DOi:10.16111/j.0258_7106.2017.03.010
滇西兰坪盆地白秧坪Pb_Zn_Cu_Ag多金属矿床东矿带成矿年代学探讨
冯彩霞1,刘●1,毕献武2,胡瑞忠2,池国祥3,陈俊瑾4,冯强1 ,郭晓磊1

(1 大陆动力学国家重点实验室 西北大学地质系, 陕西 西安710069; 2 矿床地球化学 国家重点实验室 中国科学院地球化学研究所, 贵州 贵阳550002; 3 Department of Ge ology, University of Regina, Regina S4S 0A2, 加拿大; 4 青海省西宁市武警黄 金第六支队, 青海 西宁810021)

第一作者简介冯彩霞, 女, 1976年生, 博士, 副研究员, 矿床地球化学专业。 Emai l: fengcaixia@nwu.edu.cn

收稿日期2016_02_26

本文得到国家自然科学基金(编号: 40972071、41373028、41573022)和“973”项目(编 号: 2015CB452603)资助

摘要:白秧坪Pb_Zn_Cu_Ag多金属矿集区夹持于金沙江和澜沧江断裂之间,隶 属兰坪盆地 北部,分为东、西2个矿带。文章采用闪锌矿、方铅矿的Rb_Sr法和成矿阶段方解石的Sm_Nd 法,对白秧坪Pb_Zn_Cu_Ag多金属矿床东矿带华昌山和下区五矿段进行了成矿年代厘定, 获得方铅矿以及闪锌矿和方铅矿的矿物组合Rb_Sr等时线年龄为(32.8±1.5 ) Ma,方解石的Sm_Nd等时线年龄为(33.32±0.43) Ma。研究表明,通过对特定矿床的主 要矿 石矿物采用Rb_Sr法和Sm_Nd法获得的年龄在误差范围内是一致的,从而起到了相互验证 的作用,并对矿床的成矿背景具有一定的指示性。通过成矿年龄的探讨,认为东矿带铅锌为 主的矿化期主 要产生于青藏高原东缘晚碰撞阶段(40~26) Ma,伴随印度_亚洲大陆碰撞造山,形成逆冲推 覆构造和赋矿地层,控制了Pb_Zn矿床的形成和发育。该期Pb_Zn矿床与兰坪盆地金顶和西矿 带Pb_Zn矿床、囊谦盆地Pb_Zn矿床和沱沱河盆地Pb_Zn矿床具有一定的可比性。
关键词: 地球化学;成矿年代;东矿带;Cu_Pb_Zn_Ag多金属矿床;白秧坪; 兰坪盆地;滇西
文章编号: 0258_7106 (2017) 03_0691_14 中图法分类号: P618.41;P618.42;P618.43;P618.52 文献标志码:A 
 An investigation of metallogenic chronology of eastern ore block in Baiyangping 
    Pb_Zn_Cu_Ag polylmetallic ore deposit, Lanping Basin, western Yunnan Province 
 FENG CaiXia1, LIU Shen1, BI XianWu2, HU RuiZhong2, CHI GuoXiang3, CHEN JunJin4
    FENG Qiang1 and GUO XiaoLei1 

(1 State Key Laboratory of Continental Dynamics, Department of Geology, Northwe st University, Xian 710069, Shaanxi, China; 2 State Key Laboratory of Ore Depos it Geochemistry, Chinese Academy of Sciences, Guiyang 550002, Guizhou, China; 3 Department of Geology, University of Regina, Regina S4S 0A2, Canada; 4 No.6 Gold Geological Party of CAPF, Xining 810021, Qing_ hai, China)

2016_02_26

Abstract:As one part of the northern Lanping Basin, the Baiyangping Pb_Zn_Cu_Ag polym etallic ore district is located between the Jinshajiang fault and the Lancangjia ng fault. On the basis of the sphalerite/galena Rb_Sr and calcite Sm_Nd dating, this study provides preferable ore_forming ages (32.8±1.5) Ma and (33.32±0 . 43) Ma for the Huachangshan and Xiaquwu ore plates in Baiyangping Cu_Pb_Zn_Ag po lymeta llic ore district, western Yunnan Province, China. The results suggest that the Rb_Sr and Sm_Nd dating data are consistent within the error range, which, in addition, ha s certain instruction significance for understanding the deposit metallogenic ba ckground. Moreover, due to the age of mineralization, Pb_Zn mineralization perio d in eastern ore belt mainly produced between 40 Ma and 26 Ma when late collisio n a ppeared in east edge of the Qinghai_Tibet plateau. Thrust_nappe system and hoste d ore strata were formed due to the collision and orogenesis between India and A sia, and then Pb_Zn ore deposits occurred. This period of Pb_Zn ore deposit can be compared with other similar deposits in Jingding, Nangqian, and Tuotuohe. 
Key words: geochemistry,metallogenic chronology,eastern ore block,Cu _Pb_Zn _Ag polymetallic ore deposit,Baiyangping,Lanping Basin,west Yunnan Province
        成矿年代是成矿学研究的时间域,也是从地质历史分析矿床生成、发展、演化规律和区 域 成矿的重要科学论据(裴荣富等,1995),准确的年代学资料是认识或定义大规模成矿或爆 发性成矿的基础(毛景文等,2005)。目前,用于直接测定成矿年代学的常用方法主要包括 单矿物的Rb_Sr等时线(如金云母和黄铁矿等,李秋立等,2006;韩以贵等,2007)、 40Ar/39Ar坪年龄和等时线(如绢云母、石英和闪锌矿等,邱华宁等 ,200 2)、Sm_Nd等时线(如白钨矿、萤石和方解石等,Peng et al., 2003)、Re_Os定年(如与 黑色岩系有关的矿床,毛 景文等,2001;Mao et al., 2002;杨刚等,2004)、Pb_Pb等时线(如Ni_Mo_PGE硫化物矿 石,Jiang et al., 2006)以及单颗粒锆石U_Pb定年。上述定年技术和方法的建立为更好分 析矿床的形成、发展和演化规律奠定了非常重要的科学依据。近年来,国内外学者运用上述 方法,对与岩浆活动无明显成因关系的沉积岩容矿矿床(如MVT矿床)的定年开展了不断尝 试和探索,并获取了明显成果和认识(Grandia et al., 2000;Leach et al., 2001; 李文 博等,2004a;2004b; Symons et al., 2005;2009;张长青等,2008; 田世洪等,2009; 王光辉等,2009)。
        兰坪盆地是在原特提斯和古特提斯基础上发展起来的中新生代陆相盆地,也是“三江"构造 带的重 要组成部分(陶晓风等,2002)。盆地内矿产资源丰富,其中,白秧坪Cu_Pb_Zn_Ag多金属 矿 集区是该盆地内继金顶Pb_Zn矿床后,发现的又一大型多金属成矿区,该矿区形成于大陆碰 撞环境,发育在强烈变形的沉积盆地内,受逆冲推覆构造控制,部分特征与MVT型Pb_Zn矿床 类似(侯增谦等,2008a;2008b;He et al., 2009)。目前,白秧坪多金属矿集区西矿 带 的定年工作已取得较多成果,如薛春纪等(2003)和何明勤等(2006)通过石英Ar_Ar快 中子活化法测定了白秧坪矿段早期矿化年龄,为(62.8±0.60) Ma和(55.9±0.29) Ma; 王晓虎等( 2011)等利用方解石Sm_Nd和闪锌矿的Rb_Sr法对西矿带吴底厂、李子坪和富隆厂3个矿段进 行了定年测试,得出成矿年龄范围为30~29 Ma;而东矿带目前只是根据地层和断裂 的 关系,推测出河西_三山矿床的矿化时代(等于或晚于34 Ma,宋玉财等,2011)。根据逆 冲 推覆构造特征,推断其通常显示多期次特征,东部逆冲带大致发育于34 Ma或56 Ma , 而西部褶皱_逆冲发育时限不晚于48~49 Ma(王光辉等,2009)。成矿年代学研究的滞后, 问题在于东矿带缺乏合适的可供常规同位素定年的矿物,这严重制约了对其成矿地质背景 和 成因的认识。因此,本文拟在已有研究基础上,精确测定东矿带的成矿时代,从时限上进一 步厘定东、西成矿带的关系,为进一步深入认识该矿床的成因提供可靠的理论依据。
1矿床地质特征
        兰坪盆地在构造上属于环特提斯构造域的重要组成部分,位于三江构造带中段(图1a),是 具有多次洋盆开合、多个陆块拼贴和多次造山的地带(陶晓凤等,2002)。它介于澜沧江和 金 沙江断裂带之间,兰坪_思茅微板块之上,东侧与扬子板块相接,西侧与藏滇板块毗邻 ,北 为昌都盆地,南为思茅盆地(Xue et al., 2007)。盆地断裂系统深达上地幔和下地壳,并 存在近NW向隐伏构造,共同控制了盆地的动力过程,使其在中生代—新生代经历了 印支期前 陆_裂谷、燕山期坳陷及喜马拉雅期走滑拉分的演化(薛春纪等,2002)。该区铜等多金属 矿产资源高度富集,形成了中国著名的“三江"铜多金属成矿带,白秧坪Cu_Pb_Zn_A g多金属矿集区就位于兰坪盆地的北部(图1a)。
受造山作用控制,兰坪盆地东、西两侧分别发育与澜沧江_昌宁_孟连造山带和金沙江_哀 牢山造山带相关的前陆逆冲推覆构造系统,控制着白秧坪地区 Cu_Pb_Zn_Ag多金属矿集区的成矿作用。根据成矿元素组合、控矿特征、矿床成因及所属的空间位置不同,该矿集区东 部与西部分属不同体系的成矿带(三山_河西银多金属矿带和富隆厂_白秧坪铜多金属矿带; 陈开旭等,2000;魏君奇,2001)。研究表明,该区逆冲构造近NS向或NW_SE向,显示出对 盆 地的控制或破坏(He et al., 2009);另外,本区逆冲显示多期次特征,东部逆冲带和西 部褶皱_逆冲发育时限有明显差异(陶晓风等,2002)。
图 1兰坪盆地构造位置与地质简图(a)和白秧坪Cu_Pb_Zn_Ag多金属矿集区东矿带地质图 ( b)(据云南省地质调查院
    第三地质矿产调查所,2003;Xue et al., 2007,略有修改) 
     JAF—金沙江_哀牢山断裂; LF—澜沧江断裂; LSF—兰坪_思茅断裂
     Fig. 1The structural location and geological sketch map of Lanping Basin (a) a nd geological sketch map of the east ore belt 
    in the Baiyangping Cu_Pb_Zn_Ag p olylmetallic ore deposit (b), Lanping basin, western Yunnan Province 
    (modifi ed after No.3 Geology and Mineral Resources Survey, Yunnan Geological Survey, 2003 ; Xue et al., 2007)
     JAF—Jinshajiang_Ailaosha fault; LF—Lancangjiang fault; LSF—Lanping_Simao faul t      
东矿带由麦地坡、东至岩、下区五、燕子洞、华昌山、灰山和黑山7个矿段组成 , 是以Cu、Ag、Pb、Zn、Sr为主的成矿带, 该成矿带沿华昌山断裂带南北延伸>30 km,水 平距离>15 km (图1b), 与金沙江_哀 牢山造山带前陆逆冲推覆构造系统关系密切(何龙清等 ,2005);主要出露为古新统云龙组(E1y: 岩性为紫红和砖红色泥岩、粉砂岩 、泥砾岩 为主,局部含石膏)、上三叠统麦初箐组(T3m: 岩性为石英砂岩、粉砂质泥岩夹黑 色页岩、泥岩底部夹泥灰岩)、瓦鲁八组(T3wl: 岩性为黑色页岩、粉砂岩夹薄层 细 砂岩)和三合洞组(T3s: 岩性为块状粉晶泥晶灰岩、白云岩、灰质白云岩、含燧石 团块及条带粉晶灰岩及细晶灰岩,该层位为主要赋矿层位)(图2)。 从地层和成矿元素含 量来看,主含矿层(三合洞组)的矿石和围岩样品的Pb、Zn、Cu、Ag等均高于其他地层(冯 彩霞等,2011)。
图 2白秧坪多金属矿集区东矿带地层柱状略图(据云南
    省地质调查院第三地质矿产调查 所,2003;Feng et al., 
    2011)
     Fig. 2Stratigraphic column of the eastern ore zone of the 
    Baiyangping Cu_Pb_Zn _Ag polylmetallic ore deposit, Lanping 
    basin (after No.3 Geology and Min e ral Resources Survey, 
    Yunnan Geological Survey, 2003; Feng et al., 2011)    
         东矿带主要发育构造角砾岩,角砾成分主要为上盘的三合洞组灰岩,多为略具磨圆状的次棱 角状,下盘为古新统云龙组,发育断层泥和构造透镜体;胶结物主要包括方解石、白云 石、石英、重晶石、天青石等(邵兆刚等,2003;何龙清等,2005)。东矿带内围岩蚀变较 强烈(黄铁矿化、重晶石或天青石化、硅化、方解石化、白云石化等)。矿石为一套中-低 温 热液成因的矿物组合(黝铜矿系列、辉铜矿、黑铜矿、黄铜矿、斑铜矿、铜蓝、蓝辉铜矿、 方铅矿及车轮矿、闪锌矿、菱锌矿),以及其他常见金属硫化物黄铁矿和少量白铁矿(邵兆 刚等,2003;何龙清等,2005;Xue et al., 2007;He et al., 2009)。
        笔者对东矿带华昌山矿段和下区五矿段开展了系统观察和采样,总结分析了2个矿段的铅锌 矿 化特征,根据矿石的矿物组合、结构构造和矿脉的穿插关系,将成矿过程分为3个阶段:① 无矿的方解石、铁白云石和石英阶段;② 石英、白云石和方解石脉_多金属硫化物阶段,发 育 黄铜矿、方铅矿、黄铁矿、闪锌矿等多金属硫化物及碳酸盐脉,为主成矿阶段,其中,闪锌 矿中_细粒,颜色为浅褐色_深黄色,大部分呈连续的脉状,胶结灰岩角砾;方铅矿和闪锌矿 类 似,多呈中_细粒,其余呈细脉状和星散状分布;黄铁矿一般呈星散状和团块状,与闪锌矿 和方铅矿共生;③ 石英脉_碳酸盐阶段,形成石英_碳酸盐细脉,穿插前一阶段脉体, 矿脉从几厘米~几十厘米,且矿脉越宽,金属硫化物含量越低(图3)。
2样品处理和分析
        本文的样品均采自白秧坪多金属矿集区东矿带(华昌山矿段和下区五矿段)热液主成矿阶段 ( 即石英、白云石和方解石脉_多金属硫化物阶段):手标本中的闪锌矿中_细粒,浅褐色_深 黄色,大部分呈连续的脉状胶结灰岩角砾;方铅矿大部分中_细粒,其余多呈细脉状和星散 状分布(图3a~d);方解石为乳白色,结晶粗,呈团块状和粗脉状。显微镜下观察发现, 方铅矿和闪锌矿穿插于方解石矿物中(图3e、f)。
        样品处理流程:在野外和室内工作的基础上,选择有代表性矿洞内新鲜且未受后期影响的原 生矿石,保持矿物初始Rb_Sr系统封闭;在取样过程中,采集不同点的样品保证其具不同的R b/Sr比值;另外,考虑到Rb_Sr同位素测试过程可能会受到次生 包裹体的影响,本测试将样品研磨至200目,尽量去 除次生包裹体的影响。挑选的单矿物结晶颗粒较大,不是快速结 晶的产物,保证其有足够的时间结晶,避免了快速结晶过程中包裹其他杂质。将手标本粉碎 到40~80目,在双目镜下挑选出单矿物,纯度达99%以上,再用蒸馏水清洗并低温蒸干,然 后 将纯净单矿物样品在玛瑙研钵内研磨至200目。方解石样品Sm_Nd含量在矿床地球化学国家 重点实验室使用等离子质谱仪器(ICP_MS)测试,方铅矿及闪锌矿的Rb_Sr含量和Rb_Sr、Sm _Nd同位素组成测定均在南京大学现代分析中心同位素分析室,用英国产的VG354同位素质谱 仪测定。
        分析方法:粉末样品用混合酸熔解,取清液上离 子交换柱分离,含量及同位素比值均分开处 理和测定,用高压密闭熔样和阳离子交换技术分离提纯,上同位素质谱仪测定。测定的美 国 NBS987Sr同样87Sr/86Sr=0.710 236±7,以8 6Sr/88Sr=0.1194进行标准化;美国La Jolla Nd同位素标准147 Sm/144Nd=0.511 864±3,标准值采用146Nd/ 14 4Nd=0.7219校正。Sr的全流程本底为3×10-9 g,Nd的全流程空白为6×10- 11 g。等时线年龄用ISOPLOT(Version3.23)程序计算(Ludwig, 2001),在年 龄计算中,实验室给出样品87Rb/86Sr和147 Sm/1 44Nd比值误差分别为±1%和±0.2%,87Sr/86Sr和 143Nd/144Nd误差优于3%(Wang et al., 2007)。 
图 3东矿带矿石手标本和显微镜照片
     a. 宽脉方解石与细脉状方铅矿与闪锌矿共生; b. 宽脉方解石与方铅矿共生; c. 宽脉方 解石与闪锌矿共生; d. 宽脉方解石与浸染状
    闪锌矿+方铅矿共生; e. 宽脉方解石与闪 锌 矿+方铅矿共生(反射光); f. 宽脉方解石与方铅矿共生(反射光)
     Cal—方解石; Sp—闪锌矿; Gn—方铅矿; Qtz—石英
     Fig. 3Photos of sample and microscope images of the ore in the eastern mineral zone
     a. Wide vein texture calcite associated with thin vein texture sphalerite+galena ; b. Wide vein texture calcite associated with galena; c. Wide vein texture calc ite associated with sphalerite; d. Wide vein texture calcite associated with dis seminated sphalerite+galena (reflective light); e. Wide vein texture calcite as sociated with disse minated sphalerite+galena (reflective light); f. Wide vein texture calcite asso ciated with thin vein texture 
    galena (reflective light)
    Cal—Calcite; Sp—Sphalerite; Gn—Galena; Qtz—Quartz             
3分析结果
        成矿阶段方解石Sm_Nd含量和同位素分析结果见表1,用ISOPLOT软件计算出华昌山和下区吾 2个矿段成矿阶段的方解石Sm_Nd等时线年龄为(33.32±0.43) Ma,初始钕同位素组成I Nd=0.512 099 6,MSWD=0.51(图4)。
闪锌矿和方铅矿Rb_Sr含量和同位素组成见表2,87Rb/86Sr_ 87Sr/86Sr图呈现很好的线性特征。用ISOPLOT软件计算出华昌山矿段方铅矿Rb _Sr等时线年龄为(34.0±6.5) Ma,初始锶同位素组成ISr=0.714 44± 0.000 12,MSWD=0.51(图5);将华昌山矿段闪锌矿和方铅矿测定结 果拟合成一条等时线,其Rb_Sr等时线年龄为(32.8±1.5) Ma,初始锶同位素组成I Sr=0.714 444±0.000 090,MSWD=1.3(图6)。
表 1白秧坪多金属矿集区东矿带成矿阶段方解石Sm_Nd同位素分析结果
     Table 1The Sm_Nd isotope analysis results of the mineralization stage calcite of the eastern ore zone in the 
    Baiyangping polymetallic ore deposit   
 图 4白秧坪多金属矿集区东矿带成矿阶段方解石
    Sm_Nd等时线
     Fig. 4Sm_Nd isochron diagram of the mineralization stage 
    calcite of the east ern ore zone in the Baiyangping 
    polymetallic ore deposit    
4讨论
4.1定年方法可靠性分析
        沉积岩容矿贱金属矿床因矿物组合简单,适合定年的矿物少,通常很难满足定年要求。因此 ,对该类矿床如何精确定年一直是地学界的难题。
        在闪锌矿沉淀过程中,Rb比Sr更容易进入闪锌矿晶体,具有较高的87Rb/ 86Sr比值,是精确进行放射性同位素定年的理想矿物。前人通过理论、实验 和实践论证,证明闪锌矿及其流体包裹体Rb_Sr等 时线定年在一定条件下是可行的(Nakai et al., 1993; Christensen et al., 1995a; 1995b;Pettke et al., 1996),并利用该方法成功获得了 澳 大利亚、美国和加拿大等地的MVT型铅锌矿床的成矿时代(Nakai et al., 1993;Christens en et al., 1995b)。刘 建明等(1998)认为,由于不同矿物相具明显差异的化学势,化学性质不同的Rb和Sr将发生 化学分异,使同一成矿母液中沉淀出的共生矿物具有不同的Rb/Sr比值,故用共生热液矿物 开展Rb_Sr等时线定年,不仅符合Rb_Sr等时线定年的基本前提,同时,还提高了Rb_Sr等时 线的精确度。利用以上Rb_Sr定年方法,使金属矿床定年取得了很大的进展(Leach et al., 2001;李文博等,2004a;田 世洪等,2009;王晓虎等,2011;郑伟等,2013)。
        Sm和Nd同为稀土元素,化学性质接近,稳定性好,变化同步,不易被改造,母体衰变形成的 子体容易在矿物晶格中保存(赵振华,1997),因此,该同 位素定年方法是矿床精确定年的有效手段。前人已利用白钨矿、萤石和电气石等富REE的含Ca矿物进行了Sm_Nd同位素定年(Bell et al., 1989;Holliday et al., 1990; Kent et al., 1995;Anglin et al., 1996;刘 建明等,1998;Jiang et al., 2000);方解石中的REE主要以置换晶格中Ca2+的形 式存在,且REE在该矿物中扩散速率低(cherniak, 1998);另外,成矿流体中REE进入方解 石晶体后 ,除晶体溶解外,其他过程不可能破坏方解石稀土元素的配分模式(Zhong et al., 1995) 。 因此,热液方解石具有非常好的Sm_Nd等时线定年潜力:Peng等(2003)成功利用热液方解 石对湘中锡矿山锑矿床开展了Sm_Nd等时线定年;李文博等(2004b)利用方解石Sm_Nd等时 线获得会泽超大型铅锌矿床的成矿年龄为(226±15) Ma和(225±38) Ma,与其用共生矿物组 合 Rb_Sr等时线方法获得的成矿时代基本一致(李文博等,2004a);在青海东莫扎抓和莫海拉 亨铅锌矿床,田世洪等(2009)利用萤石和方解石的矿物组合Sm_Nd等时线得出的年龄与黄 铁矿、闪锌矿、方铅矿矿物组合Rb_Sr等时线年龄一致;王晓虎等(2011)对白秧坪铅锌铜 银多金属矿床西矿带的成矿热液方解石进行了Sm_Nd定年,与共生矿物组合Rb_Sr等时线获得 的成矿时代基本一致。
 表 2白秧坪多金属矿集区东矿带闪锌矿和方铅矿Rb_Sr同位素分析结果
     Table 2Rb_Sr isotope analysis results of the mineralization stage sphalerite a nd galena of the eastern ore zone 
    in the Baiyangping polymetallic ore deposit   
 图 5白秧坪多金属矿集区东矿带方铅矿
    Rb_Sr等时线
     Fig. 5Rb_Sr isochron diagram of the mineralization stage galena of the eastern ore zone in the Baiyangping polymetallic 
    ore deposit    
  图 6白秧坪多金属矿集区东矿带矿物共生组合闪锌矿
    和方铅矿Rb_Sr等时线
     Fig. 6Rb_Sr isochron diagram of the mineralization stage 
    intergrowth m ineral a ssociation sphalerite and galena of the 
    eastern ore zone in the Baiyangp ing polymetallic ore deposit  
        本文测试采用的样品为块状矿石,闪锌矿和方铅矿纯度较高,既不存在脉石矿物穿插,又很 少发育裂隙,很大程度上满足了测年的同时、同源、封闭性和初始比值一致性的前提。因所 测样品的粒度较小,几乎为单颗粒样品,利用矿物颗粒间元素含量的不均一性,最大可能地 回 避了初始同位素不平衡问题(陈福坤等,2006;李秋立等,2006),同时也极大降低了颗粒 间 次生包裹体的存在带来影响几率,使得测试结果更加接近实际地质含义。另外,从 147Sm/144Nd_143Nd/144Nd相关图(图4)可见,华 昌山和东至岩 矿段成矿热液期的方解石表现出良好的线性关系 。在1/w(Nd)_n(143Nd)/n(144Nd)相关图 (图7)中, 不存在线性关系,可认为图4表现出的直线并 非混合线,而应具等时线意义;与此类似,在87Rb/86Sr_ 87Sr/86Sr图解(图5,图6)中,单矿物闪锌矿、方铅矿和共生矿物组合( 闪锌矿和方 铅矿)均表现出良好的线性关系,形成时代在误差范围内基本一致,且1/w(Sr)与 n (87Sr)/n(86Sr)之间也不存在线性关系(图8),暗示图5 和 图6表现出的2条直线具等时线意义。Rb_Sr法和Sm_Nd法的结果在误差范围内是
 图 7白秧坪多金属矿集区东矿带闪锌矿和方铅矿
    1/w(Nd)_n(14 3Nd)/n(144Nd)关系图
     Fig. 7Diagram of 1/w(Nd)_n(143Nd)/n(144Nd) o f sphalerite and galena of the eastern ore zone in the Baiyangping 
    polymetallic ore deposit    
图 8白秧坪多金属矿集区东矿带闪锌矿和方铅矿
     1/w(Sr)_n(87Sr)/n(86Sr)关系图
     Fig. 8 Diagram of 1/w(Sr)_n(87Sr)/n(86Sr) of sph alerite 
    and galena of the eastern ore zone in the Baiyangping 
    polymetallic o re deposit    
        一致的,起到了相互验证的效果。因此,笔者认为本文利用单矿物闪锌矿、方铅矿、共生矿 物组合(闪锌矿和方铅矿)Rb_Sr法和方解石Sm_Nd法获得的成矿年龄在误差范围内是一致 和可靠的。
4.2成矿时代的约束性
        兰坪盆地呈近NS向带状展布,向南与思茅盆地相接,向北趋于尖灭。对于盆地的成矿时限, 前人已开展了一定程度的研究:王义昭等(2000)认为兰坪盆地的成矿时期为燕山期—喜马 拉雅期,矿床具有层控性与岩控性,但主要受构造和时间控制;李小明等(2000)认为古近 纪— 新近纪是主要成矿期(如金顶、金满、白秧坪、三山矿床),并对下区五银矿和燕子洞银矿 的磷灰 石进行了裂变径迹法定年,获得(39.3±7.2) Ma和(19.9±2.3) Ma两个年龄值,经矫正 后分别为50 Ma和22.7 Ma(Griyet et al,1993);侯增谦等(2006a;2006b;2006c;20 08a) 认 为兰坪盆地Pb_Zn_Cu多金属矿床均产于青藏高原东缘晚碰撞(40~26 Ma)构造转换环境 ; 宋玉财等(2011)根据地层和断裂关系,推测河西_三山矿床矿化时代应等于或晚于34 Ma 。
        虽然如此,上述研究对成矿年龄的确定仍存在较大差异。本文通过单矿物闪锌矿、方铅矿、 矿物组合(闪锌矿+方铅矿)的Rb_Sr法和方解石的Sm_Nd法,获得成矿年龄分别为(32.8±1 .5) Ma和(33.3±0.43) Ma。笔者拟在此基础上,结合东矿带典型矿床地质背景和区域构 造演化特征,从赋矿层位和逆冲推覆构造两方面,探讨该矿床的成矿时限。     
4.2.1赋矿层位对成矿年代的约束
        东矿带出露有上三叠统三合洞组、挖鲁八组、麦初箐组、古新统云龙组、始新 统果郎组、宝相寺组和全新统(云南省地质调查院,2003)。赵海滨(2006)根据东至岩矿 段华昌山断裂带下盘古新统云龙组砂岩及燕子洞矿段华昌山断裂带下盘始新统宝相寺组砂岩 的地质事实,推断东矿带的成矿时代应在古新世—渐新世;东矿带河西_黑山矿带银铅锌矿 床 除在三叠系三合洞组富集外,云龙组和宝寺组也有矿化,表明矿床成矿最晚在渐新世之后; 以上推断与笔者在野外观察到的地质事实相符,故白秧坪多金属矿集区东矿带主要赋存于古 新世云龙组上段和上三叠统三合洞组,表明成矿作用发生于云龙组上段沉积成岩之后,而云 龙组上段的时代上限约在50 Ma,可推测东矿带矿床成矿年龄应小于50 Ma。
4.2.2逆冲推覆构造对成矿年代的制约
        白秧坪Pb_Zn_Cu_Ag多金属矿床西矿带赋矿围岩为侏罗系花开佐组灰岩、泥灰岩、泥岩和砂 岩,或白垩系景星组钙质砂岩,矿化对围岩性质无明显选择性,而主要与断裂控制有关;东 矿带矿化主要出现上三叠统三合洞组灰岩,古近系碎屑岩内局部出现Cu矿化,对围岩存在明 显的选择性。
        东矿带大量地质资料显示,组成东矿带的地层普遍存在外来三叠系岩系,这些外来岩系主要 是推覆成因(He et al., 2009)。在始新世—渐新世,构造变形强烈,形成复杂褶皱和断 裂 ,形成兰坪盆地东、西2套逆冲推覆系统(陶晓风等,2002;付修根,2005),盆地内铅锌 多金属矿床主要沿两套逆冲推覆系统分布。其中,东矿带产于东推覆构造系统的华昌山断裂 破碎带,破碎带规模大(长约25 km,宽约10~100 m),空间大,利于成矿溶液运移、交代 和沉 淀。各矿床内主矿体规模大,矿体形态简单,呈似层状和透镜状产出(云南省地质调查院, 2003)。断裂构造是研究区铜银多金属矿床的主导控制因素,也是成矿的首要条件;沿断裂 和裂隙下渗的大气降水_地下水被加热,与来自深部的热液对流循环,从早期沉淀形成的矿 源层以及矿区外围含矿地层中淋滤出铅锌组分,成矿流体运移并沉淀在上述容矿构造中。王 光辉等(2009)根据逆冲推覆构造特征,推断其通常显示多期次特征,东部逆冲带大致发育 于34 Ma或56 Ma。何龙清等(2005)的研究显示,东部金沙江_哀牢山逆冲推覆带最 宽可达50 km,前峰带位于兰坪_云龙以东,在三山(灰山、黑山、华昌山)卷入的地质单元 有下三叠统、侏罗系和白垩系沉积岩,不同时代沉积岩均推覆于古近系云龙组上。暗示东 矿 带成矿作用发生于云龙组上段沉积成岩和逆冲推覆断层形成之后,故本次测试所获得成矿年 龄(32.8±1.5) Ma和(33.32±0.43)Ma在合理范围之内。
4.3成矿时代的对比
        青藏高原东部和北部存在较多喜马拉雅期贱金属硫化物矿床:滇西金顶巨型Zn_Pb矿床、白 秧 坪超大型Ag_Cu_Pb_Zn矿集区和金满中型Cu矿床以及青南东莫扎抓大型Pb_Zn矿床、茶曲帕查 Zn_Pb矿床(超大型),均产于碰撞造山环境(侯增谦等,2008a;2008b)。碰撞造山阶段 始于65 Ma的印度_亚洲大陆对接碰撞,在高原中北部和东部形成一系列以逆冲_推覆构造 为特征的收缩构造(Wang et al.,1997),其最初发育时限在50 Ma以前。
        He等(2009)报道兰坪盆地Pb_Zn矿化年龄介于60~35 Ma,随后通过地质特征研究将其成矿 年龄范围缩小至40~34 Ma。对兰坪盆地年代学工作开展最早的是金满Cu矿床(李小明,200 1;刘家军等, 2003;徐晓春等,2004;毕先梅等,2004;赵海滨,2006),盆地西缘Cu矿化年龄可分为2 个阶段:早阶段大致在59~56 Ma;晚阶段可持续到35 Ma。兰坪盆地金顶Pb_Zn_Cu_Hg和白 秧 坪Cu_Ag_Co矿化区研究程度相对较高。其中,金顶矿床赋存于下白垩统景星组长石石英砂岩 和古新 统云龙组灰岩角砾岩中,从矿石结构构造观察,属典型后生热液矿床,该矿床形成时间较晚 (李小明等,2000;Xue et al., 2003;修群业等,2006;唐永永,2013)。王晓虎等(20 11)利用方解石Sm_Nd法和闪锌矿Rb_Sr法获得白秧坪矿集区西矿带吴底厂、李子坪和富隆厂 Pb_Zn 矿化的年龄范围为30~29 Ma。李亚林等(2006)认为沱沱河盆地查曲帕茶和多彩玛Pb_ Zn矿床为后生热液矿床,而野外观察两者应该为同期成矿,成矿年龄晚于赋矿围岩(分别为 沱沱河组和五道梁组)的下限(分别为52 Ma和23.8 Ma),成矿构造背景为青藏高原新生 代 碰撞造山后碰撞期(侯增谦等,2006c)。田世洪等(2009)通过玉树囊谦盆地东莫扎抓铅 锌矿床和莫海拉亨铅锌矿床研究,认为成矿年龄分别为35 Ma和33 Ma。本研究利用方解石Sm _Nd法、闪锌矿和方铅矿Rb_Sr法获得兰坪盆地白秧坪矿床东矿带的成矿年龄与上述3个盆 地的典型铅锌矿床年龄相近,故认为青藏高原东部和北部受逆冲推覆构造控制的Pb_Zn矿床 都为新生代构造转换期或构造伸展早期 的产物。
5结论
        (1) 白秧坪Pb_Zn多金属矿床东矿带方铅矿、闪锌矿的Rb_Sr等时线年龄为(32.8 ±1.5) Ma,方解石Sm_Nd等时线年龄为(33.32±0.43) Ma。Rb_Sr和Sm_Nd法在误差范 围内一致,对矿床的成矿背景具有很好的指示性。
        (2) 通过成矿年龄探讨,认为东矿带铅锌为主的矿化期主要产生于青藏高原东缘晚碰撞40 ~26 Ma阶段,伴随印度_亚洲大陆碰撞造山,形成逆冲推覆构造和赋矿地层,共同控制了Pb _Zn_Ag_Cu矿床的形成和发育。
        (3) 该成矿年代与相关的矿床(如金顶和西矿带Pb_Zn矿床和囊谦盆地Pb_Zn矿床、沱沱河 盆地Pb_Zn矿床)具有一定的可比性。        
参考文献
  References    
     Anglin C D, Jonasson I R and Franklin J M.1996. Sm_Nd dating of scheelit e and to urmaline: Implications for the genesis of Archean gold deposits, Val dOr, Canad a[J]. Econ. Geol., 91: 1372_1382.
     Bell K, Anglin C D and Franklin J M. 1989. Sm_Nd and Rb_Sr isotope systematics o f scheelites: Possible implications for the age and genesis of vein_hosted gold deposits[J]. Geology, 17: 500_504.
     Bi X M and Mo X X. 2004. Transition from diagenesis to low_grade metamorphism an d related minerals and energy resources[J]. Earth Science Frontiers, 11 (1): 2 87_294 (in Chinese with English abstract).
     Chen F K, Li Q L, Wang X L and Yang X H. 2006. Zircon age and Sr_Nd_Hf isotopic composition of migmatite in the eastern Tengchong block, western Yunnan[J]. Ac ta Petrologica Sinica, 22(2):439_448(in Chinese with English abstract).
     Chen K X, He L Q, Yang Z Q, Wei J Q and Yang A P. 2000. Oxygen and carbon isotop e geochemistry in Sanshan_Baiyangping copper and silver polymetallogenic enrichm ent district, Lanping, Yunnan[J]. Geology and Mineral Resources of South China , (4):1_8(in Chinese with English abstract).
     Cherniak D J. 1998. REE diffusion in calcite[J]. Earth and Planetary Science L etters, 160: 273_287.
     Christensen J N, Halliday A N, Leigh K E, Randell R N and Kesler S E. 1995a. Dir ect dating of sulfides by Rb_Sr: A critical test using the Polaris Mississippi V alley type Zn_Pb deposit[J]. Geochimica et Cosmochimica Acta, 59: 5191_5197.
     Christensen J N, Halliday A N, Vearncombe J R and Kesler S E. 1995b. Testing mod els of large_scale crustal fluid flow using direct dating of sulfide: Rb_Sr evid ence for early dewatering and formation of Mississippi Valley_type deposits, Can ning Basin, Australia[J]. Econ. Geol., 90: 877_884.
     Feng C X, Bi X W, Hu R Z, Liu S, Wu L Y, Tang Y Y and Zou Z C. 2011. The study o n paragenesis_separation mechanism and source of ore_forming element in the Baiy angping Cu_Pb_Zn_Ag polylmetallic ore deposit, Lanping basin, southwestern China [J]. Acta Petrologica Sinica, 27(9):2609_2624(in Chinese with English abstr act). 
     Fu X G. 2005. Evolution of Lanping basin and formation of relevant metal deposit s[J]. Journal of Earth Sciences and Environment, 27(2): 26_32 (in Chinese with English abstract).
     Grandia F, Asmerom Y, Getty S, Cardellach E and Canals A. 2000. U_Pb dating of M VT ore_stage calcite: Implications for fluid flow in a Mesozoic extensional basi n from Iberian Peninsula[J]. Journal of Geochemical Exploration, 69_70: 377_38 0.
     Griyet M, Rebetez M and Ghouma N B. 1993. Apatite fission_track age correction a nd thermal history analysis from projected track length distributions[J].Chem ical Geology (Isotopic Geoscience Section), 103: 157_169.
     Halliday A N, Shepherd T J and Dicken A P. 1990. Sm_Nd evidence for the age and origin of a MVT ore deposit[J]. Nature, 344: 54_56.
     Han Y G, Li X H, Zhang S H, Zhang Y H and Chen F K. 2007. Rb_Sr isochron dating of single grain and cataclastic pyrite of Qiyugou gold ore deposit in western of Henan Province, China[J]. Chinese Science Bulletin, 52(11): 1307_1311(in Chin ese).
     He L Q, Chen K X, Wei J Q and Yu F M. 2005. Geological and geochemical character istics and genesis of ore deposits in eastern ore belt of Baiyangping area,Yunn an Province[J]. Mineral Deposits, 24(1): 61_70 (in Chinese with English abstra ct).
     He L Q, Song Y C, Chen K X, Hou Z Q, Yu F M, Yang Z S, Wei J Q, Li Z and Liu Y C . 2009. Thrust_controlled,sediment_hosted, Himalayan Zn_Pb_Cu_Ag deposits in th e Lanping foreland fold belt, eastern margin of Tibetan Plateau[J]. Ore Geolog y Reviews, 36: 106_132.
     He M Q, Liu J J, Li C Y, Li Z M, Liu Y P, Yang A P and San H Q. 2006. 40Ar_39Ar dating of ore quartz from the Baiyangping Cu_Co polymeta llic minerallized concen tration area, Lanping, Yunnan[J]. Chinese Journal of Geology, 41 (4): 688_693 (in Chinese with English abstract).
     Hou Z Q, Mo X X, Yang Z M, Wang A J, Pan G T, Qu X M and Nie F J. 2006a. Metallo genesis in the Tibet an collision orogenic belt: Tectonic set ting, met allogen ic epoch and deposit type[J]. Geology in China, 33: 348_359 (in Chinese with E nglish abstract). 
     Hou Z Q, Yang Z S, Xu W Y, Mo X X, Ding L, Gao Y F, Dong F L, Li G M , Qu X M, L i G M, Zhao Z D, Jiang S H, Meng X J, Li Z Q and Qin K Z. 2006b. Metallogenesis in Tibet collisional orogenic belt: Ⅰ. Mineralization in main_collisional oroge n ic setting[J]. Mineral Deposits, 25 (4): 337_ 358(in Chinese with English abstract). 
     Hou Z Q, Pan G T , Wang A J, Mo X X, Tian S H , Sun X M, Ding L, Wang E Q, Gao Y F, Xie Y L, Zeng P S, Qing K Z, Xu J F, Qu X M, Yang Z M, Yang Z S, Fei H C, Me ng X J and Li Z Q. 2006c. Metallogenesis in Tibet collisional orogenic belt: Ⅱ. Mineralization in late_collisional transformation setting[J]. Mineral Dep osits, 25 (5): 521_543(in Chinese with English abstract).
     Hou Z Q, Song Y C, Li Z, Wang Z L, Yang Z M, Yang Z S, Liu Y C, Tian S H, He L Q , Chen K X, Wang F C, Zhao C X, Xue W Z and Lu H F. 2008a. Trust_controlled, sed iments_hosted Pb_Zn_Ag_Cu deposits in eastern and northern margins of Tibetan or ogenic belt: Geological features and tectonic model[J]. Mineral Deposits, 27 ( 2):123_144 (in Chinese with English abstract).
     Hou Z Q, Wang E Q, Mo X X, Ding L, Pan G T and Zhang Z J. 2008b. Collisional oro geny and metallogenesis of the Tibetan plateau[M]. Beijing: Geological Pu blishing House. 1_950 (in Chinese).
     Jiang S Y, Chen Y Q, Ling H F, Yang J H, Feng H Z and Ni P. 2006.Trace and rare_ earth element geochemistry and Pb_Pb dating of black shales and intercalated Ni_ Mo_PGE_Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China[ J]. Mineralium Deposita, 41: 453_467. 
     Jiang S Y, Slack J F and Palmer M R. 2000. Sm_Nd dating of the giant Sullivan Pb _Zn_Ag deposit,British Columbia[J]. Geology, 28: 751_754.
     Kent A J R, Campbell I H and McCulloch M T. 1995. Sm_Nd systematics of hydro ther mal scheelite from the Mount Charlotte Mine, Kalgoorlie, western Australia: An i sotopic link between gold mineralization and Komatiites[J]. Econ. Geol., 90: 2 329_2335.
     Leach D L, Bradley D, Lewchuck M T, Symons D T A, de Marsily G and Brannon J C. 2001. Mississippi Valley_type lead_zinc deposits through geological time: Implic ations from recent age_dating research[J]. Mineralium Deposita, 36: 711_740.
     Li Q L, Chen F Q, Wang X L, Li X H and Wang C F. 2006. Ultra_low procedural blan k and the single_grain mica Rb_Sr isochron dating[J]. Chinese Science Bull etin, 51 (3):321_325 (in Chinese with English abstract).
     Li W B, Huang Z L, Chen J, Han R S, Zhang Z L and Xu C. 2004a. Rb_Sr dating of m ineral assemblage from the Huize giant Zn_Pb deposit, Yunnan Province[J]. Acta Mineralogica Sinica, 24 (2): 112_116 (in Chinese with English abstract).
     Li W B, Huang Z L, Wang Y X, Chen J, Han R S, Xu C, Guan T and Yin M D. 2004b. A ge of the giant Huize Zn_Pb deposits determined by Sm_Nd dating of hydrothermal calcite[J]. Geological Reviews, 50 (2): 189_195 ( in Chinese with English abst ract).
     Li X M, Tan K X, Gong G L and Gong W J. 2000. Preliminary studies of tectonother mal evolution and metallogenic processes in Lanping basion with fission track an alysis[J]. Journal of Mineralogica and Petrologica, 20 (2): 40_42 (in Chinese with English abstract).
     Li X M. 2001. Metallogenic age of Jinman copper deposits in western Yunnan Provi nce, China[J]. Geoscience,15(4): 405_408(in Chinese with English abstract).
     Li Y L, Wang C S, Yin H S, Liu Z F and Li Y. 2006. Cenozoic thrust system and up lifting of the Tanggula Mountain, northem Tibet[J]. Acta Geologica Sinica, 80: 1l18_1131 (in Chinese with English abstract).
     Liu J M, Zhao S R, Shen J, Jiang N and Huo W G. 1998. Review on direct isotopic dating of hydrothermal ore_forming processes[J]. Progress in Geophysics, 13 (3 ): 46_55 (in Chinese with English abstract).
     Liu J J, Li Z M, Liu Y P, Li C Y, Zhang Q, He M Q, Yang W G, Yang A P and San H Q. 2003. The metallogenic age of Jinman vein copper deposits,western Yunnan[J ]. Geoscience, 17 (1): 34_39 (in Chinese with English abstract).
     Ludwig K R. 2001. Users Manual for Isoplot/Ex: A geochronological toolkit for Mi crosoft Excel[M]. Berkeley Geochronology Center, Special Pulication(1a).1_53. 
     Mao J W, Zhang G D, Du A D, Wang Y T and Zeng M G. 2001. Geology, geochemist ry an d Re_Os isotopic dating of Huangjiawan Ni_Mo_PGE deposit, Zunyi, Guizhou Provinc e_with a discussion of the polymetallic mineralization of basal Cambrian black s hales in south China[J]. Acta Geologica Sinica, 75(2): 234_343(in Chinese with English abstract).
     Mao J W, Lehmann B, Du A D, Zhang G D, Ma D S, Wang Y T, Zeng M G and Kerrich R. 2002. Re_Os dating of polymetallic Ni_Mo_PGE_Au mineralisation in Lower Cambria n Black shales of South China and its geological significance[J]. Econ. Geol., 97: 1051_1061. 
     Mao J W, Xie G Q, Zhang Z H, Li X F, Wang Y T, Zhang C Q and Li Y F. 2005. Mesoz oic large_scale metallogenic pulses in North China and corresponding geodynamic setting[J]. Acta Geologica Sinica, 21(1):169_188(in Chinese with English abstr act).
     Nakai S, Halliday A N, Kesler S E, Jones H D, Kyle J R and Lane T E. 1993. Rb_Sr dating of sphalerites from MVT ore deposits[J]. Geochimica et Cosmochimica Ac ta, 57: 417_427.
     No.3 Geology and Mineral Resources Survey, Yunnan Geological Survey. 2003. The Baiyangping Cu_Ag_Pb_Zn_Co mineralized concentration district, Exploration Repor t, Yunnan Province[R].1_266 (in Chinese).
     Peng J T, Hu R Z and Burnard P G. 2003. Samarium_neodymium isotope systematics o f hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China): Th e potential of calcite as a geochronometer[J]. Chemical Geology, 200 (1_2): 12 9_136.
     Pettke T and Diamond L W. 1996. Rb_Sr dating of sphalerite based on fluid inclus ion_hosted mineral isochrons: A clarification of why it works[J]. Econ. Geol., 91: 951_956.
     Qiu H N, Wijbrans J R, Li X H, Zhu B Q, Zhu C L and Zeng B C. 2002. New 40Ar/39Ar evidence for ore_forming process during Jinning_Chengj iang period in Dongchuang type copper ore deposit[J]. Mineral Deposits, 21(2) :129_136(in Chinese with English abstract).
     Shao Z G, Meng X G, Feng X Y and Zhu D G. 2003. Tectonic characteristics of the Baiyangping_Huachangshan ore belt, Yunnan Province and its ore_controlling effec t[J]. Journal of Geomechanics, 9(3): 246_253(in Chinese with English abstract) .
     Song Y C, Hou Z Q, Yang T N, Zhang H R, Yang Z S, Tian S H, Liu Y C, Wang X H, L iu Y X, Xue C D, Wang G H and Li Z. 2011. Sediment_hosted Himalayan base metal d eposits in Sanjiang region: Characteristics and genetic types[J]. Acta Petrolo gica et Mineralogica, 30 (3): 355_380 (in Chinese with English abstract).
     Symons D T A and Arne D C. 2005. Paleomagnetic constraints on Zn_Pb ore genesis of the Pillara Mine,Lennard Shelf, western Australia[J]. Mineralium Depos ita, 39 (8): 944_959.
     Symons D T A, Lewchuk M T, Kawasaki K, Velasco F and Leach D L. 2009. The Reocin zinc_lead deposit,Spain: Paleomagnetic dating of a late Tertiary ore body[J] . Minerlium Deposita, 44 (8): 867_880.
     Tang Y Y. 2013. Abnormal enrichment mechanism of ore_forming metals in the J indi ng Zn_Pb deposit, Yunnan Province, China(a dissertation for the degree of Doctor of Natural Science)[D]. Supervisor: Xian W B. Beijing: The university of Chin ese Academy of Sciences. 1_129(in Chinese with English abstract).
     Tao X F, Zhu L D, Liu D Z, Wang G Z and Li Y G. 2002. The formation and evolutio n of the Lanping basin in western Yunnan[J]. Journal of Chengdu University of Technology, 29 (5): 521_525 (in Chinese with English abstract).
     Tian S H, Yang Z S, Hou Z Q, Liu Y C, Gao Y G, Wang Z L, Song Y C, Xue W W, Lu H F, Wang F C, Su A N, Li Z Z, Wang Y X, Zhang Y B, Zhu T, Yu C J and Yu Y S. 200 9. Rb_Sr and Sm_Nd isochron ages of the Dongmozhazhua and Mohailaheng Pb_Zn ore deposits in Yushu area, southern Qinhai and their geological implications[J]. Mineral Deposits, 28 (6): 747_758 (in Chinese with English abstract).
     Wang E Q and Burchfiel B C. 1997. Interpretation of Cenozoic tectonics in the fi ght_lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis[J]. International Geological Review, 39: 191_219.
     Wang G H, Song Y C, Hou Z Q, Wang X H, Yang Z S, Yang T N, Liu Y X, Jiang Y F, P an X F, Zhang H R, Liu Y C, Li Z and Xue C D. 2009. Re_Os dating of molybdenite from Liancheng vein copper deposit in Lanping basin and its geological significa nce[J]. Mineral Deposits, 28 (4): 413_424 (in Chinese with English abstrac t).
     Wang X H, Hou Z Q, Song Y C, Yang T N and Zhang H R. 2011. Baiyangping Pb_Zn_Cu_ Ag polymetallic deposit in Lanping Basin: Metallogenic chronology and regional m ineralization[J]. Acta Petrologica Sinica,27(9) : 2625_2634 (in Chinese with English abstract).
     Wang Y X, Yang J D and Chen J. 2007. The Sr and Nd isotopic variations of the Ch inese Loess Plateau during the past 7 Ma: Implications for the East Asian winter monsoon and source areas of loess[J]. Palaeogeography Palaeoclimatology P alaeoecology, 249 (3_4): 351_361.
     Wang Y Z, Li X L, Duan L L, Huang Z X and Cui C L. 2000. Geotectonic and mineral ization in the south of Sanjiang region[M]. Beijing: Geological Publishing Hou se. 1_79 (in Chinese).
     Wei J Q. 2001. S_Pb Isotopic geochemistry of copper multi_metal deposits in Hexi , Yunnan Province[J]. Geology and Mineral Resources of South China, (3): 36_39 (in Chinese with English abstract).
     Xiu Q Y, Wang A J, Gao L, Liu J L, Yu C L, Cao D H, Fan S J and Zhai S F. 2006. Discussion on the geologic time of host rock of Jinding superlarge deposit and i ts geological significance[J]. Geological Survey and Research, 29(4):29 4_302(in Chinese with English abstract)
     Xu X C, Huang Z, Xie Q Q, Yue S C and Liu Y. 2004. Ar_Ar isotopic ages of Jinman and Shuixie copper polymetallic deposits in Yunnan Province, and their geologic al implications[J].Geological Journal of China University, 10 (2): 157_164 (i n Chinese with English abstract).
     Xue C J, Chen Y C, Wang D H, Yang J M, Yang W G and Yang Q B. 2002. Analysis of ore_forming background and tectonic system of Lanping basin, western Yunnan Prov ince[J]. Mineral Deposits, 21(1): 36_44 (in Chinese with English abstract).
     Xue C J, Chen Y C, Wang D H, Yang J M, Yang W G and Zeng R. 2003. Geology and is otopic composition of helium, neon, xenon and metallogenic age of the Jinding an d Baiyangping ore deposits, northwest Yunnan, China[J]. Science in China (Ser. D), 33(4): 315_322 (in Chinese).
     Xue C J, Zeng R, Liu S W , Chi G X, Qing H R, Chen Y C, Yang J M and Wang D H. 2 007. A review of the geologic,fluid inclusion and isotopic characteristics of t he Jinding Zn_Pb deposit,western Yunnan,China[J]. Ore Geology Reviews, 31: 3 37_359
     Yang G, Chen J F, Du A D, Qu W J and Yu G. 2004. Re_Os dating of containing moly bdenum carbonaceous shales of Tongling Laoyaling in Anhui Province, China[J]. Chinese Science Bulletin, 49(2):1205_1208(in Chinese).
     Zhang C Q, Li X H, Yu J J, Mao J W, Chen F K and Li H M. 2008. Rb_Sr dating of s ingle sphalerites from the Daliangzi Pb_Zn deposit, Sichuan, and its geological significances[J]. Geological Reviews, 54 (4): 145_151 (in Chinese with English abstract).
     Zhao H B. 2006. Study on the characteristics and metallogenic conditions of copp er polymetallic deposits in middle_northern Lanping Basin, western Yunnan(Ph.D. Dissertation)[D]. Supervisor: M X X. Beijing: China University of Geosciences. 1_134 (in Chinese with English abstract).
     Zhao Z H. 1997. The principles of microelement geochemistry[M]. Beijing: Scien ce Press. 84_85 (in Chinese with English abstract).
     Zheng W, Chen H M, Xu L G, Zhao H J, Ling S B, Wu Y, Hu Y G, Tian Y and Wu X D. 2013. Rb_Sr isochron age of Tiantang Cu_Pb_Zn polymetallic deposit in Guangdong Province and its geological significance[J]. Mineral Deposits, 32 (2): 259 _272(in Chinese with English abstract).
     Zhong S J and Alfonso M. 1995. Partitioning of rare_eartbh elements (REEs) betw een calcite and seawater solution at 25℃ and 1atm, and high dissolved REE conce ntrations[J]. Geochimica et Cosmochimica Acta, 59: 443_453.
    
     附中文参考文献
    
     毕先梅,莫宣学. 2004. 成岩_极低级变质_低级变质作用及有关矿产[J]. 地学前缘,11(1):287_294.
     陈福坤,李秋立,王秀丽,李向辉. 2006. 滇西地区腾冲地块东侧混合岩锆石年龄和Sr_Nd_ Hf同位素组成[J].岩石学报,22(2):439_448.
     陈开旭,何龙清,杨振强,魏君奇,杨爱平. 2000. 云南兰坪三山_白秧坪铜银多金属成矿富集 区的碳氧同位素地球化学[J]. 华南地质与矿产, (4):1_8.
     冯彩霞,毕献武,胡瑞忠,刘●,武丽艳,唐永永,邹志超. 2011. 兰坪盆地白秧坪Cu_P b_ Zn_Ag多金属矿集区元素共生分异机制及物质来源[J]. 岩石学报,27(9):2609_2624. 
     付修根. 2005. 兰坪陆相盆地演化与金属矿床的形成[J]. 地球科学与环境学报,27(2) :26_32.
     韩以贵,李向辉,张世红,张元厚,陈福坤. 2007. 豫西祁雨沟金矿单颗粒和碎裂状黄铁矿 Rb_Sr等时线定年[J].科学通报,52(11):1307_1311.
     何龙清,陈开旭,魏君奇,余凤鸣. 2005. 云南白秧坪地区东矿带矿床地质地球化学特征及 成因分析[J]. 矿床地质,24(1):61_70.
     何明勤,刘家军,李朝阳,李志明,刘玉平,杨爱平,桑海清. 2006. 云南兰坪白秧坪铜钴 多金属矿集区矿石中石英的40Ar/39Ar年龄[J]. 地质科学 ,41(4):688_693.
     侯增谦,莫宣学,杨志明,王安建,潘桂棠,曲晓明,聂凤军. 2006a. 青藏高原碰撞造山 带成矿作用:构造背景、时空分布和主要类型[J]. 中国地质, 33:348_359.
     侯增谦,杨竹森,徐文艺,莫宣学,丁林,高永丰,董方浏,李光明,曲晓明,李光明,赵 志丹,江思宏, 孟祥金,李振清,秦克章. 2006b. 青藏高原碰撞造山带:I. 主碰撞造山 成矿作用[J]. 矿床地质,25(4): 337_358.
     侯增谦, 潘桂棠,安建, 莫宣学,田世洪,孙晓明,丁林,王二七,高永丰,谢玉玲,曾 普胜,秦克章,许继峰,曲晓明,杨志明,杨竹森,费红彩,孟祥金,李振清. 2006c. 青 藏高原碰撞造山带: Ⅱ. 晚碰撞转换成矿作用[J]. 矿床地质,25(5):521_543.
     侯增谦,宋玉财,李政,王召林,杨志明,杨竹森,刘英超,田世洪,何龙清,陈开旭. 20 08a. 青藏高原碰撞造山带Pb_Zn_Ag矿床新类型:成矿基本特征与构造控矿模型[J]. 矿床 地质,27(2):123_144.
     侯增谦,王二七,莫宣学,丁林,潘桂棠,张中杰. 2008b. 青藏高原碰撞造山与成矿作用 [M]. 北京:地质出版社.1_950.
     李秋立,陈福坤,王秀丽,李向辉,李潮峰. 2006. 超低本底化学流程和单颗粒云母Rb_Sr 等时线定年[J].科学通报,51(3):321_325.
     李文博,黄智龙,陈进,韩润生,张正亮,许成. 2004a. 会泽超大型铅锌矿床成矿时代研 究[J]. 矿物学报,24(2):112_116.
     李文博,黄智龙,王银喜,陈进,韩润生,许成,管涛,尹牡丹. 2004b. 会泽超大型铅锌 矿田方解石Sm_Nd等时线年龄及其地质意义[J]. 地质论评,50(2):189_195.
     李小明,谭凯旋,龚革联,龚文君. 2000. 裂变径迹法对兰坪盆地构造热演化与成矿作用的 初步研究[J]. 矿物岩石,20(2):40_42.
     李小明. 2001. 滇西金满铜矿床成矿年龄测定[J]. 现代地质,15:405_408.
     李亚林,王成善,伊海生,刘志飞,李勇. 2006. 西藏北部新生代大型逆冲推覆构造与唐古 拉山的隆起[J]. 地质学报,80:1118_1130.
     刘家军,李志明,刘玉平,李朝阳,张乾,何明勤,杨伟光,杨爱平,桑海清. 2003. 滇西 金满脉状铜矿床成矿年龄讨论[J]. 现代地质,17(1):34_39.
     刘建明,赵善仁,沈洁,姜能,霍卫国. 1998. 成矿流体活动的同位素定年方法评述[J]. 地球物理学进展,13(3):46_55.
     毛景文,张光第,杜安道,王义天,曾明果. 2001. 遵义黄家湾钼镍铂族元素矿床地质、地 球化学和Re_Os同位素年龄测定——兼论华南寒武系底部黑色页岩多金属成矿作用[J].地 质学报,75(2):234_243.
     毛景文,谢桂青,张作衡,李晓峰,王义天,张长青,李永峰.2005.中国北方中生代大规模 成矿作用的其次及其动力学背景[J].岩石学报,21(1):169_18.
     裴荣富. 1995. 中国矿床模式[M]. 北京:地质出版社.1_357.
     邱华宁,Wijbrans J R, 李献华,朱炳泉,朱崇林,曾保成.2002.“东川式"层状铜矿 40Ar/39Ar成矿年龄研究:华南地区晋宁_澄江期成矿作用新证据[J]. 矿 床地质,21(2):129_13 6.
     邵兆刚,孟宪刚,冯向阳,朱大岗.2003.云南白秧坪_华昌山矿带构造特征及其控矿作用[J ]. 地质力学学报,9(3):246_253.
     宋玉财,侯增谦,杨天南,张洪瑞, 杨竹森,田世洪,刘英超,王晓虎,刘燕学,薛传东 ,王光辉,李政. 2011. 三江_喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型[J] . 岩石矿物学杂志,30(3):355_380.
     唐永永. 2013. 云南金顶铅锌矿床成矿元素超常富集机制研究(博士论文)[D]. 导师: 毕献武. 北京:中国科学院大学. 1_129.
     陶晓风,朱利东,刘登忠,王国芝,李佑国. 2002. 滇西兰坪盆地的形成及演化[J]. 成 都理工学院学报,29(5):521_525.
     田世洪,杨竹森,侯增谦,刘英超,高延光,王召林,宋玉财,薛万文,鲁海峰,王富春, 苏嫒娜,李真真,王银喜,张玉宝,朱田,俞长捷,于玉帅. 2009. 玉树地区东莫扎抓和莫 海拉亨铅锌矿床Rb_Sr和Sm_Nd 等时线年龄及其地质意义[J]. 矿床地质,28(6):747_7 58.
     王光辉,宋玉财,侯增谦,王晓虎,杨竹森,杨天南,刘燕学,江迎飞,潘小菲,张洪瑞, 刘英超,李政,薛传东. 2009. 兰坪盆地连城脉状铜矿床辉钼矿Re_Os定年及其地质意义[J ]. 矿床地质,28(4):413_424.
     王晓虎,侯增谦,宋玉财,杨天南,张洪瑞. 2011. 兰坪盆地北部白秧坪铅锌铜银多金属矿 床:成矿年代及区域成矿作用[J]. 岩石学报,29(9):2625_2634.
     王义昭,李兴林,段丽兰,黄智勋,崔春龙. 2000. 三江地区南段大地构造与成矿[M]. 北京:地质出版社.1_79.
     魏君奇. 2001. 云南河西铜多金属矿S_Pb同位素地球化学[J]. 华南地质与矿产,(3): 36_39.
     修群业,王安建,高兰,刘俊来,于春林,曹殿华,范世家,翟世峰. 2006. 金顶超大型矿 床容矿围岩时代探讨及地质意义[J].地质调查与研究,29(4):294_302.
     徐晓春,黄震,谢巧勤,岳书仓,刘因. 2004. 云南金满、水泄铜多金属矿床Ar_Ar同位素 年代学及其地质意义[J]. 高校地质学报,10(2):157_164.
     薛春纪,陈毓川,王登红,杨建民,杨伟光,杨清标. 2002.滇西兰坪盆地构造体制和成矿 背景分析[J].矿床地质,21(1):36_4.
     薛春纪,陈毓川,王登红,杨建民,杨伟光,曾荣. 2003. 滇西北金顶和白秧坪矿床:地质 和He,Ne,Xe同位素组成及成矿时代[J]. 中国科学(D辑),33(4):315_322.
     杨刚,陈江峰,杜安道,屈文俊,俞刚. 2004. 安徽铜陵老鸦岭含钼碳质页岩的Re_Os定年 [J]. 科学通报,49(2):1205_1208.
     云南省地质调查院第三地质调查所. 2003. 云南兰坪白秧坪铜银铅锌钴矿化集中区评价地质 报告[R]. 1_266.
     张长青,李向辉,余金杰,毛景文,陈福坤,李厚明. 2008. 四川大梁子铅锌矿床单颗粒闪 锌矿铷_锶测年及地质意义[J]. 地质论评,54(4):145_151.
     赵海滨. 2006. 滇西兰坪盆地中北部铜多金属矿床成矿地质特征及地质条件(博士论文)[ D]. 导师:莫宣学. 北京:中国地质大学.1_134.
     赵振华. 1997. 微量元素地球化学原理[M]. 北京:科学出版社. 84_85.
     郑伟,陈懋弘,徐林刚,赵海杰,凌世彬,吴越,胡耀国,田云,吴晓东. 2013. 广东天堂 铜铅锌多金属矿床Rb_Sr等时线年龄及其地质意义[J]. 矿床地质,32(2):259_272.