湘南宝山铅锌矿床硫、铅、碳、氧同位素特征及成矿物质来源
Received:June 13, 2014  Revised:September 25, 2014  点此下载全文
引用本文:XIE YinCai,LU JianJun,YANG Ping,MA DongSheng,XU ZhaoWen,ZHANG RongQing,CAI Yang,DING Teng.2015.S, Pb, C and O isotopic characteristics and sources of metallogenic materials of Baoshan Pb-Zn deposit, southern Hunan Province[J].Mineral Deposits,34(2):333~351
Hits: 2650
Download times: 2300
Author NameAffiliationE-mail
XIE YinCai State Key Laboratory of Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
Institute of Karst Geology, Chinese Academy of Geological Sciences/Karst Dynamics Laboratory, MLR & GZAR, Guilin 541004, Guangxi, China
Nonferrous Geological Bureau of Geological Research Institute of Yunnan Province, Kunming 650216, Yunnan, China 
 
LU JianJun State Key Laboratory of Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, China lujj@nju.edu.cn 
YANG Ping Nonferrous Geological Bureau of Geological Research Institute of Yunnan Province, Kunming 650216, Yunnan, China  
MA DongSheng State Key Laboratory of Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, China  
XU ZhaoWen State Key Laboratory of Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, China  
ZHANG RongQing State Key Laboratory of Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, China  
CAI Yang State Key Laboratory of Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, China  
DING Teng State Key Laboratory of Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, China  
基金项目:本研究得到国家基础发展项目(编号: 2012CB416705)和国家自然科学重点基金(编号: 41230315)联合资助
中文摘要:宝山铅锌矿床是湘南地区代表性矿床之一。宝山铅锌矿床的成矿作用与156 ~ 158 Ma的宝山花岗闪长斑岩密切相关。花岗闪长斑岩主要由古老地壳部分熔融而成。为确定成矿物质来源, 文章系统研究了宝山铅锌矿床的硫、铅、碳、氧同位素组成特征。矿床中硫化物黄铁矿、闪锌矿、方铅矿的δ34S值呈狭窄的塔式分布, 变化在-2.17‰~6.46‰之间, 平均值为3.13‰。δ34S值总体表现为δ34S黄铁矿 > δ34S闪锌矿 > δ34S方铅矿, 表明硫同位素分馏基本达到了平衡。矿石、花岗闪长斑岩和赋矿地层硫同位素对比研究表明, 矿石中的硫主要由岩浆分异演化而来, 岩浆中的硫主要来自古老地壳。矿石206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为18.188~18.844、15.661~15.843和38.562~39.912, 赋矿地层206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为18.268~19.166、15.620~5.721和38.364~39.952。矿石铅同位素组成比地层中的更富放射性成因铅, 矿石中部分铅来自宝山花岗闪长质岩浆, 在成矿流体运移过程中有部分地层铅参与了成矿, 岩浆中的铅主要来自古老地壳。热液方解石的碳、氧同位素组成介于岩浆和赋矿碳酸盐岩的碳、氧同位素之间, 主要是由于岩浆流体和碳酸盐岩不同比例的水岩反应所致, 测水组有机碳的加入造成了部分热液方解石δ13CPDB值偏低。
中文关键词:地球化学  硫同位素  铅同位素  碳、氧同位素  成矿物质来源  宝山铅锌矿  湘南
 
S, Pb, C and O isotopic characteristics and sources of metallogenic materials of Baoshan Pb-Zn deposit, southern Hunan Province
Abstract:The Baoshan Pb-Zn deposit is one of the representative deposits in southern Hunan Province. The metallogeny of the Baoshan Pb-Zn deposit is closely related to the 156~158 Ma granodiorite porphyry. The granodiorite porphyry was mainly derived from partial melting of old crustal rocks. Sulfur, lead, carbon and oxygen isotope geochemical results are analyzed and discussed in this paper in order to constrain the sources of metallogenic materials. The δ34S values of pyrite, sphalerite and galena in the Baoshan deposit show a narrow tower-like distribution, ranging from -2.17‰ to +6.46‰ with an average of 3.10‰. The δ34S values of all sulfides display a decreasing trend from pyrite through sphalerite to galena (δ34Spyrite34Ssphalerite34Sgalena), which suggests a sulfur isotopic equilibrium. Based on the characteristics of sulfur isotope of sulfides, the authors infer that sulfur in magma was mainly derived from old crust and that sulfur in ores was dominantly derived from the magma. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios for sulfides vary in ranges of 18.188 ~ 18.844, 15.661 ~ 15.843 and 38.562 ~ 39.912, respectively. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios for wall rocks are 18.268 ~ 19.166, 15.620 ~ 15.721 and 38.364 ~ 39.952, respectively. Lead isotopic compositions of some ore sulfides are significantly more radiogenic than those of the ore-hosting wall rocks. A part of lead of the ores in the Baoshan deposit might have come from the granodioritic magma. The lead in the magma mostly originated from old crust. A part of lead in ores was derived from the ore-bearing strata during the migration process of the ore-forming fluid. The carbon and oxygen isotopic compositions of the hydrothermal calcites vary between those of magma and carbonates and it is deduced that the hydrothermal calcites might have been formed by the interaction between magmatic water and carbonates in variable proportions. The relative low δ13CPDB values of hydrothermal calcites were probably related to involvement of sedimentary organic matter in the Ceshui Formation.
keywords:geochemistry  S isotopes  Pb isotopes  C-O isotopes  sources of metallogenic materials  Baoshan Pb-Zn deposit  southern Hunan Province
View Full Text  View/Add Comment  Download reader
You are a visitor6388303  Beijing ICP for 05032737-5  Beijing 110102004559 male may be prepared
All Rights Reserved:《矿床地质》编辑部
The Competent Units:中国科学技术协会 The Organizer :中国地质学会矿床地质专业委员会 中国地质科学院矿产资源研究所
Address: 北京市百万庄大街26号 Zip Code :100037 The Phone :010-68327284;010-68999546 E-mail: minerald@vip.163.com
本系统由北京勤云科技发展有限公司设计 
手机扫一扫