金矿早期及主成矿期 Fig. 8 Diagram showing δ18OH2O versus δD of Xiejiagou an d different types of gold deposits in Jiaodong peninsula (base map after Taylor ,1974;Hoefs,2009;isotope data after Yang et al.,1996;Mao et al.,2005;Xin et al.,2005;Sun et al., 2006;Jiang et al.,2011;Guo et al.,2014;Y ang et al., 2016) 1—Early stage of Jiaojia gold deposit; 2—Main mineralization stage of Jiaojia go ld deposit; 3—Early stage of Wangershan gold deposit; 4—Main mineralization stag e of Wangershan gold deposit; 5—Early stage of Sanshandao gold deposit; 6—Ma in m ineralization stage of Sanshandao gold deposit; 7—Early stage of Linglong gold d eposit; 8—Main mineralization stage of Linglong gold deposit; 9—Early stage of T aishang gold deposit; 10—Main mineralization stage of Taishang gold deposit; 11— Early stage/Main mineralization stage of Lingshangou gold deposit; 12—Early st age/main mineralization stage of Xiejiagou gold deposit |
5.2成矿流体的性质及成矿机制
热液金矿床中富CO2的流体包裹体通常标志着流体发生过相分离或沸腾作用,若同时存在 2 组CO2密度相差很大,且均一温度又近似的包裹体,则它们所代表的流体一定发生过相分 离作 用(Diamond,2001;卢焕章等,2004;刘玄等,2011)。激光拉曼光谱测试结果表明,谢 家沟金矿床成矿流体中的挥发分主要为CO2和H2O,仅部分发育有少量的CH4成分。主 成矿期 石英中广泛发育有富CO2的LH2O+LCO2+VCO2型、LH2O+ VCO2型包裹体,显微测温结果显示,LH2O+LCO2+VCO2型 包 裹体均一温度、压力分别为290℃、280 MPa,平均盐度为6.5%,平均密度为0.85 g/cm3 。LH2O+VCO2型包裹体均一温度、压力分别为300℃、300 MPa,平均盐度 为7.5%,平均密度为0.90 g/cm3。2类包裹体均一温度非常接近,且在镜下常可观察到 这2种类型的包裹体密切共生(图4h),以及它们在大致相同的温度下分别均一到气相和液 相,表明其成矿热液为不混溶的CO2-H2O体系,这2类包裹体是流体发生相分离后通过 不均一捕获 形成 的。根据以上分析,谢家沟金矿床成矿期流体属于中_高温(226~331℃)、中_低盐度(4 .87%~10.29%)的H2O_CO2_NaCl±CH4不混溶体系。对热液金矿床中Au的搬运形式已经获得较为一致的认识,即Au主要以金氯络合物(AuCl- 2)、金硫络合物[Au(HS)-2,Au(HS)0]的形式在热液中迁移(Seward,1 973;19 90; Ha yashi et al.,1991;Gammons et al.,1994;Benning et al.,1996)。谢家沟金矿床的 矿相学特征显示,金与黄铁矿等硫化物密切共生(图3),流体包裹体特征显示成矿流体为 富 含CO2的中_高温流体(<400℃),推断谢家沟金矿床中Au以Au(HS)-2的形式迁移 。部分 学者提出CO2在金矿形成中起着非常重要的作用,表现为CO2可调节流体的pH值使其保持 在Au _S络合物稳定存在的范围内,从而提高金的溶解度(Phillips et al.,2004);CO2可以 加 速气相的形成,其沸腾作用可导致残留液相的p(CO2)降低和pH升高,从而使Au_S络合 物失稳以及金的沉淀(Lowenstern,2001)。
谢家沟金矿床金沉淀期间,出现过显著的温度降低,包裹体显微测温获得的成矿前流体均一 温度为308~377℃,主成矿期流体均一温度为226~331℃。造成成矿流体温度降低可能有2 个 原因:其一,谢家沟金矿床成矿流体主要为岩浆水,演化到后期有部分来源于浅部、温度较 低的大气降水参与其中,成矿流体发生混合,不同性质的流体混合促使大规模金沉淀事件的 发生;其二,伴随着成矿流体迁移至容矿构造,热液流体压力迅速降低,导致成矿流体发生 沸腾作用,达到CO2_H2O两相不混溶区,CO2从成矿流体中逃逸,流体pH值升高,氧化 性降低 或还原性增强,大量HS-变成H2S而脱离热液,成矿流体中的Au_S络合物发生分解,形 成大量硫化物,同时金发生沉淀。
6结论
(1) 成矿流体的性质:谢家沟金矿床在成矿早期为高温(308~377℃)、低盐度(6.29% ~8.5 5%)、富含CO2的H2O_CO2_NaCl流体体系;主成矿期为中_高温(226~331℃)、盐度 变化范围 较大的中_低盐度(4.87%~10.29%)、CO2含量降低的H2O_CO2_NaCl±CH4流体体 系,并且流体在该阶段发生了不混溶作用。(2) 成矿流体的来源:硫同位素研究表明谢家沟金矿床主成矿期黄铁矿的δ34S值 接近或略 低于胶东典型的金矿床,暗示这些金矿床的成矿物质可能来自相同的源区;氢、氧同位素对 比研究表明,谢家沟金矿床主成矿期石英δ18O和δD值与玲珑矿田中的“焦家型”台 上金矿 床主成矿期石英δ18O和δD值较为一致,成矿流体表现出较明显的岩浆水特征,可能 有大气降水的参与,但参与程度相对较弱。
(3) 矿化机制:大气降水与岩浆水混合引起的温度降低、挥发分含量的降低以及压力降低 引起的不混溶作用可能是促使谢家沟金矿床金沉淀的主要原因。
志谢感谢范宏瑞研究员和文博杰博士在流体包裹体测试过程中提供的帮助 。
参考文献
References
Benning L G and Seward T M. 1996. Hydrosulphide complexing of Au (I) in hydrothe rmal solutions from 150-400℃ and 500-1500 bar[J]. Geochimica et Cosmoc himica Acta, 60: 1849_171.
Bodnar R J. 1993. Revised equation and table for determining the freezing po int depression of H2O_NaCl solution[J]. Geochimica et Cosmochimica Acta, 57: 683 _684.
Brown P E. 1989. FLINCOR, a microcomputer program for the reduction and investig ation of fluid_inclusion data[J]. American Mineralogist, 74:1390_1393.
Cai Y C, Fan H R, Hu F F, Yang K F, Lan T G, Yu H and Liu Y M. 2011. Ore_forming fluids, stable isotope and mineralizing age of the Hubazhuang gold deposit, Jia odong Peninsula of eastern China[J]. Acta Petrologica Sinica, 27(5): 1341_1351 (in Chinese with English abstract).
Chen B H, Wang Z L, Li H L, Li J K, Li J L and Wang G Q. 2014. Evolution of ore fluid of the Taishang gold deposit, Jiaodong: Constraints on REE and trace eleme nt component of auriferous pyrite[J]. Acta Petrologica Sinica, 30(9): 2518 _2532(in Chinese with English abstract).
Chen G J, Sun F Y, Li Y C and Liu K. 2014. U_Pb dating, geochemical characterist ics and geological significance of Guojialing grandiorite in Jiaodong Peninsula [J]. Global Geology, 33(1): 39_47(in Chinese with English abstract).
Chen G Y, Shao W and Sun D S. 1989. Genetic mineralogy of gold deposits in Jiaod ong region with emphasis on gold prospecting[M]. Chongqing: Chongqing Publishi ng House. 125_234 (in Chinese with English abstract).
Chen G Y, Sun D S, Zhou X R, Shao W, Gong R T and Shao Y. 1993. Mineralogy of Gu ojialing granodiorite and its relationship to gold mineralization in the Jiaodon g peninsula[M]. Beijing: Chinese University of Geosciences Press. 1_230 (in Ch inese with English abstract).
Chen J, Sun F Y, Wang L, Wang S and Li R H. 2015. Zircon U_Pb geochronology and petrogeochemistry of Luanjiahe granite in Jiaodong region and their geological s ignificance[J]. Global Geology, 34(2): 283_295(in Chinese with English abstrac t).
Chen Q, Hu K and Jiang B T. 2004. Research on the laws of Au concentration and m ineralization in Lingshangou gold deposit[J]. Contributions to Geology and Min eral Resources Research, 19(2): 114_117(in Chinese with English abstract).
Chen Y J, Pirajno F, Lai Y and Li C. 2004. Metallogenic time and tectonic settin g of the Jiaodong gold province, eastern China[J]. Acta Petrologica Sinica, 20 (4): 907_922 (in Chinese with English abstract).
Cong Z C, Sun F Y, Wang L and Yang G B. 2015. Geochemical characteristics of ore _forming fluds of Jiuqu gold deposit in Zhaoyuan, Shandong[J]. Global Geology, 34(2): 362_371(in Chinese with English abstract).
Cui S X. 2008. Analysis on ore_control structure of Taishang gold deposit in Zha oyuan of Shandong[J]. Global Geology, 27(2): 146_149(in Chinese with English a bstract).
Deng J, Yang L Q, Sun Z S, Wang J P, Wang Q F, Xin H B and Li X J. 2003. A metal logenic model of gold deposits of the Jiaodong granite_greenstone belt[J]. Act a Geologica Sinica, 77(4): 537_546.
Diamond L W. 2001. Review of the systematics of CO2_H2O fluid inclusions[J ]. Lithos, 55: 69_99.
Fan H R, Zhai M G, Xie Y H and Yang J H. 2003. Ore_forming fluids associated wit h granite_hosted gold mineralization at the Sanshandao deposit, Jiaodong gold pr ovince, China[J]. Mineralium Deposita, 38: 739_750.
Fan H R, Hu F F, Yang J H, Shen K and Zhai M G. 2005. Fluid evolution and large_ scale gold metallogeny during Mesozoic tectonic transition in the eastern Shando ng Province[J]. Acta Petrologica Sinica, 21(5): 1317_1328(in Chinese with Engl ish abstract).
Gammons C H, Williams A E and Yu Y. 1994. New data on the stability of gold(I) c hloride complexes at 300℃[C]. Goldschmidt Conference Edinburgh. 309_310.
Gao T Z, Zhao L S and Yang M Z. 2001. Gold mineralization and its evolution in t he Muping_Rushan gold ore belt, Shandong Province, China[J]. Geotectonica Meta llogenia, 25(2): 155_160(in Chinese with English abstract).
Goss S C, Wilde S A, Wu F Y and Yang J H. 2010. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shando ng Province, North China Craton[J]. Lithos, 120: 309_326.
Guo L N, Zhang C, Song Y Z, Chen B H, Zhou Z, Zhang B L, Xu X L and Wang Y W. 20 14. Hydrogen and oxygen isotopes geochemistry of the Wangershan gold deposit, J iaodong[J]. Acta Petrologica Sinica, 30(9): 2481_2494(in Chinese with English abstract).
Guo T. 2005. Study on gold metallogenic and tectono_fluid_mineralization of Jiao xibei region (dissertation for doctor degree) [D].Supervisor: Zhai Y S, Lü G X. Beijing: China University of Geosciences. 1_96(in Chinese with English abstract ).
Hayashi K and Ohmoto H. 1991. Solubility of gold in NaCl_and H2S_bearing aqueo us solutions at 250_350℃[J]. Geochimica et Cosmochimica Acta, 55: 2111_2126.
Hoefs J. 2009. Stable isotope geochemistry [M]. Berlin: Springer. 1_285.
Hou M L, Jiang S Y, Shen K, Lian J G, Liu Q C and Xiao F L. 2007. Fluid inclusio n and H_O isotope study of gold mineralization in the Penglai gold field, easter n Shandong[J]. Acta Petrologica Sinica, 23(9): 2241_2256(in Chinese with Engli sh abstract).
Hou M L, Jiang Y H, Jiang S Y, Ling H F and Zhao K D. 2007. Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, e ast China: Implications for crustal thickening to delamination[J]. Geological Magazine, 144(4): 619_631.
Hu F F, Fan H R, Yang J H, Wan Y S, Liu D Y, Zhai M G and Jin C W. 2004. Mineral izing age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U_Pb dating on hydrothermal zircon[J]. Chinese Science Bulletin, 49(15): 1629_ 1636.
Hu F F, Fan H R, Shen K, Zhai M G, Jin C W and Chen X S. 2005. Nature and evolut ion of ore_forming fluids in the Rushan lode gold deposit, Jiaodong Peninsula of eastern China[J]. Acta Petrologica Sinica, 21(5): 1329_1338 (in Chinese with English abstract).
Hu F F. 2006. Magmatic activity, fluid evolution and genesis of gold deposit dur ing Mesozoic tectonic transition in the Kunyushan district, eastern Shandong pro vince (dissertation for doctor degree)[D]. Supervisor: Zhai M G, Fan H R. Beij in g: Institute of Geology and Geophysics, Chinese Academic of Science. 1_136(in Ch inese with English abstract).
Hu F F, Fan H R, Jiang X H, Li X C, Yang K F and Metnagh T. 2013. Fluid inclusio ns at different depths in the Sanshandao gold deposit, Jiaodong peninsula, China [J]. Geofluids, 13: 528_541.
Huang D Y. 1994. Sulfur isotope study of the metallogenic series of gold deposit s in Jiaodong (eastern Shandong) area[J]. Mineral Deposits, 13(1): 75_87(in Ch inese with English abstract).
Jahn B M, Liu D Y, Wan Y S, Song B, Wu J S. 2008. Archean crustal evolution of t he Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, el emen tal and Nd_isotope geochemistry[J]. American Journal of Science, 308: 232_ 269.
Jiang N, Chen J Z, Guo J H and Chang G H. 2012. In situ zircon U_Pb, oxygen and hafnium isotopic compositions of Jurassic granites from the North China Craton: Evidence for Triassic subduction of continental crust and subsequent metamorphis m_related 18O depletion[J]. Lithos, 142_143: 84_94.
Jiang X H, Fan H R, Hu F F, Yang K F, Lan T G, Zheng X L and Jin N X. Comparativ e studies on fluid inclusion in different depths and ore genesis of the Sanshand ao gold deposit, Jiaodong peninsula[J]. Acta Petrologica Sinica, 27(5): 1327_1 340 (in Chinese with English abstract).
Li H M, Shen Y C, Mao J W, Liu T B and Zhu H P. 2003. REE features of quartz and pyrite and their fluid inclusions: An example of Jiaojia_tye gold deposits, nor thwestern Jiaodong Peninsula[J]. Acta Petrologica Sinica, 19(2): 267_274(in Ch inese with English abstract).
Li J J, Luo Z K, Liu X Y, Xu W D and Luo H. 2005. Geodynamic setting for formati on of large superlarge gold deposits and Mesozoic granites in Jiaodong area[J] . Mineral Deposits, 24(4): 361_372(in Chinese with English abstract).
Li J W, Paulo V, Zhou M F, Zhao X F and Ma C Q. 2006. Geochronology of the Pengj iakuang and Rushan gold deposits, eastern Jiaodong gold province, northeaste rn C hina: Implications for regional mineralization and geodynamic setting[J]. Econ . Geol., 101: 1023_1038.
Li L, Santosh M, Li S R. 2015. The Jiaodong type gold deposits: Characteristi cs, origin and prospecting[J]. Ore Geology Reviews, 65: 589_611.
Li Q L, Chen F K, Yang J H and Fan H R. 2008. Single grain pyrite Rb_Sr dating o f the Linglong gold deposit, eastern China[J]. Ore Geology Reviews, 34: 263_27 0.
Li S R and Santosh M. 2014. Metallogeny and craton destruction: Records from the North China Craton[J]. Ore Geology Reviews, 56: 376_414.
Li X C, Fan H R, Santosh M, Hu F F, Yang K F and Lan T G. 2013. Hydrothermal alt eration associated with Mesozoic granite_hosted gold mineralization at the Sansh andao deposit, Jiaodong gold province, China[J]. Ore Geology Reviews, 53: 403_ 421.
Li X F. 2011. The ore genesis and prospecting direction of Jinqingding gold depo sit of the Muping_Rushan gold ore belt in eastern Shandong (dissertation for doc tor degree)[D]. Supervisor: Liu J C. Xian: Changan University. 1_160(in Chin ese with English abstract).
Li Z P. 1992. The genesis of the Rushan gold deposit in east Shandong[J]. Mineral Deposits, 11(2): 165_178 (in Chinese with English abstract).
Liu J M, Ye J, Xu J H, Jiang N and Ying H L. 2001. Preliminary discussion on geo dynamic background of Mesozoic gold metallogeny in eastern north China_with exam ples from eastern Shandong Province[J]. Progress in Geophysics, 16(1): 39_ 46 (in Chinese with English abstract).
Liu X. 1990. Vertical mineralization zoning of the Linglong gold deposit[J]. Mineral Deposits, 9(3): 243_256(in Chinese with English abstract).
Liu X, Fan H R, Hu F F, Zheng X L, Lan T G and Yang K F. 2011. Ore_forming fluid and stable isotope studies of Dazhuangzi gold deposit in Jiaodong Peninsula [J]. Mineral Deposits, 30(4): 675_689(in Chinese with English abstract).
Lowenstern J B. 2001. Carbon dioxide in magmas and implications for hydrothermal systems[J]. Mineralium Deposita, 36: 490_502.
Lu H Z, Yuan W C, Zhang G P, Li Y S and Long H B. 1999. Stable isotopes studies and age dating of gold deposits and Linglong granites in Linglong_Jiaojia area, Shandong, China[J]. Journal of Guilin University of Technology, 19(1): 1_8 (in Chinese with English abstract).
Lu H Z, Fan H R, Ni P, Ou G X, Shen K and Zhang W H. 2004. Fluid inclusion[ M]. Beijing: Science Press. 1_450(in Chinese).
Ma L, Jiang S Y, Dai B Z, Jiang Y H, Hou M L, Pu W and Xu B. 2013. Multiple sour ces for the origin of Late Jurassic Linglong adakitic granite in the Shandong pe ninsula, eastern China: Zircon U_Pb geochronological, geochemical and Sr_Nd_Hf i sotopic evidence[J]. Lithos, 162_163: 251_263.
Mao J W, Li H M, Wang Y T, Zhang C Q and Wang R T. 2005. The relationship betwee n mantle_derived fluid and gold ore_formation in the eastern Shandong Peninsula: Evidences from D_O_C_S isotopes[J]. Acta Geologica Sinica, 79(6): 839_857 (in Chinese with English abstract).
Phillips G N and Evans K A. 2004. Role of CO2 in the formation of gold deposit s[J]. Nature, 429: 860_863.
Qiu Y M, Groves D, McNaughton N, Wang L G and Zhou T H. 2002. Nature, age, and t ectonic setting of granitoid_hosted, orogenic gold deposits of the Jiaodong Peni nsula, eastern North China craton, China[J]. Mineralium Deposita, 37: 283_305.
Qiu Y S, Yang G H and Wang K H. 1988. Mineralization conditions of Zhaoyuan_Yexi an gold belt in Shandong[M]. Shenyang: Liaoning Science and Technology Publish ing House.1_268 (in Chinese).
Roedder E. 1984 .Fluid inclusions[J]. Review in Mineralogy, 12: 1_644.
Seward T M. 1973. Thio complexes of gold and the transport of gold in hydrotherm al ore solutions[J]. Geochimica et Cosmochimica Acta, 37: 379_399.
Song M C, Deng J, Yi P H, Yang L Q, Cui S X, Xu J X, Zhou M L, Huang T L, Song G Z and Song Y X. 2014. The kiloton class Jiaojia gold deposit in eastern Shandon g province and its genesis[J]. Acta Geologica Sinica (English Edition), 88 (3): 801_824.
Sun F Y, Yu X F, Feng Z S and Li Y J. 2008. Spatial orientation model for gold m ineralization in the Lingshangou gold deposit of Zhaoyuan, Shandong Province[J ]. Journal of Jilin University (Earth Science Edition), 38(6): 920_925(in Chinese with English abstract).
Sun J, Li R J, Shao Z W and Xu F. 2012. The geological characteristics and deep resources investigation evaluation of gold orebodies in Xiejiagou mining are a[J] . Gold Science and Technology, 20(4): 39_42(in Chinese with English abstract).
Sun L. 2006. Study on the fluid inclusions of Xiejiagou gold deposit (dissertati on for master degree)[D]. Supervisor: Wang J G, Zhang J. Beijing: China Univer sity of Geosciences. 1_55(in Chinese with English abstract).
Tang J, Zheng Y F, Wu Y B, Gong B and Liu X. 2007. Geochronology and geochemistr y o f metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen[J]. Precambrian Research, 152: 48_82.
Taylor H P. 1974. The application of oxygen and hydrogen isotope studies to prob lems of hydrothermal alteration and ore deposits[J]. Econ. Geol., 69: 843_ 883.
Wang J G, Liu H C, Deng J, Zhang J, Liu B G and Qian J. 2009. REE characteristic s of the Xiejiagou gold deposit, eastern Shandong Province and its significance to mineralizations[J]. Acta Geologica Sinica, 83(10): 1497_1504(in Chinese wit h English abstract).
Wang J L, Sun F Y, Wang L, Ding Z J, Huang W P and Hu W H. 2015. Geological char act eristic and genesis of Majiayao gold deposit, Qixia City, Shandong Province[J] . Gold, 34(6): 14_20(in Chinese with English abstract).
Wang L G, Qiu Y M, McNaughton N J, Groves D I, Luo Z K, Huang J Z, Miao L C and Liu Y K. 1998. Constraints on crustal evolution and gold metallogeny in the nort hwestern Jiaodong Peninsula, China, from SHRIMP U_Pb zircon studies of granitoid s[J]. Ore Geology Reviews, 13: 275_291.
Wang Q F, Deng J, Liu H, Wan L and Zhang R Z. 2010. Fractal models for ore r eserve estimation[J]. Ore Geology Reviews, 37: 2_14.
Wang Y W. 1982. The isotope study of major types of gold deposits of China[J]. Geological Review, 28(2): 108_117(in Chinese with English abstract).
Wang Z L, Yang L Q, Guo L N, Marsh E, Wang J P, Liu Y, Zhang C, Li R H, Zhang L, Zheng X L and Zhao R X. 2015. Fluid immiscibility and gold deposition in the Xi ncheng deposit, Jiaodong Peninsula, China: A fluid inclusion study[J]. Ore Geo logy Reviews, 65: 701_717.
Wen B J, Fan H R, Santosh M, Hu F F, Pirajno F and Yang K F. 2015. Genesis of tw o different types of gold mineralization in the Linglong gold field, China: Cons trains from geology, fluid inclusions and stable isotope[J]. Ore Geology Revie ws, 65: 643_658.
Xiao W Q and Dai T G. 1995. Discussion on condition of ore_forming materials in Jiaodong gold metallogenic province, Shandong[J]. Geology and Exploration, 31(4): 7_13(in Chinese with English abstract).
Xin H B. 2005. The contrast of geological feature and genesis between Xiejiagou gold deposit and Jiaojia gold deposit in Jiaodong area (dissertation for doctora l degree)[D]. Supervisor: Deng J, Wang J G. Beijing: China University of Geosc iences. 1_114(in Chinese with English abstract).
Xu J H, Xie Y L, Liu J M, Zhu H P and Jia C S. 2005. Trace element in fluid incl usions of Linglong_Jiaojia gold deposits[J]. Acta Petrologica Sinica, 21(5): 1 389_1394 (in Chinese with English abstract).
Yan Y T, Zhang N, Li S R and Li Y S. 2014. Mineral chemistry and isotope geochem istry of pyrite from the Heilangou gold deposit, Jiaodong Peninsula, Eastern Chi na[J]. Geoscience Frontiers, 5: 205_213.
Yang J H and Zhou X H. 2000. The Rb_Sr isochron of ore and pyrite sub_samples fr om Linglong gold deposit, Jiaodong Peninsula, eastern China and their geological significance[J].Chinese Science Bulletin, 45(24): 2272_2277.
Yang J H, Zhu M F, Liu W and Zhai M G. 2003. Geochemistry and petrogenesis of Gu ojialing granodiorites from the northwestern Jiaodong peninsula, eastern China[ J]. Acta Petrologica Sinica, 19(4): 692_700(in Chinese with English abstract).
Yang J Z, Shen Y C, Liu T B, Zeng Q D and Chu W L. 2000. Geochemical characteris tics of ore_forming fluids in the Pengjiakuang gold deposit, Shandong Province[ J]. Mineral Deposits, 19(3): 235_244(in Chinese with English abstract).
Yang K, Wang J P, Lin J Z, Zheng J X, Yang G Z and Ji H. 2012. Petrogeochemical characteristics and genetic significance of the Aishan pluton in the Jiaodong pe ninsula[J]. Geology and Exploration, 48(4): 693_703(in Chinese with English ab stract).
Yang K F, Fan H R, Santosh M, Hu F F, Wilde S A, Lan T G, Lu L N and Liu Y S. 20 12. Reactivation of the Archean lower crust: Implications for zircon geochronolo gy, elemental and Sr_Nd_Hf isotopic geochemistry of late Mesozoic granitoids fro m northwestern Jiaodong Terrane, the North China Craton[J]. Lithos, 146_147: 1 12_127.
Yang L Q, Deng J, Goldfarb R J, Zhang J, Gao B F and Wang Z L. 2014. 40 Ar/39Ar g eochronological constraints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodon g gold province, China[J]. Gondwana Research, 25: 1469_1483.
Yang L Q, Deng J, Guo L N, Wang Z L, Li X Z and Li J L. 2016. Origin and evo luti on of ore fluid, and gold_deposition processes at the giant Taishang gold deposi t, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 72: 585_602.
Yang L Q, Deng J, Wang Z L, Zhang L, Guo L N, Song M C and Zheng X L. 2014. Meso zoic gold metallogenic system of the Jiaodong gold province, eastern China[J]. Acta Petrologica Sinica, 30(9): 2447_2467 (in Chinese with English abstract).
Yang L Q, Deng J, Zhang J, Guo C Y, Gao B F, Gong Q J,Wang Q F, Jiang S Q and Yu H J. 2008. Decrepitation thermometry and compositions of fluid inclusions of th e Damoqujia gold deposit, Jiaodong gold province, China: Implications for metall ogeny and exploration[J]. Journal of China University of Geosciences, 19(4): 3 78_390.
Yang L Q, Deng J, Zhang Z J, Wang G J and Wang J P. 2003. Crust_mantle structure and coupling effects on mineralization: An example from Jiaodong gold ore depos its concentrating area, China[J]. Journal of China University of Geosciences, 14(1): 42_51.
Yang M Z and Lü G X. 1996. The geology and geochemistry of gold deposit in gree nstone belt of east Shandong Province[M]. Beijing: Geological Publishing House . 1_157(in Chinese).
Yang Z F, Xu J K, Zhao L S, Wu Y B and Shen Y L. 1991. Geochemical studies of hy drogen and oxygen isotopes and ore_forming fluid compositions of fluid inclusion s in quartz from two types of gold deposits in Jiaodong[J]. Acta Mineralogica Sinica, 11(4): 363_369(in Chinese with English abstract).
Yang Z F, Xu J K and Zhao L S. 1998. The tectonic evolution of the crust and the geochemistry of gold mineralization in Jiaodong district[M]. Beijing: Ge ological Publishing House. 1_157(in Chinese).
Ying H L. 1994. Isotope compositions and their geological significance of Jinqin gding and Denggezhuang gold deposits, Jiaodong[J]. Journal of Precious Metalli c Geology, 3(3): 201_207(in Chinese with English abstract).
Yu X F, Sun F Y, Wang L, Cui W and Zheng H. 2007. Study on the characteristics o f metallogenetic fluid in Lingshangou gold deposit in Zhaoyuan City, Shandong Pr ovince[J]. Gold, 28(6): 13_17(in Chinese with English abstract).
Zhai J P, Hu K and Lu J J. 1996. Lamprophyres ore_forming fluids and H, O, Sr is otope studies of the Rushan gold deposit[J]. Mineral Deposits, 15(4): 359_364 (in Chinese with English abstract).
Zhai M G, Yang J H and Liu W J. 2001. Large clusters of gold deposits and large_ scale metallogenesis in the Jiaodong Peninsula, eastern China [J]. Science in China (Series D), 31(7): 545_552(in Chinese).
Zhai M G, Zhu R X, Liu J M, Meng Q R, Hou Q L, Hu S B, Li Z, Zhang H F and Liu W . 2003. Time range of Mesozoic tectonic regime inversion in eastern North China Block[J]. Science in China (Series D), 33(10): 913_920(in Chinese).
Zhang B L, Yang L Q, Huang S Y, Liu Y, Liu W L, Zhao R X, Xu Y B and Liu S G. 20 14. Hydrothermal alteration in the Jiaojia gold deposit, Jiaodong, China[J]. A cta Petrologica Sinica, 30(9): 2533_2545(in Chinese with English abstract).
Zhang J. 1991. Division of the ore_forming stage and their metallogenetic signif icance at Lingshangou gold deposit, Shandong Province[J]. Mineral Resource and Geology, 5(20): 33_41(in Chinese with English abstract).
Zhang J. 1993. The metallogenetic characteristics and regularities of mineraliza tion and Au_enrichment at Lingshangou gold deposit, Shandong Province[J]. Geol ogy of Shandong, 9(1): 61_71(in Chinese with English abstract).
Zhang J, Zhao Z F, Zheng Y F and Dai M N. 2010. Postcollisional magmatism: Geoch emical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen , China[J]. Lithos, 119: 512_536.
Zhang L G, Chen Z S, Liu J X, Yu G X, Wang B C, Xu J F and Zheng W S. 1994. Wate r_rock exchange in the Jiaojia type gold deposit: A study of hydrogen and oxygen isotopic composition of ore_forming fluids[J]. Mineral Deposits, 13(3): 193_2 00 (in Chinese with English abstract).
Zhang L C, Shen Y C, Li H M, Zeng Q D, Li G M and Liu T B. 2002. Helium and argo n isotopic compositions of fluid inclusions and tracing to the source of ore_for ming fluids f or Jiaodong gold deposits[J]. Acta Petrologica Sinica, 18(4) : 559_565(in Chinese with English abstract).
Zhang L, Liu Y, Li R H, Huang T, Zhang R Z, Chen B H and Li J K. 2014. Lead isot ope geochemistry of Dayingezhuang gold deposit, Jiaodong Peninsula, China[J ] . Acta Petrologica Sinica, 30(9): 2468_2480(in Chinese with English abstract).
Zhang X O, Cawood P A, Wilde S A, Liu R, Song H, Li W and Snee L W. 2003. Geolog y and timing of mineralization at the Cangshang gold deposit, northwestern Jiaod ong Peninsula, China[J]. Mineralium Deposita, 38: 141_153.
Zhang Z Q, Lai Y and Chen Y J. 2007. Fluid inclusion study of the Linglong g old deposit, Shandong Province, China[J]. Acta Petrologica Sinica, 23(9): 2207_221 6 (in Chinese with English abstract).
Zhang Z R and Chen S Z. 1999. Superlarge gold deposit exploration perspective in Jiaolai Basin of Jiaodong gold metallogenetic domain[J]. Geochimica, 28(3): 2 03_212(in Chinese with English abstract).
Zhou F Y and Li Z L. 1991. A study on inclusions in minerals of Taishang gold de posit, eastern Shandong Province[J]. Acta Mineralogica Sinica, 11(4): 403_413( in Chinese with English abstract).
Zhou X H, Yang J H and Zhang L C. 2002. Metallogenesis of superlarge gold deposi ts in Jiaodong region and deep processes of subcontinental lithosphere beneath N orth China Craton in Mesozoic[J]. Science in China (Series D), 32(Suppl.): 11_ 20(in Chinese).
Zhu R X, Fan H R, Li J W, Meng Q R, Li S R and Zeng Q D. 2015. Decratonic gold d eposits[J]. Science China (Earth Sciences), 45(8): 1153_1168(in Chinese).
附中文参考文献
蔡亚春, 范宏瑞, 胡芳芳, 杨奎峰, 蓝廷广, 于虎, 柳玉明. 2011. 胶东胡八庄金 矿成矿流体、稳定同位素及成矿时代研究[J]. 岩石学报, 27(5): 1341_1351.
陈炳翰, 王中亮, 李海林, 李金奎, 李京濂, 王国强. 2014. 胶东台上金矿床成矿流体演化 : 载金黄铁矿稀土元素和微量元素组成约束[J]. 岩石学报, 30(9): 2518_2532.
陈光远, 邵伟, 孙岱生. 1989. 胶东金矿成因矿物学与找矿[M]. 重庆: 重庆出版社. 125 _234.
陈光远, 孙岱生, 周●若, 邵伟, 宫润谭, 邵岳. 1993. 胶东郭家岭花岗闪长岩成因矿物学 与金矿化[M]. 北京: 中国地质大学出版社. 1_230.
陈广俊, 孙丰月, 李玉春, 刘凯. 2014. 胶东郭家岭花岗闪长岩U_Pb年代学、地球化学特征 及地质意义[J]. 世界地质, 33(1): 39_47.
陈俊, 孙丰月, 王力, 王硕, 李睿华. 2015. 胶东招掖地区滦家河花岗岩锆石U_Pb年代学、 岩石地球化学及其地质意义[J]. 世界地质, 34(2): 283_295.
陈桥, 胡克, 姜兵田. 2004. 灵山沟金矿矿化富集规律研究[J]. 地质找矿论丛, 19(2): 114_117.
陈衍景, Pirajno F, 赖勇, 李超. 2004. 胶东矿集区大规模成矿时间和构造环境[J ]. 岩石学报, 20(4): 907_922.
丛智超, 孙丰月, 王力, 杨桂彬. 2015. 山东招远九曲金矿床成矿流体地球化学特征[J]. 世界地质, 34(2): 362_371.
崔书学. 2008. 山东招远台上金矿构造控矿特征分析[J]. 世界地质, 27(2): 146_149.
范宏瑞, 胡芳芳, 杨进辉, 沈昆, 翟明国. 2005. 胶东中生代构造体制转折过程中流体演化 和金的大规模成矿[J]. 岩石学报, 21(5): 1317_1328.
高太忠, 赵伦山, 杨敏之. 2001. 山东牟乳金矿带成矿演化机理探讨[J]. 大地构造 与成矿学, 25(2): 155_160.
郭林楠, 张潮, 宋宇宙, 陈炳翰, 周铸, 张炳林, 徐晓磊, 王彦玮. 2014. 胶东望儿山金矿 床氢_氧同位素地球化学[J]. 岩石学报, 30(9): 2481_2494.
郭涛. 2005. 胶西北金矿区域成矿系统及其构造_流体_矿化研究(博士论文) [D]. 导师: 翟裕生, 吕古贤. 北京: 中国地质大学. 1_96.
侯明兰, 蒋少涌, 沈昆, 连建国, 刘其臣, 肖风利. 2007. 胶东蓬莱金矿区流体包裹体和氢 氧同位素地球化学研究[J]. 岩石学报, 23(9): 2241_2256.
胡芳芳, 范宏瑞, 沈昆, 翟明国, 金成伟, 陈绪松. 2005. 胶东乳山脉状金矿床成矿流体性 质与演化[J]. 岩石学报, 21(5): 1329_1338.
胡芳芳. 2006. 胶东昆嵛山地区中生代构造体制转折期岩浆活动、成矿流体演化与金矿床成 因(博士论文) [D]. 导师: 翟明国, 范宏瑞. 北京: 中国科学院地质与地球物理研究所. 1_136.
黄德业. 1994. 胶东金矿成矿系列硫同位素研究[J]. 矿床地质, 13(1): 75_87.
姜晓辉, 范宏瑞, 胡芳芳, 杨奎锋, 蓝廷广, 郑小理, 金念宪. 2011. 胶东三山岛金矿中深 部成矿流体对比及矿床成因[J]. 岩石学报, 27(5): 1327_1340.
李厚民, 沈远超, 毛景文, 刘铁兵, 朱和平. 2003. 石英、黄铁矿及其包裹体的稀土元素特 征: 以胶东焦家式金矿为例[J]. 岩石学报, 19(2): 267_274.
李俊建, 罗镇宽, 刘晓阳, 徐卫东, 骆辉. 2005. 胶东中生代花岗岩及大型_超大型金矿床 形成的地球动力学环境[J]. 矿床地质, 24(4): 361_372.
李旭芬. 2011. 胶东牟平_乳山金矿带金青顶金矿矿床成因与找矿方向研究(博士论文) [D ]. 导师: 刘建朝. 西安: 长安大学. 1_160.
李治平.1992.胶东乳山金矿床成因[J]. 矿床地质, 11(2): 165_178.
刘建明, 叶杰, 徐九华, 姜能, 应汉龙. 2001. 初论华北东部中生代金成矿的地球动力学背 景_以胶东金矿为例[J]. 地球物理学进展, 16(1): 39_46.
刘星.1990.玲珑金矿床的矿化垂直分带[J]. 矿床地质, 9(3): 243_256.
刘玄, 范宏瑞, 胡芳芳, 郑小礼, 蓝廷广, 杨奎锋. 2011. 胶东大庄子金矿成矿流体及稳定 同位素研究[J]. 矿床地质, 30(4): 675_689.
卢焕章, 袁万春, 张国平, 李院生, 龙洪波. 1999. 玲珑_焦家地区主要金矿床稳定同位素 及同位素年代学[J]. 桂林工学院学报, 19(1): 1_8.
卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体[M]. 北京: 科 学出版社. 1_450.
毛景文, 李厚民, 王义天, 张长青, 王瑞廷. 2005. 地幔流体参与胶东金矿成矿作用的氢氧 碳硫同位素证据[J]. 地质学报, 79(6): 839_857.
裘有守, 杨广华, 王孔海.1988.山东招远_掖县地区金矿区域成矿条件[M]. 沈阳: 辽宁科 学技术出版社.1_268.
孙丰月, 于晓飞, 冯占山, 李延军. 2008. 山东招远灵山沟金矿床金矿化空间定位机制[J ]. 吉林大学学报(地球科学版), 38(6): 920_925.
孙杰, 李瑞军, 邵周伟, 徐芬. 2012. 山东谢家沟矿区金矿体地质特征及其深部资源详查评 价[J]. 黄金科学技术, 20(4): 39_42.
孙莉. 2006. 胶东谢家沟金矿床流体包裹体研究(硕士论文)[D]. 导师: 王建国, 张静. 北京: 中国地质大学. 1_55.
王佳良, 孙丰月, 王力, 丁正江, 黄维平, 胡伟华. 2015. 山东栖霞马家窑金矿床地质特征 及成因探讨[J]. 黄金, 34(6): 14_20.
王建国, 刘洪臣, 邓军, 张静, 刘秉光, 钱进. 2009. 胶东谢家沟金矿稀土元素特征及其成 矿意义[J]. 地质学报, 83(10): 1497_1504.
王义文. 1982. 我国主要类型金矿床同位素地质学研究[J]. 地质论评, 28(2): 108_117.
肖武权, 戴塔根. 1995. 试论胶东金成矿区成矿物质条件[J]. 地质与勘探, 31(4): 7_13 .
辛洪波. 2005. 胶东谢家沟金矿与焦家金矿地质特征与成因对比(博士论文) [D]. 导师: 邓军, 王建国. 北京: 中国地质大学. 1_114.
徐九华, 谢玉玲, 刘建明, 朱和平, 贾长顺. 2005. 玲珑_焦家式金矿床流体包裹体的稀土 和微量元素特征[J]. 岩石学报, 21(5): 1389_1394.
杨金中, 沈远超, 刘铁兵, 曾庆栋, 邹为雷. 2000. 山东蓬家夼金矿床成矿流体地球化学特 征[J]. 矿床地质, 19(3): 235_244.
杨进辉, 朱美妃, 刘伟, 翟明国. 2003. 胶东地区郭家岭花岗闪长岩的地球化学特征及成因 [J]. 岩石学报, 19(4): 692_700.
杨宽, 王建平, 林进展, 郑加行, 杨国志, 吉海. 2012. 胶东半岛艾山岩体岩石地球化学特 征及成因意义[J]. 地质与勘探, 48(4): 693_703.
杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼. 2014. 胶东中生代金成矿系统[ J]. 岩石学报, 30(9): 2447_2467.
杨敏之, 吕古贤. 1996. 胶东绿岩带金矿地质地球化学[M]. 北京: 地质出版社.1_228.
杨忠芳, 徐景奎, 赵伦山, 吴悦斌, 沈镛立. 1991. 胶东两大成因系列金矿石英包裹体氢氧 同位素及成矿流体组分地球化学研究[J]. 矿物学报, 11(4): 363_369.
杨忠芳, 徐景奎, 赵伦山. 1998. 胶东区域地壳演化与金成矿作用地球化学[M]. 北京: 地质出版社. 1_157.
应汉龙. 1994. 胶东金青顶和邓格庄金矿床的同位素组成及其地质意义[J]. 贵金属地质, 3(3): 201_207.
于晓飞, 孙丰月, 王力, 崔威, 郑和. 2007. 山东招远灵山沟金矿床成矿流体特征研究[J ]. 黄金, 28(6): 13_17.
翟建平, 胡凯, 陆建军. 1996. 乳山金矿煌斑岩及流体和氢、氧、锶同位素研究[J]. 矿 床地质, 15(4): 359_364.
翟明国, 杨进辉, 刘文军. 2001. 胶东大型黄金矿集区及大规模成矿作用[J]. 中国科学 (D辑), 31(7): 545_552.
翟明国, 朱日祥, 刘建明, 孟庆任, 侯泉林, 胡圣标, 李忠, 张宏福, 刘伟. 2003. 华北东 部中生代构造体制转折的关键时限[J]. 中国科学 (D辑), 33(10): 913_920.
张炳林, 杨立强, 黄锁英, 刘跃, 刘文龙, 赵荣新, 徐咏彬, 刘胜光. 2014. 胶东焦家金矿 床热液蚀变作用[J]. 岩石学报, 30(9): 2533_2545.
张均. 1991. 山东灵山沟金矿床的矿化阶段划分及成矿意义[J]. 矿产与地质, 5(20): 33 _41.
张均. 1993. 山东灵山沟金矿床的成矿特征及矿化富集规律[J]. 山东地质, 9(1): 61_71 .
张理刚, 陈振胜, 刘敬秀, 于桂香, 王炳成, 徐金方, 郑文深. 1994. 焦家式金矿水_岩交 换作用: 成矿流体氢氧同位素组成研究[J]. 矿床地质, 13(3): 193_200.
张连昌, 沈远超, 李厚民, 曾庆栋, 李光明, 刘铁兵. 2002. 胶东地区金矿床流体包裹体的 He、Ar同位素组成及成矿流体来源示踪[J]. 岩石学报, 18(4): 559_565.
张良, 刘跃, 李瑞红, 黄涛, 张瑞忠, 陈炳翰, 李金奎. 2014. 胶东大尹格庄金矿床铅同位 素地球化学[J]. 岩石学报, 30(9): 2468_2480.
张竹如, 陈世桢. 1999. 胶东金成矿域胶莱盆地中超大型金矿床找矿远景[J]. 地球化学, 28(3): 203_212.
张祖青, 赖勇, 陈衍景. 2007. 山东玲珑金矿流体包裹体地球化学特征[J]. 岩石学报, 2 3(9): 2207_2216.
周凤英, 李兆麟. 1991. 胶东台上金矿床矿物中包裹体研究[J]. 矿物学报, 11(4): 403_ 413.
周新华, 杨进辉, 张连昌. 2002. 胶东超大型金矿的形成与中生代华北大陆岩石圈深部过程 [J]. 中国科学 (D辑), 32(增刊): 11_20.
朱日祥, 范宏瑞, 李建威, 孟庆任, 李胜荣, 曾庆栋. 2015. 克拉通破坏型金矿床[J]. 中国科学: 地球科学, 45(8): 1153_1168.
Benning L G and Seward T M. 1996. Hydrosulphide complexing of Au (I) in hydrothe rmal solutions from 150-400℃ and 500-1500 bar[J]. Geochimica et Cosmoc himica Acta, 60: 1849_171.
Bodnar R J. 1993. Revised equation and table for determining the freezing po int depression of H2O_NaCl solution[J]. Geochimica et Cosmochimica Acta, 57: 683 _684.
Brown P E. 1989. FLINCOR, a microcomputer program for the reduction and investig ation of fluid_inclusion data[J]. American Mineralogist, 74:1390_1393.
Cai Y C, Fan H R, Hu F F, Yang K F, Lan T G, Yu H and Liu Y M. 2011. Ore_forming fluids, stable isotope and mineralizing age of the Hubazhuang gold deposit, Jia odong Peninsula of eastern China[J]. Acta Petrologica Sinica, 27(5): 1341_1351 (in Chinese with English abstract).
Chen B H, Wang Z L, Li H L, Li J K, Li J L and Wang G Q. 2014. Evolution of ore fluid of the Taishang gold deposit, Jiaodong: Constraints on REE and trace eleme nt component of auriferous pyrite[J]. Acta Petrologica Sinica, 30(9): 2518 _2532(in Chinese with English abstract).
Chen G J, Sun F Y, Li Y C and Liu K. 2014. U_Pb dating, geochemical characterist ics and geological significance of Guojialing grandiorite in Jiaodong Peninsula [J]. Global Geology, 33(1): 39_47(in Chinese with English abstract).
Chen G Y, Shao W and Sun D S. 1989. Genetic mineralogy of gold deposits in Jiaod ong region with emphasis on gold prospecting[M]. Chongqing: Chongqing Publishi ng House. 125_234 (in Chinese with English abstract).
Chen G Y, Sun D S, Zhou X R, Shao W, Gong R T and Shao Y. 1993. Mineralogy of Gu ojialing granodiorite and its relationship to gold mineralization in the Jiaodon g peninsula[M]. Beijing: Chinese University of Geosciences Press. 1_230 (in Ch inese with English abstract).
Chen J, Sun F Y, Wang L, Wang S and Li R H. 2015. Zircon U_Pb geochronology and petrogeochemistry of Luanjiahe granite in Jiaodong region and their geological s ignificance[J]. Global Geology, 34(2): 283_295(in Chinese with English abstrac t).
Chen Q, Hu K and Jiang B T. 2004. Research on the laws of Au concentration and m ineralization in Lingshangou gold deposit[J]. Contributions to Geology and Min eral Resources Research, 19(2): 114_117(in Chinese with English abstract).
Chen Y J, Pirajno F, Lai Y and Li C. 2004. Metallogenic time and tectonic settin g of the Jiaodong gold province, eastern China[J]. Acta Petrologica Sinica, 20 (4): 907_922 (in Chinese with English abstract).
Cong Z C, Sun F Y, Wang L and Yang G B. 2015. Geochemical characteristics of ore _forming fluds of Jiuqu gold deposit in Zhaoyuan, Shandong[J]. Global Geology, 34(2): 362_371(in Chinese with English abstract).
Cui S X. 2008. Analysis on ore_control structure of Taishang gold deposit in Zha oyuan of Shandong[J]. Global Geology, 27(2): 146_149(in Chinese with English a bstract).
Deng J, Yang L Q, Sun Z S, Wang J P, Wang Q F, Xin H B and Li X J. 2003. A metal logenic model of gold deposits of the Jiaodong granite_greenstone belt[J]. Act a Geologica Sinica, 77(4): 537_546.
Diamond L W. 2001. Review of the systematics of CO2_H2O fluid inclusions[J ]. Lithos, 55: 69_99.
Fan H R, Zhai M G, Xie Y H and Yang J H. 2003. Ore_forming fluids associated wit h granite_hosted gold mineralization at the Sanshandao deposit, Jiaodong gold pr ovince, China[J]. Mineralium Deposita, 38: 739_750.
Fan H R, Hu F F, Yang J H, Shen K and Zhai M G. 2005. Fluid evolution and large_ scale gold metallogeny during Mesozoic tectonic transition in the eastern Shando ng Province[J]. Acta Petrologica Sinica, 21(5): 1317_1328(in Chinese with Engl ish abstract).
Gammons C H, Williams A E and Yu Y. 1994. New data on the stability of gold(I) c hloride complexes at 300℃[C]. Goldschmidt Conference Edinburgh. 309_310.
Gao T Z, Zhao L S and Yang M Z. 2001. Gold mineralization and its evolution in t he Muping_Rushan gold ore belt, Shandong Province, China[J]. Geotectonica Meta llogenia, 25(2): 155_160(in Chinese with English abstract).
Goss S C, Wilde S A, Wu F Y and Yang J H. 2010. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shando ng Province, North China Craton[J]. Lithos, 120: 309_326.
Guo L N, Zhang C, Song Y Z, Chen B H, Zhou Z, Zhang B L, Xu X L and Wang Y W. 20 14. Hydrogen and oxygen isotopes geochemistry of the Wangershan gold deposit, J iaodong[J]. Acta Petrologica Sinica, 30(9): 2481_2494(in Chinese with English abstract).
Guo T. 2005. Study on gold metallogenic and tectono_fluid_mineralization of Jiao xibei region (dissertation for doctor degree) [D].Supervisor: Zhai Y S, Lü G X. Beijing: China University of Geosciences. 1_96(in Chinese with English abstract ).
Hayashi K and Ohmoto H. 1991. Solubility of gold in NaCl_and H2S_bearing aqueo us solutions at 250_350℃[J]. Geochimica et Cosmochimica Acta, 55: 2111_2126.
Hoefs J. 2009. Stable isotope geochemistry [M]. Berlin: Springer. 1_285.
Hou M L, Jiang S Y, Shen K, Lian J G, Liu Q C and Xiao F L. 2007. Fluid inclusio n and H_O isotope study of gold mineralization in the Penglai gold field, easter n Shandong[J]. Acta Petrologica Sinica, 23(9): 2241_2256(in Chinese with Engli sh abstract).
Hou M L, Jiang Y H, Jiang S Y, Ling H F and Zhao K D. 2007. Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, e ast China: Implications for crustal thickening to delamination[J]. Geological Magazine, 144(4): 619_631.
Hu F F, Fan H R, Yang J H, Wan Y S, Liu D Y, Zhai M G and Jin C W. 2004. Mineral izing age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U_Pb dating on hydrothermal zircon[J]. Chinese Science Bulletin, 49(15): 1629_ 1636.
Hu F F, Fan H R, Shen K, Zhai M G, Jin C W and Chen X S. 2005. Nature and evolut ion of ore_forming fluids in the Rushan lode gold deposit, Jiaodong Peninsula of eastern China[J]. Acta Petrologica Sinica, 21(5): 1329_1338 (in Chinese with English abstract).
Hu F F. 2006. Magmatic activity, fluid evolution and genesis of gold deposit dur ing Mesozoic tectonic transition in the Kunyushan district, eastern Shandong pro vince (dissertation for doctor degree)[D]. Supervisor: Zhai M G, Fan H R. Beij in g: Institute of Geology and Geophysics, Chinese Academic of Science. 1_136(in Ch inese with English abstract).
Hu F F, Fan H R, Jiang X H, Li X C, Yang K F and Metnagh T. 2013. Fluid inclusio ns at different depths in the Sanshandao gold deposit, Jiaodong peninsula, China [J]. Geofluids, 13: 528_541.
Huang D Y. 1994. Sulfur isotope study of the metallogenic series of gold deposit s in Jiaodong (eastern Shandong) area[J]. Mineral Deposits, 13(1): 75_87(in Ch inese with English abstract).
Jahn B M, Liu D Y, Wan Y S, Song B, Wu J S. 2008. Archean crustal evolution of t he Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, el emen tal and Nd_isotope geochemistry[J]. American Journal of Science, 308: 232_ 269.
Jiang N, Chen J Z, Guo J H and Chang G H. 2012. In situ zircon U_Pb, oxygen and hafnium isotopic compositions of Jurassic granites from the North China Craton: Evidence for Triassic subduction of continental crust and subsequent metamorphis m_related 18O depletion[J]. Lithos, 142_143: 84_94.
Jiang X H, Fan H R, Hu F F, Yang K F, Lan T G, Zheng X L and Jin N X. Comparativ e studies on fluid inclusion in different depths and ore genesis of the Sanshand ao gold deposit, Jiaodong peninsula[J]. Acta Petrologica Sinica, 27(5): 1327_1 340 (in Chinese with English abstract).
Li H M, Shen Y C, Mao J W, Liu T B and Zhu H P. 2003. REE features of quartz and pyrite and their fluid inclusions: An example of Jiaojia_tye gold deposits, nor thwestern Jiaodong Peninsula[J]. Acta Petrologica Sinica, 19(2): 267_274(in Ch inese with English abstract).
Li J J, Luo Z K, Liu X Y, Xu W D and Luo H. 2005. Geodynamic setting for formati on of large superlarge gold deposits and Mesozoic granites in Jiaodong area[J] . Mineral Deposits, 24(4): 361_372(in Chinese with English abstract).
Li J W, Paulo V, Zhou M F, Zhao X F and Ma C Q. 2006. Geochronology of the Pengj iakuang and Rushan gold deposits, eastern Jiaodong gold province, northeaste rn C hina: Implications for regional mineralization and geodynamic setting[J]. Econ . Geol., 101: 1023_1038.
Li L, Santosh M, Li S R. 2015. The Jiaodong type gold deposits: Characteristi cs, origin and prospecting[J]. Ore Geology Reviews, 65: 589_611.
Li Q L, Chen F K, Yang J H and Fan H R. 2008. Single grain pyrite Rb_Sr dating o f the Linglong gold deposit, eastern China[J]. Ore Geology Reviews, 34: 263_27 0.
Li S R and Santosh M. 2014. Metallogeny and craton destruction: Records from the North China Craton[J]. Ore Geology Reviews, 56: 376_414.
Li X C, Fan H R, Santosh M, Hu F F, Yang K F and Lan T G. 2013. Hydrothermal alt eration associated with Mesozoic granite_hosted gold mineralization at the Sansh andao deposit, Jiaodong gold province, China[J]. Ore Geology Reviews, 53: 403_ 421.
Li X F. 2011. The ore genesis and prospecting direction of Jinqingding gold depo sit of the Muping_Rushan gold ore belt in eastern Shandong (dissertation for doc tor degree)[D]. Supervisor: Liu J C. Xian: Changan University. 1_160(in Chin ese with English abstract).
Li Z P. 1992. The genesis of the Rushan gold deposit in east Shandong[J]. Mineral Deposits, 11(2): 165_178 (in Chinese with English abstract).
Liu J M, Ye J, Xu J H, Jiang N and Ying H L. 2001. Preliminary discussion on geo dynamic background of Mesozoic gold metallogeny in eastern north China_with exam ples from eastern Shandong Province[J]. Progress in Geophysics, 16(1): 39_ 46 (in Chinese with English abstract).
Liu X. 1990. Vertical mineralization zoning of the Linglong gold deposit[J]. Mineral Deposits, 9(3): 243_256(in Chinese with English abstract).
Liu X, Fan H R, Hu F F, Zheng X L, Lan T G and Yang K F. 2011. Ore_forming fluid and stable isotope studies of Dazhuangzi gold deposit in Jiaodong Peninsula [J]. Mineral Deposits, 30(4): 675_689(in Chinese with English abstract).
Lowenstern J B. 2001. Carbon dioxide in magmas and implications for hydrothermal systems[J]. Mineralium Deposita, 36: 490_502.
Lu H Z, Yuan W C, Zhang G P, Li Y S and Long H B. 1999. Stable isotopes studies and age dating of gold deposits and Linglong granites in Linglong_Jiaojia area, Shandong, China[J]. Journal of Guilin University of Technology, 19(1): 1_8 (in Chinese with English abstract).
Lu H Z, Fan H R, Ni P, Ou G X, Shen K and Zhang W H. 2004. Fluid inclusion[ M]. Beijing: Science Press. 1_450(in Chinese).
Ma L, Jiang S Y, Dai B Z, Jiang Y H, Hou M L, Pu W and Xu B. 2013. Multiple sour ces for the origin of Late Jurassic Linglong adakitic granite in the Shandong pe ninsula, eastern China: Zircon U_Pb geochronological, geochemical and Sr_Nd_Hf i sotopic evidence[J]. Lithos, 162_163: 251_263.
Mao J W, Li H M, Wang Y T, Zhang C Q and Wang R T. 2005. The relationship betwee n mantle_derived fluid and gold ore_formation in the eastern Shandong Peninsula: Evidences from D_O_C_S isotopes[J]. Acta Geologica Sinica, 79(6): 839_857 (in Chinese with English abstract).
Phillips G N and Evans K A. 2004. Role of CO2 in the formation of gold deposit s[J]. Nature, 429: 860_863.
Qiu Y M, Groves D, McNaughton N, Wang L G and Zhou T H. 2002. Nature, age, and t ectonic setting of granitoid_hosted, orogenic gold deposits of the Jiaodong Peni nsula, eastern North China craton, China[J]. Mineralium Deposita, 37: 283_305.
Qiu Y S, Yang G H and Wang K H. 1988. Mineralization conditions of Zhaoyuan_Yexi an gold belt in Shandong[M]. Shenyang: Liaoning Science and Technology Publish ing House.1_268 (in Chinese).
Roedder E. 1984 .Fluid inclusions[J]. Review in Mineralogy, 12: 1_644.
Seward T M. 1973. Thio complexes of gold and the transport of gold in hydrotherm al ore solutions[J]. Geochimica et Cosmochimica Acta, 37: 379_399.
Song M C, Deng J, Yi P H, Yang L Q, Cui S X, Xu J X, Zhou M L, Huang T L, Song G Z and Song Y X. 2014. The kiloton class Jiaojia gold deposit in eastern Shandon g province and its genesis[J]. Acta Geologica Sinica (English Edition), 88 (3): 801_824.
Sun F Y, Yu X F, Feng Z S and Li Y J. 2008. Spatial orientation model for gold m ineralization in the Lingshangou gold deposit of Zhaoyuan, Shandong Province[J ]. Journal of Jilin University (Earth Science Edition), 38(6): 920_925(in Chinese with English abstract).
Sun J, Li R J, Shao Z W and Xu F. 2012. The geological characteristics and deep resources investigation evaluation of gold orebodies in Xiejiagou mining are a[J] . Gold Science and Technology, 20(4): 39_42(in Chinese with English abstract).
Sun L. 2006. Study on the fluid inclusions of Xiejiagou gold deposit (dissertati on for master degree)[D]. Supervisor: Wang J G, Zhang J. Beijing: China Univer sity of Geosciences. 1_55(in Chinese with English abstract).
Tang J, Zheng Y F, Wu Y B, Gong B and Liu X. 2007. Geochronology and geochemistr y o f metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen[J]. Precambrian Research, 152: 48_82.
Taylor H P. 1974. The application of oxygen and hydrogen isotope studies to prob lems of hydrothermal alteration and ore deposits[J]. Econ. Geol., 69: 843_ 883.
Wang J G, Liu H C, Deng J, Zhang J, Liu B G and Qian J. 2009. REE characteristic s of the Xiejiagou gold deposit, eastern Shandong Province and its significance to mineralizations[J]. Acta Geologica Sinica, 83(10): 1497_1504(in Chinese wit h English abstract).
Wang J L, Sun F Y, Wang L, Ding Z J, Huang W P and Hu W H. 2015. Geological char act eristic and genesis of Majiayao gold deposit, Qixia City, Shandong Province[J] . Gold, 34(6): 14_20(in Chinese with English abstract).
Wang L G, Qiu Y M, McNaughton N J, Groves D I, Luo Z K, Huang J Z, Miao L C and Liu Y K. 1998. Constraints on crustal evolution and gold metallogeny in the nort hwestern Jiaodong Peninsula, China, from SHRIMP U_Pb zircon studies of granitoid s[J]. Ore Geology Reviews, 13: 275_291.
Wang Q F, Deng J, Liu H, Wan L and Zhang R Z. 2010. Fractal models for ore r eserve estimation[J]. Ore Geology Reviews, 37: 2_14.
Wang Y W. 1982. The isotope study of major types of gold deposits of China[J]. Geological Review, 28(2): 108_117(in Chinese with English abstract).
Wang Z L, Yang L Q, Guo L N, Marsh E, Wang J P, Liu Y, Zhang C, Li R H, Zhang L, Zheng X L and Zhao R X. 2015. Fluid immiscibility and gold deposition in the Xi ncheng deposit, Jiaodong Peninsula, China: A fluid inclusion study[J]. Ore Geo logy Reviews, 65: 701_717.
Wen B J, Fan H R, Santosh M, Hu F F, Pirajno F and Yang K F. 2015. Genesis of tw o different types of gold mineralization in the Linglong gold field, China: Cons trains from geology, fluid inclusions and stable isotope[J]. Ore Geology Revie ws, 65: 643_658.
Xiao W Q and Dai T G. 1995. Discussion on condition of ore_forming materials in Jiaodong gold metallogenic province, Shandong[J]. Geology and Exploration, 31(4): 7_13(in Chinese with English abstract).
Xin H B. 2005. The contrast of geological feature and genesis between Xiejiagou gold deposit and Jiaojia gold deposit in Jiaodong area (dissertation for doctora l degree)[D]. Supervisor: Deng J, Wang J G. Beijing: China University of Geosc iences. 1_114(in Chinese with English abstract).
Xu J H, Xie Y L, Liu J M, Zhu H P and Jia C S. 2005. Trace element in fluid incl usions of Linglong_Jiaojia gold deposits[J]. Acta Petrologica Sinica, 21(5): 1 389_1394 (in Chinese with English abstract).
Yan Y T, Zhang N, Li S R and Li Y S. 2014. Mineral chemistry and isotope geochem istry of pyrite from the Heilangou gold deposit, Jiaodong Peninsula, Eastern Chi na[J]. Geoscience Frontiers, 5: 205_213.
Yang J H and Zhou X H. 2000. The Rb_Sr isochron of ore and pyrite sub_samples fr om Linglong gold deposit, Jiaodong Peninsula, eastern China and their geological significance[J].Chinese Science Bulletin, 45(24): 2272_2277.
Yang J H, Zhu M F, Liu W and Zhai M G. 2003. Geochemistry and petrogenesis of Gu ojialing granodiorites from the northwestern Jiaodong peninsula, eastern China[ J]. Acta Petrologica Sinica, 19(4): 692_700(in Chinese with English abstract).
Yang J Z, Shen Y C, Liu T B, Zeng Q D and Chu W L. 2000. Geochemical characteris tics of ore_forming fluids in the Pengjiakuang gold deposit, Shandong Province[ J]. Mineral Deposits, 19(3): 235_244(in Chinese with English abstract).
Yang K, Wang J P, Lin J Z, Zheng J X, Yang G Z and Ji H. 2012. Petrogeochemical characteristics and genetic significance of the Aishan pluton in the Jiaodong pe ninsula[J]. Geology and Exploration, 48(4): 693_703(in Chinese with English ab stract).
Yang K F, Fan H R, Santosh M, Hu F F, Wilde S A, Lan T G, Lu L N and Liu Y S. 20 12. Reactivation of the Archean lower crust: Implications for zircon geochronolo gy, elemental and Sr_Nd_Hf isotopic geochemistry of late Mesozoic granitoids fro m northwestern Jiaodong Terrane, the North China Craton[J]. Lithos, 146_147: 1 12_127.
Yang L Q, Deng J, Goldfarb R J, Zhang J, Gao B F and Wang Z L. 2014. 40 Ar/39Ar g eochronological constraints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodon g gold province, China[J]. Gondwana Research, 25: 1469_1483.
Yang L Q, Deng J, Guo L N, Wang Z L, Li X Z and Li J L. 2016. Origin and evo luti on of ore fluid, and gold_deposition processes at the giant Taishang gold deposi t, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 72: 585_602.
Yang L Q, Deng J, Wang Z L, Zhang L, Guo L N, Song M C and Zheng X L. 2014. Meso zoic gold metallogenic system of the Jiaodong gold province, eastern China[J]. Acta Petrologica Sinica, 30(9): 2447_2467 (in Chinese with English abstract).
Yang L Q, Deng J, Zhang J, Guo C Y, Gao B F, Gong Q J,Wang Q F, Jiang S Q and Yu H J. 2008. Decrepitation thermometry and compositions of fluid inclusions of th e Damoqujia gold deposit, Jiaodong gold province, China: Implications for metall ogeny and exploration[J]. Journal of China University of Geosciences, 19(4): 3 78_390.
Yang L Q, Deng J, Zhang Z J, Wang G J and Wang J P. 2003. Crust_mantle structure and coupling effects on mineralization: An example from Jiaodong gold ore depos its concentrating area, China[J]. Journal of China University of Geosciences, 14(1): 42_51.
Yang M Z and Lü G X. 1996. The geology and geochemistry of gold deposit in gree nstone belt of east Shandong Province[M]. Beijing: Geological Publishing House . 1_157(in Chinese).
Yang Z F, Xu J K, Zhao L S, Wu Y B and Shen Y L. 1991. Geochemical studies of hy drogen and oxygen isotopes and ore_forming fluid compositions of fluid inclusion s in quartz from two types of gold deposits in Jiaodong[J]. Acta Mineralogica Sinica, 11(4): 363_369(in Chinese with English abstract).
Yang Z F, Xu J K and Zhao L S. 1998. The tectonic evolution of the crust and the geochemistry of gold mineralization in Jiaodong district[M]. Beijing: Ge ological Publishing House. 1_157(in Chinese).
Ying H L. 1994. Isotope compositions and their geological significance of Jinqin gding and Denggezhuang gold deposits, Jiaodong[J]. Journal of Precious Metalli c Geology, 3(3): 201_207(in Chinese with English abstract).
Yu X F, Sun F Y, Wang L, Cui W and Zheng H. 2007. Study on the characteristics o f metallogenetic fluid in Lingshangou gold deposit in Zhaoyuan City, Shandong Pr ovince[J]. Gold, 28(6): 13_17(in Chinese with English abstract).
Zhai J P, Hu K and Lu J J. 1996. Lamprophyres ore_forming fluids and H, O, Sr is otope studies of the Rushan gold deposit[J]. Mineral Deposits, 15(4): 359_364 (in Chinese with English abstract).
Zhai M G, Yang J H and Liu W J. 2001. Large clusters of gold deposits and large_ scale metallogenesis in the Jiaodong Peninsula, eastern China [J]. Science in China (Series D), 31(7): 545_552(in Chinese).
Zhai M G, Zhu R X, Liu J M, Meng Q R, Hou Q L, Hu S B, Li Z, Zhang H F and Liu W . 2003. Time range of Mesozoic tectonic regime inversion in eastern North China Block[J]. Science in China (Series D), 33(10): 913_920(in Chinese).
Zhang B L, Yang L Q, Huang S Y, Liu Y, Liu W L, Zhao R X, Xu Y B and Liu S G. 20 14. Hydrothermal alteration in the Jiaojia gold deposit, Jiaodong, China[J]. A cta Petrologica Sinica, 30(9): 2533_2545(in Chinese with English abstract).
Zhang J. 1991. Division of the ore_forming stage and their metallogenetic signif icance at Lingshangou gold deposit, Shandong Province[J]. Mineral Resource and Geology, 5(20): 33_41(in Chinese with English abstract).
Zhang J. 1993. The metallogenetic characteristics and regularities of mineraliza tion and Au_enrichment at Lingshangou gold deposit, Shandong Province[J]. Geol ogy of Shandong, 9(1): 61_71(in Chinese with English abstract).
Zhang J, Zhao Z F, Zheng Y F and Dai M N. 2010. Postcollisional magmatism: Geoch emical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen , China[J]. Lithos, 119: 512_536.
Zhang L G, Chen Z S, Liu J X, Yu G X, Wang B C, Xu J F and Zheng W S. 1994. Wate r_rock exchange in the Jiaojia type gold deposit: A study of hydrogen and oxygen isotopic composition of ore_forming fluids[J]. Mineral Deposits, 13(3): 193_2 00 (in Chinese with English abstract).
Zhang L C, Shen Y C, Li H M, Zeng Q D, Li G M and Liu T B. 2002. Helium and argo n isotopic compositions of fluid inclusions and tracing to the source of ore_for ming fluids f or Jiaodong gold deposits[J]. Acta Petrologica Sinica, 18(4) : 559_565(in Chinese with English abstract).
Zhang L, Liu Y, Li R H, Huang T, Zhang R Z, Chen B H and Li J K. 2014. Lead isot ope geochemistry of Dayingezhuang gold deposit, Jiaodong Peninsula, China[J ] . Acta Petrologica Sinica, 30(9): 2468_2480(in Chinese with English abstract).
Zhang X O, Cawood P A, Wilde S A, Liu R, Song H, Li W and Snee L W. 2003. Geolog y and timing of mineralization at the Cangshang gold deposit, northwestern Jiaod ong Peninsula, China[J]. Mineralium Deposita, 38: 141_153.
Zhang Z Q, Lai Y and Chen Y J. 2007. Fluid inclusion study of the Linglong g old deposit, Shandong Province, China[J]. Acta Petrologica Sinica, 23(9): 2207_221 6 (in Chinese with English abstract).
Zhang Z R and Chen S Z. 1999. Superlarge gold deposit exploration perspective in Jiaolai Basin of Jiaodong gold metallogenetic domain[J]. Geochimica, 28(3): 2 03_212(in Chinese with English abstract).
Zhou F Y and Li Z L. 1991. A study on inclusions in minerals of Taishang gold de posit, eastern Shandong Province[J]. Acta Mineralogica Sinica, 11(4): 403_413( in Chinese with English abstract).
Zhou X H, Yang J H and Zhang L C. 2002. Metallogenesis of superlarge gold deposi ts in Jiaodong region and deep processes of subcontinental lithosphere beneath N orth China Craton in Mesozoic[J]. Science in China (Series D), 32(Suppl.): 11_ 20(in Chinese).
Zhu R X, Fan H R, Li J W, Meng Q R, Li S R and Zeng Q D. 2015. Decratonic gold d eposits[J]. Science China (Earth Sciences), 45(8): 1153_1168(in Chinese).
附中文参考文献
蔡亚春, 范宏瑞, 胡芳芳, 杨奎峰, 蓝廷广, 于虎, 柳玉明. 2011. 胶东胡八庄金 矿成矿流体、稳定同位素及成矿时代研究[J]. 岩石学报, 27(5): 1341_1351.
陈炳翰, 王中亮, 李海林, 李金奎, 李京濂, 王国强. 2014. 胶东台上金矿床成矿流体演化 : 载金黄铁矿稀土元素和微量元素组成约束[J]. 岩石学报, 30(9): 2518_2532.
陈光远, 邵伟, 孙岱生. 1989. 胶东金矿成因矿物学与找矿[M]. 重庆: 重庆出版社. 125 _234.
陈光远, 孙岱生, 周●若, 邵伟, 宫润谭, 邵岳. 1993. 胶东郭家岭花岗闪长岩成因矿物学 与金矿化[M]. 北京: 中国地质大学出版社. 1_230.
陈广俊, 孙丰月, 李玉春, 刘凯. 2014. 胶东郭家岭花岗闪长岩U_Pb年代学、地球化学特征 及地质意义[J]. 世界地质, 33(1): 39_47.
陈俊, 孙丰月, 王力, 王硕, 李睿华. 2015. 胶东招掖地区滦家河花岗岩锆石U_Pb年代学、 岩石地球化学及其地质意义[J]. 世界地质, 34(2): 283_295.
陈桥, 胡克, 姜兵田. 2004. 灵山沟金矿矿化富集规律研究[J]. 地质找矿论丛, 19(2): 114_117.
陈衍景, Pirajno F, 赖勇, 李超. 2004. 胶东矿集区大规模成矿时间和构造环境[J ]. 岩石学报, 20(4): 907_922.
丛智超, 孙丰月, 王力, 杨桂彬. 2015. 山东招远九曲金矿床成矿流体地球化学特征[J]. 世界地质, 34(2): 362_371.
崔书学. 2008. 山东招远台上金矿构造控矿特征分析[J]. 世界地质, 27(2): 146_149.
范宏瑞, 胡芳芳, 杨进辉, 沈昆, 翟明国. 2005. 胶东中生代构造体制转折过程中流体演化 和金的大规模成矿[J]. 岩石学报, 21(5): 1317_1328.
高太忠, 赵伦山, 杨敏之. 2001. 山东牟乳金矿带成矿演化机理探讨[J]. 大地构造 与成矿学, 25(2): 155_160.
郭林楠, 张潮, 宋宇宙, 陈炳翰, 周铸, 张炳林, 徐晓磊, 王彦玮. 2014. 胶东望儿山金矿 床氢_氧同位素地球化学[J]. 岩石学报, 30(9): 2481_2494.
郭涛. 2005. 胶西北金矿区域成矿系统及其构造_流体_矿化研究(博士论文) [D]. 导师: 翟裕生, 吕古贤. 北京: 中国地质大学. 1_96.
侯明兰, 蒋少涌, 沈昆, 连建国, 刘其臣, 肖风利. 2007. 胶东蓬莱金矿区流体包裹体和氢 氧同位素地球化学研究[J]. 岩石学报, 23(9): 2241_2256.
胡芳芳, 范宏瑞, 沈昆, 翟明国, 金成伟, 陈绪松. 2005. 胶东乳山脉状金矿床成矿流体性 质与演化[J]. 岩石学报, 21(5): 1329_1338.
胡芳芳. 2006. 胶东昆嵛山地区中生代构造体制转折期岩浆活动、成矿流体演化与金矿床成 因(博士论文) [D]. 导师: 翟明国, 范宏瑞. 北京: 中国科学院地质与地球物理研究所. 1_136.
黄德业. 1994. 胶东金矿成矿系列硫同位素研究[J]. 矿床地质, 13(1): 75_87.
姜晓辉, 范宏瑞, 胡芳芳, 杨奎锋, 蓝廷广, 郑小理, 金念宪. 2011. 胶东三山岛金矿中深 部成矿流体对比及矿床成因[J]. 岩石学报, 27(5): 1327_1340.
李厚民, 沈远超, 毛景文, 刘铁兵, 朱和平. 2003. 石英、黄铁矿及其包裹体的稀土元素特 征: 以胶东焦家式金矿为例[J]. 岩石学报, 19(2): 267_274.
李俊建, 罗镇宽, 刘晓阳, 徐卫东, 骆辉. 2005. 胶东中生代花岗岩及大型_超大型金矿床 形成的地球动力学环境[J]. 矿床地质, 24(4): 361_372.
李旭芬. 2011. 胶东牟平_乳山金矿带金青顶金矿矿床成因与找矿方向研究(博士论文) [D ]. 导师: 刘建朝. 西安: 长安大学. 1_160.
李治平.1992.胶东乳山金矿床成因[J]. 矿床地质, 11(2): 165_178.
刘建明, 叶杰, 徐九华, 姜能, 应汉龙. 2001. 初论华北东部中生代金成矿的地球动力学背 景_以胶东金矿为例[J]. 地球物理学进展, 16(1): 39_46.
刘星.1990.玲珑金矿床的矿化垂直分带[J]. 矿床地质, 9(3): 243_256.
刘玄, 范宏瑞, 胡芳芳, 郑小礼, 蓝廷广, 杨奎锋. 2011. 胶东大庄子金矿成矿流体及稳定 同位素研究[J]. 矿床地质, 30(4): 675_689.
卢焕章, 袁万春, 张国平, 李院生, 龙洪波. 1999. 玲珑_焦家地区主要金矿床稳定同位素 及同位素年代学[J]. 桂林工学院学报, 19(1): 1_8.
卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体[M]. 北京: 科 学出版社. 1_450.
毛景文, 李厚民, 王义天, 张长青, 王瑞廷. 2005. 地幔流体参与胶东金矿成矿作用的氢氧 碳硫同位素证据[J]. 地质学报, 79(6): 839_857.
裘有守, 杨广华, 王孔海.1988.山东招远_掖县地区金矿区域成矿条件[M]. 沈阳: 辽宁科 学技术出版社.1_268.
孙丰月, 于晓飞, 冯占山, 李延军. 2008. 山东招远灵山沟金矿床金矿化空间定位机制[J ]. 吉林大学学报(地球科学版), 38(6): 920_925.
孙杰, 李瑞军, 邵周伟, 徐芬. 2012. 山东谢家沟矿区金矿体地质特征及其深部资源详查评 价[J]. 黄金科学技术, 20(4): 39_42.
孙莉. 2006. 胶东谢家沟金矿床流体包裹体研究(硕士论文)[D]. 导师: 王建国, 张静. 北京: 中国地质大学. 1_55.
王佳良, 孙丰月, 王力, 丁正江, 黄维平, 胡伟华. 2015. 山东栖霞马家窑金矿床地质特征 及成因探讨[J]. 黄金, 34(6): 14_20.
王建国, 刘洪臣, 邓军, 张静, 刘秉光, 钱进. 2009. 胶东谢家沟金矿稀土元素特征及其成 矿意义[J]. 地质学报, 83(10): 1497_1504.
王义文. 1982. 我国主要类型金矿床同位素地质学研究[J]. 地质论评, 28(2): 108_117.
肖武权, 戴塔根. 1995. 试论胶东金成矿区成矿物质条件[J]. 地质与勘探, 31(4): 7_13 .
辛洪波. 2005. 胶东谢家沟金矿与焦家金矿地质特征与成因对比(博士论文) [D]. 导师: 邓军, 王建国. 北京: 中国地质大学. 1_114.
徐九华, 谢玉玲, 刘建明, 朱和平, 贾长顺. 2005. 玲珑_焦家式金矿床流体包裹体的稀土 和微量元素特征[J]. 岩石学报, 21(5): 1389_1394.
杨金中, 沈远超, 刘铁兵, 曾庆栋, 邹为雷. 2000. 山东蓬家夼金矿床成矿流体地球化学特 征[J]. 矿床地质, 19(3): 235_244.
杨进辉, 朱美妃, 刘伟, 翟明国. 2003. 胶东地区郭家岭花岗闪长岩的地球化学特征及成因 [J]. 岩石学报, 19(4): 692_700.
杨宽, 王建平, 林进展, 郑加行, 杨国志, 吉海. 2012. 胶东半岛艾山岩体岩石地球化学特 征及成因意义[J]. 地质与勘探, 48(4): 693_703.
杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼. 2014. 胶东中生代金成矿系统[ J]. 岩石学报, 30(9): 2447_2467.
杨敏之, 吕古贤. 1996. 胶东绿岩带金矿地质地球化学[M]. 北京: 地质出版社.1_228.
杨忠芳, 徐景奎, 赵伦山, 吴悦斌, 沈镛立. 1991. 胶东两大成因系列金矿石英包裹体氢氧 同位素及成矿流体组分地球化学研究[J]. 矿物学报, 11(4): 363_369.
杨忠芳, 徐景奎, 赵伦山. 1998. 胶东区域地壳演化与金成矿作用地球化学[M]. 北京: 地质出版社. 1_157.
应汉龙. 1994. 胶东金青顶和邓格庄金矿床的同位素组成及其地质意义[J]. 贵金属地质, 3(3): 201_207.
于晓飞, 孙丰月, 王力, 崔威, 郑和. 2007. 山东招远灵山沟金矿床成矿流体特征研究[J ]. 黄金, 28(6): 13_17.
翟建平, 胡凯, 陆建军. 1996. 乳山金矿煌斑岩及流体和氢、氧、锶同位素研究[J]. 矿 床地质, 15(4): 359_364.
翟明国, 杨进辉, 刘文军. 2001. 胶东大型黄金矿集区及大规模成矿作用[J]. 中国科学 (D辑), 31(7): 545_552.
翟明国, 朱日祥, 刘建明, 孟庆任, 侯泉林, 胡圣标, 李忠, 张宏福, 刘伟. 2003. 华北东 部中生代构造体制转折的关键时限[J]. 中国科学 (D辑), 33(10): 913_920.
张炳林, 杨立强, 黄锁英, 刘跃, 刘文龙, 赵荣新, 徐咏彬, 刘胜光. 2014. 胶东焦家金矿 床热液蚀变作用[J]. 岩石学报, 30(9): 2533_2545.
张均. 1991. 山东灵山沟金矿床的矿化阶段划分及成矿意义[J]. 矿产与地质, 5(20): 33 _41.
张均. 1993. 山东灵山沟金矿床的成矿特征及矿化富集规律[J]. 山东地质, 9(1): 61_71 .
张理刚, 陈振胜, 刘敬秀, 于桂香, 王炳成, 徐金方, 郑文深. 1994. 焦家式金矿水_岩交 换作用: 成矿流体氢氧同位素组成研究[J]. 矿床地质, 13(3): 193_200.
张连昌, 沈远超, 李厚民, 曾庆栋, 李光明, 刘铁兵. 2002. 胶东地区金矿床流体包裹体的 He、Ar同位素组成及成矿流体来源示踪[J]. 岩石学报, 18(4): 559_565.
张良, 刘跃, 李瑞红, 黄涛, 张瑞忠, 陈炳翰, 李金奎. 2014. 胶东大尹格庄金矿床铅同位 素地球化学[J]. 岩石学报, 30(9): 2468_2480.
张竹如, 陈世桢. 1999. 胶东金成矿域胶莱盆地中超大型金矿床找矿远景[J]. 地球化学, 28(3): 203_212.
张祖青, 赖勇, 陈衍景. 2007. 山东玲珑金矿流体包裹体地球化学特征[J]. 岩石学报, 2 3(9): 2207_2216.
周凤英, 李兆麟. 1991. 胶东台上金矿床矿物中包裹体研究[J]. 矿物学报, 11(4): 403_ 413.
周新华, 杨进辉, 张连昌. 2002. 胶东超大型金矿的形成与中生代华北大陆岩石圈深部过程 [J]. 中国科学 (D辑), 32(增刊): 11_20.
朱日祥, 范宏瑞, 李建威, 孟庆任, 李胜荣, 曾庆栋. 2015. 克拉通破坏型金矿床[J]. 中国科学: 地球科学, 45(8): 1153_1168.