DOI:
矿床地质:2012,Vol.>>Issue(4):791-812

拉萨地块西段中新世赛利普超钾质火山岩富集地幔源区和岩石成因:Li同位素制约
中国地质大学地球科学与资源学院, 北京 100083;中国地质科学院矿产资源研究所 国土资源部成矿作用与资源 评价重点实验室, 北京 100037;中国地质科学院矿产资源研究所 国土资源部成矿作用与资源 评价重点实验室, 北京 100037;江西省地质调查研究院, 江西 南昌 330030;中国地质科学院地质研究所, 北京 100037;中国地质大学地球科学与资源学院, 北京 100083;中国地质科学院矿产资源研究所 国土资源部成矿作用与资源 评价重点实验室, 北京 100037;中国地质科学院矿产资源研究所 国土资源部成矿作用与资源 评价重点实验室, 北京 100037;中国地质科学院矿产资源研究所 国土资源部成矿作用与资源 评价重点实验室, 北京 100037;中国地质大学地球科学与资源学院, 北京 100083;中国地质科学院水文地质环境地质研究所, 河北 石家庄 050061;中国地质大学地球科学与资源学院, 北京 100083
Enriched mantle source and petrogenesis of Miocene Sailipu ultrapotassic rocks in western Lhasa block, Tibetan Plateau: Lithium isotopic constraints
TIAN ShiHong,HU WenJie,HOU ZengQian,MO XuanXue,YANG ZhuSen,ZHAO Yue,HOU KeJun,ZHU DiCheng,SU AiNa,ZHANG ZhaoQing
(School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China;MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;Jiangxi Provincial Institute of Geological Survey, Nanchang 330030, Jiangxi, China;Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, Hebei, China)
本文二维码信息
码上扫一扫!

摘要
图/表
参考文献
相似文献

摘要点击次数: 14682   全文下载次数: 2412   点此下载全文
投稿时间:2012-05-06   修订日期:2012-06-28     
中文摘要:作为一种"非传统稳定同位素",锂同位素地球化学研究已经成为近年来国际上研究的热点之一。文章成功应用锂同位素对青藏高原西南部赛利普超钾质火山岩进行了示范研究。研究表明,赛利普超钾质火山岩的ω(Li)为11.2×10-6~22.9×10-6,同位素组成δ7Li为-1.2‰~+3.5‰,平均值为0.2‰,与平均上地壳的相当。超钾质火山岩的锂同位素组成与岩浆结晶分异程度参数之间不存在任何相关性,这表明在超钾质火山岩结晶分异过程中没有发生明显的锂同位素分馏,锂同位素组成特征反映了其形成时的源区特征。超钾质火山岩的锂同位素组成变化范围达4.7‰,并且与Pb-Sr-Nd同位素和岩浆结晶分异参数之间亦无任何相关性,表明锂同位素异常可能反映了不均匀源区岩石特征。通过计算模拟以及与前人的类似研究成果进行对比,笔者认为俯冲印度地壳而不是特提斯洋壳(包括沉积物)的流体/熔体参与了超钾质火山岩的源区富集,并在此基础上提出了超钾质火山岩成因模式。
Abstract:As a kind of "non-traditional stable isotopes", lithium isotope system has been used to study some important geological or geochemical problems. Recently, the research on Li isotope has become one of the most fast developing fields in the study of crust-mantle interaction. Compared with other countries, the study in this aspect remains in the preliminary stage in China. The authors have successfully applied lithium isotope to the typical study of Sailipu ultrapotassic rocks in southwestern Tibetan Plateau. Lithium concentrations of 14 whole-rock samples from Sailipu show a range from 11.2×10-6 to 22.9×10-6. Lithium isotopic compositions exhibits a variable range of δ7Li values (-1.2‰ to +3.5‰) with an average δ7Li of 0.2‰ that corresponds to the average of upper continental crust. Lithium isotopic compositions of UK from Sailipu do not show any significant correlations with the degree of magmatic differentiation, as inferred from various compositional parameters (e.g., SiO2, Li, Rb and Ga). This suggests insignificant Li isotope fractionation during ultrapotassic rock differentiation, reflecting the source characteristics. Lithium isotopic compositions of these samples vary by 4.7‰ and do not correlate with radiogenic isotopic compositions or chemical and mineralogical parameters. The Li isotopic heterogeneity therefore likely reflects heterogeneous source rocks. Based on calculation modeling and a comparison with previous similar results, the authors hold that the most probable metasomatic agents were melts or fluids derived from subducted Indian crust instead of from Tethyan crust (including sediments). Therefore, the authors put forward a petrogenetic model of ultrapotassic rocks as follows: With the Neo-Tethyan ocean closure and onset of the Indian-Asian continent collision, the heavy oceanic lithosphere might have dragged mainly Indian plate into the subduction zone. Upon heating under high-pressure conditions the subducted Indian crust probably melted, or at least released high potassium/lithium fluids that metasomatized the overlying Tibetan lithospheric mantle. Slab-derived melts or fluids would have to produce extensive regions in the Tibetan lithospheric mantle of low δ7Li values which would be exchanged with the surrounding lithospheric mantle via diffusive disequlibrium, so successive injections of alkali/Li-rich fluid/melt should ultimately generate a mantle source with an average δ7Li of the slab influx. The northward subducted Indian lithosphere mantle might have experienced slab break-off beneath the Lhasa block along the Yarlung Zangbo suture zone in early Miocene, which caused the asthenospheric upwelling under the Indian plate through the slab window. Upwelling of the hot asthenosphere following the break off presumably caused partial melting of overlying metasomatized and contaminated lithospheric mantle domains that could have produced ultrapotassic primitive magmas, which formed the ultrapotassic volcanic rocks along the weak structure belts.
文章编号:    
中图分类号:P597     
文献标志码:

基金项目:本文得到国家重点基础研究发展计划973项目(2011CB403102、2011CB403104);国土资源大调查项目(1212011120298);公益性行业科研专项(201011027、201011011); 国际地学计划项目(IGCP/SIDA-600);中国博士后基金;国家自然科学面上基金(40973013、41173003)联合资助
引用文本:
田世洪,胡文洁,侯增谦,莫宣学,杨竹森,赵悦,侯可军,朱弟成,苏嫒娜,张兆卿.2012.拉萨地块西段中新世赛利普超钾质火山岩富集地幔源区和岩石成因:Li同位素制约[J].矿床地质,31(4):791~812
TIAN ShiHong,HU WenJie,HOU ZengQian,MO XuanXue,YANG ZhuSen,ZHAO Yue,HOU KeJun,ZHU DiCheng,SU AiNa,ZHANG ZhaoQing.2012.Enriched mantle source and petrogenesis of Miocene Sailipu ultrapotassic rocks in western Lhasa block, Tibetan Plateau: Lithium isotopic constraints[J].Mineral Deposits31(4):791~812
图/表
您是第241662866位访问者  京ICP备05032737号-5  京公网 安备110102004559
主管单位:中国科学技术协会 主办单位:中国地质学会矿床地质专业委员会 中国地质科学院矿产资源研究所
地  址: 北京市百万庄大街26号 邮编:100037 电话:010-68327284;010-68999546 E-mail: minerald@vip.163.com
本系统由北京勤云科技发展有限公司设计 
手机扫一扫